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Abstract. In this paper, we introduce two families of means that encompass many of the classical
means and we characterize the internality properties in these families. We determine the compa-
rability relations within these two families and we study their behavior under equal increments
of the variables. We also introduce a geometrical context that gives rise to one of these families.

1. Introduction

By a mean, one usually understands a function of two or more positive numbers that
is continuous, symmetric, homogeneous, of homogeneity degree 1, and internal. More
precisely, an n -dimensional mean on R+ = (0,∞) is a function M : R

n
+ −→ R+

with the following properties:
Continuity: M is continuous in each of its n arguments;
Symmetry: M(x) = M(σ(x)) for every permutation σ of the positive n -tuple

x ;
Homogeneity: M(λx) = λM(x) for all positive real numbers λ and all positive

n -tuples x ;
Internality: For all positive n -tuples x , min x � M(x) � max x .
Although there is no universally accepted definition of means [10, page 372], [13]

and [8], the above definition does seem to capture our most intuitive understanding of
the term and conforms to much of the existing literature on the subject [13]. In contexts
where some of the above axioms are not needed, authors drop them from their definition.
However, the author holds the view expressed in [6] that internality is an essential part
of any definition of means.

The (2-dimensional) arithmetic, geometric and harmonic means defined by

x + y
2

,
√

xy,
2xy

x + y

are probably the oldest and most well-known. They were known to the ancient
Pythagoreans [14, page 75], [10, Chapter II], arising in their study of numbers, geometry,
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music and possibly other practical considerations. The root-quadratic, contra-harmonic
and centroidal means defined by√

x2 + y2

2
,

x2 + y2

x + y
,

2
3

(
x2 + xy + y2

x + y

)
are less well-known but they appear quite frequently in the literature. Their geometric
significance is described in [14, page 168]. The Heronian mean

x +
√

xy + y

3

also holds a well-known place in the history of Egyptian mathematics [15, Lecture 2].
Using the terminology of [30], the 2-modification1 of this mean is

√
(x2 + xy + y2)/3 .

It occurs there with similar 2 -modifications of means such as√
(1 − t)xy + t

(
x2 + y2

2

)
.

The above means, or their 2-modifications, are all of the type
√

Q(x, y) or of the
type Q(x, y)/(x + y) , where Q is a symmetric quadratic form in x and y . These two
families of means together with their higher dimensional analogues are the objects of
study in this article. They will be given the names quadratic radical and quadratic
rational means (or radical and rational means of degree 2). Specifically, a quadratic
radical, respectively rational, mean is a mean of the form

√
Q , respectively Q/S ,

where Q is a symmetric quadratic form in the n variables x1, . . . , xn and where
S = S(x) = x1 + . . . + xn .

Although both
√

Q and Q/S are continuous, symmetric and homogeneous, the
requirement of internality places heavy restrictions on the coefficients of Q . These
resrtrictions are the subject matter of Section 2 and form the contents of Theorems 3
and 5. In Section 3, Theorem 8 describes conditions under which one of the means√

Q1 and Q2/S dominates the other. In this connection, we note that the arithmetic
mean belongs to both families since

x + y
2

=

√
x2 + y2 + 2xy

4
=

(x + y)2

2(x + y)
.

In fact, it is the only mean with this property; see Theorem 8(a). The behavior of
these means under equal increments of their variables, the so-called means on the move
property, is taken up in Section 4, Theorem 9. In Section 5, we give a geometrical
context in which the radical means arise. Finally in the last section, there are some
comments on radical and rational means of higher degree.

1If M(x, y) is a mean, then the 2-modification of M(x, y) is the mean M2(x, y) =
√

M(x2, y2) .
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2. Internality of quadratic radical and rational means

Let us define

Sn(x) =
n∑

i=1

xi, Tn(x) =
n∑

i=1

x2
i , Pn(x) =

∑
1�i<j�n

xixj, Δn(x) =
∑

1�i<j�n

(xj − xi)2.

If there is no ambiguity, the subscript n and, or, the n -tuple x will be omitted from
these notations; they then are just S, T, P, Δ . The vector space of all symmetric
quadratic forms, in n variables, has dimension 2 and is generated by the two forms T
and P . Since also

S2 = T + 2P, Δ = (n − 1)T − 2P,

we see that any two of the forms S2, T, P,Δ generate this vector space. A further useful
formula is

(n − 1)S2 = Δ + 2nP. (1)

These relations will be used, often without reference, in what follows.
The first result tells us when a symmetric quadratic form is non-negative. Although

this cannot be new, we state and prove it for the reader’s convenience and for ease of
reference.

THEOREM 1. If Q = sΔ + tP , s, t ∈ R , is a symmetric quadratic form, then
(a) Q(x) � 0 for all non-negative n -tuples x if and only if s � 0 and t � 0 .
(b) Q(x) � 0 for all n -tuples x if and only if s � 0 and s � t/2n � 0 .

Proof. (a) If Q � 0 for non-negative n -tuples, then taking x1 = . . . = xn = 1
shows that t � 0 ; then taking x1 = . . . = xn−1 = 0, xn = 1 shows that s � 0 .
Conversely, if s � 0 and t � 0 , then Δ � 0 and P � 0 for all non-negative n -tuples
and so Q � 0 .

(b) If Q � 0 for all n -tuples, then s and t are � 0 by (a). Further, taking
x1 = . . . = xn−2 = 0 and xn = −xn−1 = 1 , it follows that s(4 + 2(n − 2)) − t � 0
and hence 2ns � t . Conversely, suppose that s � 0 and that 2ns � t � 0 . If s = 0 ,
then t = 0 and there is nothing to prove. So we may assume s > 0 . In fact, we may
then without loss in generality assume that s = 1 and that 2n � t � 0 . If t = 0 , it is
immediate that Q � 0 ; if t = 2n , then Q = (n − 1)S2 � 0 . Since Q is linear in t ,
given x , the converse is proved. �

COROLLARY 2. If Q = αT + βP , α, β ∈ R , is a symmetric quadratic form, then
(a) Q(x) � 0 for all non-negative n -tuples x if and only if

α � 0 and β � −2α
n − 1

.

(b) Q(x) � 0 for all n -tuples x if and only if

α � 0 and α � β
2

� −α
n − 1

.
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Proof. This follows from Theorem 1 and the identity

(n − 1)Q = αΔ + 2αP + (n − 1)βP = αΔ + (2α + (n − 1)β)P. �

It follows from Theorem 1 that for Q of the form sΔ + tP we must have that
s, t � 0 for

√
Q to be a quadratic radical mean. However for the mean to be internal

s and t must satisfy further conditions. These conditions are described in the next
theorem where we found it more convenient to work with another (but equivalent) form
of Q .

THEOREM 3. If

Q =
2

n(n − 1)
(sΔ + tP), s, t ∈ R

is a symmetric quadratic form, then
√

Q is internal,

min(x) �
√

Q � max(x) for all positive n−tuples x (2)

if and only if t = 1 and 0 � s � 1 .

Proof. Clearly by Theorem 1, (2) only makes sense if s, t � 0 . Suppose then that
(2) holds. Take x1 = . . . = xn = 1 to see that t = 1 . Now taking x2 = x3 = . . . =
xn = 1 , x1 = 0 , we conclude that

2 − n
2

� s � 1.

Thus if Q satisfies (2), then, using the preliminary remark, t = 1 and 0 � s � 1 .
Conversely, suppose that t = 1 and 0 � s � 1 and assume without loss in

generality that x is increasing. Let F(s), 0 � s � 1 denote Q as a function of s .
Since F increases with s , (2) will be established if we prove that

(i) F(0) � x2
1, (ii) F(1) � x2

n.

Since

F(0) =
2

n(n − 1)
P =

2
n(n − 1)

n∑
1�i<j�n

xixj � 2
n(n − 1)

∑
1�i<j�n

x2
1 = x2

1,

(i) follows. To establish (ii), note that

n(n − 1)(x2
n − F(1)) = (n − 1)(n − 2)x2

n + 2xnSn−1 − 2(n − 1)Tn−1 + 2Pn−1. (3)

Writing

Ak = (k − 1)(k − 2)x2
k + 2(n − k + 1)xkSk−1 − 2(n − 1)Tk−1 + 2Pk−1

for 2 � k � n , we see that the right-hand side of (3) is just An . We prove that An � 0
by induction, first noting that

A2 = 2(n − 1)x1x2 − 2(n − 1)x2
1 = 2(n − 1)x1(x2 − x1) � 0.
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Now assume that Ak � 0 for some k with 2 � k < n . Then

Ak+1 = k(k − 1)x2
k+1 + 2(n − k)xk+1Sk − 2 ((n − 1)Tk − Pk)

� k(k − 1)x2
k + 2(n − k)xkSk − 2 ((n − 1)Tk − Pk)

= (k(k − 1) + 2(n − k) − 2(n − 1)) x2
k + (2(n − k) + 2) xkSk−1

−2 ((n − 1)Tk−1 − Pk−1)

= (k − 1)(k − 2)x2
k + 2(n − k + 1)xkSk−1 − 2 ((n − 1)Tk−1 − Pk−1)

= Ak � 0.

This completes the induction and the proof of the theorem. �

COROLLARY 4. If Q = αT + βP, α, β ∈ R , is a symmetric quadratic form, then√
Q is internal if and only if

0 � α � 2
n

and β =
2(1 − nα)
n(n − 1)

.

THEOREM 5. If

Q =
1

n − 1

(
sΔ + 2tP

S

)
, s, t ∈ R,

is a symmetric quadratic form, then Q/S is internal

min(x) � Q
S

� max(x) for all positive n−tuples x (4)

if and only if t = 1 and 0 � s � 1 .

Proof. Suppose that (4) holds. Taking x1 = . . . = xn = 1 , gives t = 1 , and
taking x1 = . . . = xn−1 = 0, xn = 1 , we conclude that 0 � s � 1 .

Conversely, suppose that t = 1 and 0 � s � 1 and assume without loss of
generality that x is a positive increasing n -tuple. Let G(s) , 0 � s � 1 , denote Q/S
as a function of s . Since G is increasing, (4) will follow if we prove

(i) G(0) � x1, (ii) G(1) � xn.

Since

(n − 1)SG(0) = 2P = 2
n∑

1�i<j�n

xixj =
n∑

i=1

xi
( ∑

j�=i

xj
)

� (n − 1)x1

n∑
i=1

xi = (n − 1)Sx1,

(i) follows. Also,

(n − 1)SG(1) = Δ+ 2P = (n − 1)
n∑

i=1

x2
i � (n − 1)xn

n∑
i=1

xi = (n − 1)Sxn.
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This proves (ii). �

COROLLARY 6. If Q = αT + βP, α, β ∈ R, is a symmetric quadratic form, then
Q/S is internal if and only if

n + 1
2n

� α � 1 and β =
2(1 − α)

n − 1
.

Theorems 3 and 5 are summarized in Theorem 7 below, where the statement
concerning strict internality follows by inspection of the proofs of Theorems 3 and 5.

THEOREM 7.
(a) Quadratic radical means are of the form

Fs =

√
2

n(n − 1)
(sΔ + P), 0 � s � 1. (5)

(b) Quadratic rational means are of the form

Gs =
1

n − 1

(
sΔ + 2P

S

)
, 0 � s � 1. (6)

Furthermore, all the means in these two families, beside being continuous, symmet-
ric and homogeneous, are also strictly internal in the sense that min x < M(x) < max x
for all non-constant positive n -tuples x.

3. Comparability of quadratic radical and rational means

According to Theorem 7, the family of quadratic radical means and the family of
quadratic rational means are both parametrized by a single parameter s . Further, we
have the following simple comparability relations:

Fa � Fb ⇐⇒ Ga � Gb ⇐⇒ 0 � a � b � 1.

These are immediate since both Fs and Gs are increasing functions of s , 0 � s � 1 .
The comparability of the two families is given in the following theorem.

THEOREM 8.
(a) Fa = Gb if and only if a = b/2 = 1/2n , when both means reduce to the

arithmetic mean.
(b) Fa � Gb if and only if b � a + 1/2n .
(c) Fa � Gb if and only if a � nb2/2 .

In all other cases, the means Fa and Gb are not comparable.

Proof. By (5) and (6),

n(n − 1)2S2(F2
a − G2

b) = 2(n − 1)S2(aΔ+ P) − n(bΔ+ 2P)2

= 2(Δ+ 2nP)(aΔ+ P) − n(bΔ+ 2P)2, by (1)

= Δ
(
(2a − nb2)Δ + 2(1 + 2an − 2bn)P

)
.
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By Lemma 1, the last expression is non-negative, respectively 0, for all non-negative x
if and only if the coefficients α = 2a− nb2 and β = 1 + 2an− 2bn are non-negative,
respectively 0. Noting that β − nα = (nb − 1)2 , we see that α and β have the same
sign. This proves (b) and (c). Finally (a) follows by solving α = β = 0 . �

In Theorem 8, it was pointed out that F1/2n = G1/n = the arithmetic mean, and
it is of interest to note other familiar means that belong to the above two families of
means.

F0 =

√
2P

n(n − 1)
=

√
1(n
2

) ∑
1�i<j�n

xixj

is the second elementary symmetric polynomial mean; see [10, Chapter V];

F 1
2

=

√√√√1
n

n∑
i=1

x2
i

is the root-quadratic mean; see [10, Chapter III];

G1 =

n∑
i=1

x2
i

n∑
i=1

xi

is an example of a Gini mean, the contra-harmonic mean; see [10, Chapter IV]. The
mean F1 does not seem to appear in the literature although the case n = 2 is the
2-modification of the generalized Heronian mean with t = 2 . Finally, we note that the
case n = 2 of the means Gs, 0 � s � 1 , are encountered in [29, p. 519] where they are
called the generalized means of harmonic type, and that the case n = 2 of the means
Fs, 0 � s � 1 , are nothing but the means P2,s(P2, G) mentioned in [28, p. 512].

4. Quadratic radical and rational means on the move

The next theorem answers the question of how each of the above means behaves
when all of the terms are increased by the same amount. This question was initiated in
[21] and further studied in [9], [1], [2], [17].

THEOREM 9. Let Fs and Gs , 0 � s � 1, be the means defined in Theorem 7, and
let

φs(t) = Fs(x1 + t, . . . , xn + t) − t, ψs(t) = Gs(x1 + t, . . . , xn + t) − t, t � 0.

Then
(a) As a function of t , φs(t) increases or decreases according as s is less than or

greater than 1/2n .
(b) As a function of t , ψs(t) increases or decreases according as s is less than

or greater than 1/n .
(c) lim

t→∞ φs(t) = lim
t→∞ψs(t) = S/n , the arithmetic mean.
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Proof. (a) We may asumewithout loss in generality that x is not a constant n -tuple
and that Fs is not the arithmetic mean, equivalently s �= 1/2n. Let

f s(t) = φs(t) + t = Fs(x1 + t, . . . , xn + t)

and let

S∗ = S(x1 + t, . . . , xn + t), P∗ = P(x1 + t, . . . , xn + t), Δ∗ = Δ(x1 + t, . . . , xn + t).

Then

S∗ = S + nt, P∗ = P +
n(n − 1)

2
t2 + t(n − 1)S, Δ∗ = Δ (7)

and

f s(t) =

√
2

n(n − 1)
(sΔ∗ + P∗).

So

φ ′
s(t) = f ′

s (t) − 1 =
N
D

− 1,

where

N = n(n − 1)t + (n − 1)S and D =
√

2n(n − 1)(sΔ∗ + P∗).

Using (1) and (7), we get that N2 − D2 = (n − 1)(1 − 2sn)Δ so that φ ′
s(t) is positive

or negative according as s < 1/2n or s > 1/2n .
(b) Again, we may assume without loss in generality that x is not a constant

n -tuple and that Gs is not the arithmetic mean, equivalently s �= 1/n. Let

gs(t) = ψs(t) + t = Gs(x1 + t, . . . , xn + t).

Then

gs(t) =
1

n − 1
· sΔ∗ + 2P∗

S∗
,

and ψ ′
s(t) = g′s(t) − 1 = N/D − 1 , where

N = 2(n − 1)S∗(nt + S) − n(sΔ∗ + 2P∗) and D = (n − 1)(S∗)2.

Using (1) and (7), we get that N −D = (1− ns)Δ so that ψ ′
s(t) is positive or negative

according as s < 1/n or s > 1/n .
(c) This follows from [1, Proposition 4] since both Fs and Gs are differentiable

at (1, . . . , 1) . �
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5. θ -Means: a geometric context for quadratic radical means

This section can be viewed as an application of Theorem 3 to a problem in n -
dimensional geometry. It can also be viewed as a geometric context that gives rise to
the study of quadratic radical means.

We define an n -dimensional simplex [V] = [v0, . . . , vn] to be the convex hull of a
set V = {v0, v1, . . . , vn} of n + 1 affinely independent points in R

m where m � n ;
V is called the set of vertices of [V] . For each i , 0 � i � n , write Vi = V \ {vi} . The
(n− 1) -dimensional simplex [Vi] is called the face or facet of V opposite to the vertex
vi . The (n − 1) -dimensional volume or content of [Vi] will be written μ([Vi]) .

We will always take v0 to be the origin and will not distinguish between a point
v and the position vector �v it represents, that is the vector from v0 to v . The outward
pointing unit normal to the face [Vi] will be written v̂i . The angle between v̂i and v̂j

will be written v̂i,j , while the angle between vi and vj will be written vi,j .
To define θ -means, we need the following theorem.

THEOREM 10. There exist n unit vectors {v1, . . . , vn} in R
n such that the angle

between any two is θ if and only if 1 � cosθ � −1/(n−1) . Such vectors are linearly
dependent if and only if cos θ = 1 or − 1/(n − 1) .

Proof. If {v0, . . . , vn} are unit vectors in R
n such that the angle between any two

is θ , then it follows from

0 � ‖v1 + . . . + vn‖2 = n + n(n − 1) cosθ (8)

that cosθ � −1/(n− 1) .
Conversely, let c be such that 1 � c � −1/(n− 1) . We want to construct n unit

vectors w1, . . . , wn ∈ R
n such that the cosine of the angle between any two is c . Start

with a regular n -simplex in R
n−1 whose centroid is at the origin and whose vertices

w1, . . . , wn are unit vectors. Let α be the angle between any two of the vectors wi and
wj and let b = cosα . Then it follows from w1 + . . . + wn = 0 that b = −1/(n− 1) .
Now let uj ∈ R

n be obtained from wj ∈ R
n−1 by adding the fixed number k as a last

coordinate and let
vj =

uj

‖uj‖ =
uj√

1 + k2
.

If the angle between vi and vj , i �= j , is θ , then

cosθ =
wi · wj + k2

1 + k2
=

b + k2

1 + k2
.

As k moves from 0 to ∞ , cosθ increases from b to 1, i.e. from −1/(n − 1) to 1.
Thus cos θ = c for some choice of k .

The last statement follows from [22], where it is proved that equally inclined vectors
are linearly dependent if and only if they are identical (in which case cosθ = 1) or
their sum is 0 (in which case cosθ = −1/(n− 1) by (8)). �

Now let θ be such that 1 > c = cos θ > −1/(n−1) . To define the θ -mean of n
positive numbers a1, . . . , an , we construct unit vectors v1, . . . , vn in R

n such that the
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angle between any two of them is θ and we consider the simplex [v0, a1v1, . . . , anvn].
Then the θ -mean, Nθ(a1, . . . , an) , of a1, . . . , an can now be defined as the number a
such that the faces of the simplexes [v0, a1v1, . . . , anvn] and [v0, av1, . . . , avn] opposite
to v0 have the same content; that is

vi,j = θ, 1 � i < j � n and μ([av1, . . . , avn]) = μ([a1v1, . . . , anvn]). (9)

This mean is well-defined in that it depends only on θ and not on the choice of the unit
vectors v1, . . . , vn . To see this, let u1, . . . , un be another choice of unit vectors such
that the angle between any two is θ . Then vj − vi and uj − ui , 1 � i, j � n , have the
same length; so it follows that there is an isometry of R

n that fixes v0 and maps uj to
vj , 1 � j � n ; see [5, Proposition 9.7.1, p. 236].

Alternatively, we can define a θ -mean by starting with a simplex whose faces
through v0 have contents a1, . . . , an and requiring the smoothing simplex to have its
faces through v0 of equal content, a say, (together of course with the requirement that
the faces of the two simplexes opposite to v0 have equal content). Call this value Mθ .
It is clear that the means Nθ and Mθ are identical when n = 2 since the faces of
a triangle are its edges. In higher dimensions, these means are different and it is the
second one Mθ that we emphasize since it is the one that is quadratic radical.

The generalized law of cosines, see [18], states that

(μ([V0]))2 =
n∑

i=1

(μ([Vi]))2 + 2
∑

1�i<j�n

μ([Vi]) μ([Vj]) cos v̂i,j.

Thus, if a = Mθ and ĉ = cos v̂i,j , 1 � i, j � n , then

na2 + n(n − 1)a2ĉ =
n∑

i=1

a2
i + 2

∑
1�i<j�n

aiajĉ.

On simplifying, we get that Mθ = Fs, where Fs is given by (5) with

s =
1

2(1 + (n − 1)ĉ)
. (10)

By Theorem 3, this is internal if and only if 0 � s � 1 , or equivalently if and only if

ĉ � −1
2(n − 1)

. (11)

It remains to express this in terms of c = cosθ (= vi · vj, 1 � i < j � n) . Since
the vectors v1, . . . , vn form a basis of R

n , we have that

v̂i = avi + b
n∑

j=1

vj. (12)

The real numbers a and b do not depend on i , since every permutation of {v1, . . . , vn}
can be extended to an isometry of R

n . From (12) and the fact that v̂i · vj = 0 for all
j �= i , it follows that ac + b(1 + (n − 1)c) = 0 and that

ĉ =
v̂i · v̂j√

(v̂i · v̂i)(v̂j · v̂j)
=

−c
1 + c(n − 2)

. (13)
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Using this in (11) and simplifying, we obtain the equivalent condition c = cos θ � 1/n.
For ease of reference,we summarize this in the following theorem, inwhich (14) follows
from (10) and (13).

THEOREM 11. Let θ be such that 1 � cosθ � −1/(n − 1) , let v0 = 0 and let
{v1, . . . , vn} be unit vectors in R

n such that the angle between any two is θ . For
any positive numbers a1, . . . , an , let a′1, . . . , a

′
n be defined by the requirement that the

content of the face of the simplex [v0, a′1v1, . . . , a′nvn] opposite to vj is aj, 1 � j � n .
Let a′ be defined by the requirement that the faces of the simplexes [v0, a′1v1, . . . , a′nvn]
and [v0, a′v1, . . . , a′vn] opposite to v0 have the same content. Define Mθ (a1, . . . , an)
to be the content of any face of the simplex [v0, a′1v1, . . . , a′vn] through v0 . Then Mθ
is a mean (i.e. internal) if and only if cos θ � 1/n . In this case, Mθ = Fs, where Fs

is given by (5) with

s =
1 + (n − 2) cosθ

2(1 − cosθ)
. (14)

EXAMPLE 1. When n = 2 , the condition c � 1/n says that θ � 60◦ . Geometri-
cally, this says that if ABC is a triangle with <)BAC � 60◦ , then there are points X and
Y on the rays AB and AC respectively such that XY = BC and AB � AX = AY � AC .
This is geometrically evident: take B′ and C′ on AC and AB respectively such that
AB=AB′ and AC=AC′ . Noting that

<)AC′C =
180◦ − <)BAC

2
� 180◦ − 60◦

2
= 60◦, <)CBC′ � <)CAB � 60◦,

we conclude that BC < CC′ and hence BB′ < BC < CC′ . The intermediate value
theorem gurantees the existence of the desired X and Y . If, however, <)θ < 60◦ , we
can construct a triangle ABC with 3A + 2C < 180◦ . Then constructing B′ and C′ as
before, we see that BC > CC′ . So Mθ(AB, AC) is not between AB and AC .

6. Radical and rational means of higher degree

Let H be a symmetric form of degree d in the variables x1, . . . , xn . Using the
terminology of [20], we say that H is completely positive, respectively co-positive, if

H(x) � 0 for all real x, respectively all positive x.

Similarly, we say that H is completely internal, respectively co-internal if

min xd � H(x) � max xd for all real x, respectively all positive x.

In the case of quadratic H , i.e. d = 2 , the conditions on the coefficients of H that
are necessary and sufficient for H to be co-positive, completely positive and co-internal
are given in Theorems 1, 3 and 5, respectively. For the sake of completeness, the next
theorem gives the conditions for H to be completely internal.
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THEOREM 12. The only completely internal symmetric quadratic form is

H =
2

n(n − 1)

(
1
2
Δ+ P

)
.

The associated quadratic radical mean is

√
H =

√√√√√ n∑
i=1

x2
i

n
.

Proof. The given form is obviously completely internal. Conversely, let a given
symmetric quadratic form

H =
2

n(n − 1)
(sΔ + tP)

be completely internal. Taking x1 = . . . = xn = 1 , we obtain

1 =
2

n(n − 1)
· n(n − 1)

2
t

or t = 1 . Then taking x1 = . . . = xn−1 = 1 , xn = −1, we get that

1 =
2

n(n − 1)

(
4s(n − 1) + t

(
(n − 1)(n − 2)

2
− (n − 1)

))
which simplifies to give s = 1/2 . �

For symmetric forms of arbitrary degree, similar conditions may turn out to be
difficult to find. For example, co-positive symmetric cubic forms in three variables
were studied and fully characterized in [3] and [25] in connection with geometric
inequalities. Co-positive symmetric sextics H in three variables x, y, z with some
special properties – H(1, 1, 1) = 0 , and not containing the terms x6 + y6 + z6 and
x5(y+z)+y5(z+x)+z5(x+y) – were characterized in [26]. Co-positive and completely
positive symmetric quartics H in three variables satisfying H(1, 1, 1) = 0 were studied
and fully characterized in [7] and [27]. Co-positive symmetric cubic forms in any number
of variables were characterized in [11]; while [12] can be viewed as a first step towards
the characterization of co-positive and completely positive symmetric sextics in three
variables. As for co-internal and completely internal forms, as defined above, the author
is unaware of any work other than [19] where co-internal symmetric cubic forms in three
variables are characterized. This state of affairs hints at the magnitude of the difficulties
one expects to encounter in trying to characterize co-internal and completely internal
symmetric forms and of radical and rational means of higher degrees.

It is worth mentioning that the above issues are related to Hilbert’s Seventeenth
Problem which asks whether and when a completely positive form can be expressed as
a sum of squares of forms. A detailed account can be found in [24] and [23].

Acknowledgement. The author would like to express his thanks to Professor Peter
Bullen for the very many valuable suggestions that improved this article in many ways.



RADICAL AND RATIONAL MEANS OF DEGREE TWO 593

RE F ER EN C ES
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