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ON KY FAN’S INEQUALITY AND ITS ADDITIVE ANALOGUES

J. ROOIN

(communicated by J. Pečarić)

Abstract. In this paper we give a discrete proof of Ky Fan’s inequality. Also, we extend the
additive analogues of Ky Fan’s inequality to a very general case and give some applications.

1. Introduction

Throughout this paper, given n arbitrary nonnegative real numbers x1 , . . . , xn ,
we denote by An and Gn , the unweighted arithmetic and geometric means of x1 , . . . ,
xn respectively, i.e.

An =
1
n

n∑
i=1

xi, Gn =
n∏

i=1

x
1
n
i , (1)

and moreover, if xi ∈ [0, 1
2 ] , we denote by A′

n and G′
n , the unweighted arithmetic and

geometric means of 1 − x1 , . . . , 1 − xn respectively, i.e.

A′
n =

1
n

n∑
i=1

(1 − xi), G′
n =

n∏
i=1

(1 − xi)
1
n . (2)

In 1961 the following remarkable inequality, due to Ky Fan, was published for the first
time in the well-known book Inequalities by Beckenbach and Bellman [5, p. 5]:

If xi ∈ (0, 1
2 ] , then

A′
n

G′
n

� An

Gn
. (3)

Equalities holds in (3) if and only if x1 = . . . = xn .
For some new proofs and refinements of (3) see e.g. [7–10].
Inequality (3) has evoked the interest of several mathematicians and in numer-

ous articles new proofs, extensions, refinements and various related results have been
published; see the survey paper [3] and the references therein.

In 1988, H. Alzer [4] proved an additive analogue of (3) as follows:
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If xi ∈ [0, 1
2 ] (i = 1, 2, . . . , n) , then

A′
n − G′

n � An − Gn, (4)

which equality holding if and only if x1 = x2 = . . . = xn .
We remark that, just as for (3), inequality (4) was originally established for

unweighted means. Proofs of (3) and (4) for weighted means can be found in [3].
Also, in 1995, J. E. Pečarić and H. Alzer [9], using the Dinghas Identity [6], proved

that:
If xi ∈ [0, 1

2 ] (i = 1, 2, . . . , n) , then

An
n − Gn

n � A′
n
n − G′

n
n
, (5)

in which if n = 1, 2 equality always holds in (5), and if n � 3 , equality is valid if and
only if x1 = . . . = xn .

The aim of this paper is to give a discrete proof of (3), and by studying the behavior
of the function F defined in (11), generalize the additive analogues (4) and (5) for
other powers except than 1 and n , and give some applications of it.

2. A discrete proof of Ky Fan’s inequality

In this section, we suppose that x1 , x2 , . . . , xn are nonnegative real numbers.
First, we prove the following useful lemma, and then using it, we give a discrete proof
of Ky Fan’s inequality (3).

LEMMA 2.1. If a , b � 0 , then

(
ka + b
k + 1

)k+1

− akb =
(

b − a
k + 1

)2 k∑
m=1

(k − m + 1)
(

ka + b
k + 1

)m−1

ak−m.

Proof.(
ka + b
k + 1

)k+1

− akb =
(

ka + b
k + 1

)k+1

− ak+1 + ak+1 − akb

=
k∑

l=0

(
b − a
k + 1

)(
ka + b
k + 1

)l

ak−l − ak(b − a)

=
b − a
k + 1

[
k∑

l=0

(
ka + b
k + 1

)l

ak−l −
k∑

l=0

alak−l

]

=
b − a
k + 1

k∑
l=1

[(
ka + b
k + 1

)l

− al

]
ak−l

=
(

b − a
k + 1

)2 k∑
l=1

l∑
m=1

(
ka + b
k + 1

)m−1

al−mak−l
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=
(

b − a
k + 1

)2 k∑
m=1

k∑
l=m

(
ka + b
k + 1

)m−1

ak−m

=
(

b − a
k + 1

)2 k∑
m=1

(k − m + 1)
(

ka + b
k + 1

)m−1

ak−m.

COROLLARY 2.2. (Dinghas Identity)

An
n − Gn

n =
n−1∑
k=1

k∑
m=1

(
xk+1 − Ak

k + 1

)2

(k − m + 1)Am−1
k+1 Ak−m

k xk+2 . . . xn. (6)

This is, of course, a constructive proof of Dinghas identity which is different from
one given in [6], based only on the mathematical induction.

Proof. We have

Ak+1
k+1 − Ak

kxk+1 =
(

kAk + xk+1

k + 1

)k+1

− Ak
k xk+1,

and so, by Lemma 2.1,

An
n − Gn

n =
n−1∑
k=1

(Ak+1
k+1 − Ak

k xk+1)xk+2 . . . xn

=
n−1∑
k=1

k∑
m=1

(
xk+1 − Ak

k + 1

)2

(k − m + 1)Am−1
k+1 Ak−m

k xk+2 . . . xn.

THEOREM 2.3. (Ky Fan’s inequality) If xi ∈ (0, 1
2 ] (i = 1, . . . , n) , then

A′
n

G′
n

� An

Gn
.

Equality holds if and only if x1 = . . . = xn .

Proof. There is nothing to prove if n = 1 , and so we suppose that n � 2 . Without
losing generality, suppose that x1 � x2 � · · · � xn . We show equivalently

An
n

A′
n
n � Gn

n

G′
n
n . (7)

We have

An
n

A′
n
n − Gn

n

G′
n
n =

n−1∑
k=1

[(
Ak+1

A′
k+1

)k+1

−
(

Ak

A′
k

)k xk+1

1 − xk+1

]
xk+2

1 − xk+2
. . .

xn

1 − xn

=
n−1∑
k=1

Ak
kxk+1

A′k+1
k+1

[
Ak+1

k+1

Ak
kxk+1

− A′k+1
k+1

A′k
k(1 − xk+1)

]
xk+2

1 − xk+2
. . .

xn

1 − xn
.
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So, it is sufficient to show that the expressions in the brackets are nonnegative for
k = 1, . . . , n − 1 . But

Ak+1
k+1

Ak
kxk+1

− A′
k+1

k+1

A′
k
k(1 − xk+1)

=
Ak+1

k+1 − Ak
kxk+1

Ak
kxk+1

− A′
k+1

k+1 − A′
k
k(1 − xk+1)

A′
k
k(1 − xk+1)

.

Using Lemma 2.1 and the binomial expansion, we have

Ak+1
k+1 − Ak

kxk+1

Ak
kxk+1

=

(
kAk+xk+1

k+1

)k+1
− Ak

kxk+1

Ak
kxk+1

(8)

=

(
xk+1−Ak

k+1

)2 k∑
m=1

(k − m + 1)
(

kAk+xk+1
k+1

)m−1
Ak−m

k

Ak
kxk+1

= (xk+1 − Ak)2
k∑

m=1

m−1∑
p=0

k − m + 1
(k + 1)m+1

(
m − 1

p

)
kp

(
xk+1

Ak

)m−p−2 1
A2

k

.

Similarly,

A′k+1
k+1 − A′k

k(1 − xk+1)
A′k

k(1 − xk+1)
(9)

= (xk+1 − Ak)2
k∑

m=1

m−1∑
p=0

k − m + 1
(k + 1)m+1

(
m − 1

p

)
kp

(
1 − xk+1

A′
k

)m−p−2 1

A′2
k

.

So, it is sufficient to show that

(
xk+1

Ak

)m−p−2 1
A2

k

�
(

1 − xk+1

A′
k

)m−p−2 1

A′2
k

(10)

(k = 1, . . . , n − 1; m = 1, . . . , k; p = 0, . . . , m − 1).

If p = m − 1 , (10) is equivalent to 1 − Ak − xk+1 � 0 which is valid since Ak ,
xk+1 � 1

2 .

If 0 � p � m − 2 , because of xk+1
Ak

� 1−xk+1
1−Ak

, we have
(

xk+1
Ak

)m−p−2
�(

1−xk+1

A′
k

)m−p−2
, which together with 1

Ak
� 1

A′
k
, we get (10), and so, (7) is obtained.

Clearly, equality holds in Ky Fan’s inequality if x1 = · · · = xn .
Conversely, if x1 , . . . , xn are not all equal, there exists a k with 1 � k � n − 1 ,

such that Ak �= xk+1 . Therefore, taking m = k and p = k − 1 , we get an strict
inequality in (10) and so, considering (8) and (9), the strict inequality holds in (7), and
the proof is completed.
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3. Extension of additive analogues

In this section,we extend the inequalities (4) and (5) for arbitrary powers. Through-
out this section we assume that n � 2 is an integer and x1 , x2 , . . . , xn are n given
real numbers in (0, 1

2 ] not all equal. Consider the continuous real-valued function F
defined by

F(x) = (A′x
n − G′x

n) − (Ax
n − Gx

n) (−∞ < x < +∞). (11)

Clearly F(0) = 0 . Also, it is proved in [1] that F(−1) > 0 . By (4) and (5), F(1) < 0
and F(n) � 0 . So, there exists an α ∈ (1, n] such that F(α) = 0 . In Theorem 3.2,
we study the main behaviors of the function F and show that α is the unique nonzero
root of F .

First, we prove the following lemma which is used in the proof of (iv) of Theo-
rem 3.2.

LEMMA 3.1. If a > b � c > d > 0 , then

f (x) =
ax − bx

cx − dx
(−∞ < x < +∞)

is an strictly increasing function on the real line. Moreover, f (x) → 0 (x → −∞) and
f (x) → +∞ (x → +∞) .

Proof. Let x and y with x < y < 0 or 0 < x < y be two arbitrary real numbers.
We have f (x) < f (y) if and only if

cy − dy

cx − dx
<

ay − by

ax − bx
. (12)

But, by the Cauchy’s mean value theorem, there are ξ and η with d < ξ < c and
b < η < a , such that

cy − dy

cx − dx
=
(y

x

)
ξ y−x,

and
ay − by

ax − bx
=
(y

x

)
ηy−x.

Now, since 0 < ξ < η , y
x > 0 and y − x > 0 , we obtain (12), and so, f is strictly

increasing on the real line.
To other assertions follows from

ax − bx

cx − dx
=
(

b
d

)x ( a
b

)x − 1(
c
d

)x − 1
→ 0 (x → −∞),

and
ax − bx

cx − dx
=
(a

c

)x 1 − ( b
a

)x
1 − ( d

c

)x → +∞ (x → +∞).
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THEOREM 3.2. With the above notations, we have
(i) F(x) > 0 for all x < 0 , and F(x) < 0 for all 0 < x � 1 .
(ii) F is strictly convex and strictly decreasing on (−∞, 0] , and we have

lim
x→−∞F(x) = +∞ .

(iii) F(x) > 0 for all x > n , and lim
x→+∞F(x) = 0 .

(iv) F has exactly two distinct roots; one zero and the other α ∈ (1, n] .

Proof. (i) Given x ∈ R , by the mean value theorem, we have

F(x) = (A′
n − G′

n)xξ ′x−1 − (An − Gn)xξ x−1,

where G′
n < ξ ′ < A′

n and Gn < ξ < An . Now, let x � 1 . Then, since 0 < ξ < An <
1
2 < G′

n < ξ ′ , we have ξ ′x−1 � ξ x−1 . So, by (4), F(x) < 0 for all 0 < x � 1 , and
F(x) > 0 for all x < 0 .

(ii) We have

F′′(x) = [A′x
n(ln A′

n)
2 − G′x

n(ln G′
n)

2] − [Ax
n(ln An)2 − Gx

n(ln Gn)2]

= A′x
n

(
ln

A′
n

G′
n

)
ln(A′

nG
′
n) + (A′x

n − G′x
n)(ln G′

n)
2

− Ax
n

(
ln

An

Gn

)
ln(AnGn) − (Ax

n − Gx
n)(ln Gn)2.

Now, since for x < 0 ,

0 < A′x
n < Ax

n,

0 < −(A′x
n − G′x

n) < −(Ax
n − Gx

n),

and by (3) and 0 < Gn < An < G′
n < A′

n < 1 ,

0 < ln
A′

n

G′
n

< ln
An

Gn
,

0 < − ln(A′
nG

′
n) < − ln(AnGn),

0 < (ln G′
n)

2 < (lnGn)2,

we get F′′(x) > 0 (x < 0) , and so F is strictly convex on (−∞, 0] .
Since F′ is strictly increasing on (−∞, 0] , by (3), we have

F′(x) < F′(0) = ln
A′

n

G′
n
− ln

An

Gn
< 0 (x < 0),

and so F is strictly decreasing on (−∞, 0] .
Let L = lim

x→−∞F(x) . We have L > 0 . Since F(0) = 0 and F is convex on

(−∞, 0] ,

F
( x

2

)
� 1

2
F(x) +

1
2
F(0) =

1
2
F(x) (x < 0).

Now, if x → −∞ , we obtain L � 1
2L , which implies that L = +∞ .
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(iii) By the mean value theorem, we have

F(x) =
[
(A′

n
n)

x
n − (G′

n
n)

x
n

]
−
[
(An

n)
x
n − (Gn

n)
x
n

]
= (A′

n
n − G′

n
n)

x
n
η′ x

n−1 − (An
n − Gn

n)
x
n
η

x
n−1,

where G′
n
n

< η′ < A′
n
n and Gn

n < η < An
n . Now, if x > n , then η′ x

n−1 > η x
n−1 ,

which by (5), we get F(x) > 0 .
Since, An , A′

n , Gn , and G′
n belong to (0, 1) , it follows that F(x) → 0 as

x → +∞ .
(iv) For x �= 0 , we have F(x) = 0 iff f (x) = A′x

n−G′x
n

Ax
n−Gx

n
= 1 . Now, since

A′
n > G′

n > An > Gn > 0 , it follows from Lemma 3.1 that f is strictly increasing
on the real line, and so, there is a unique α such that f (α) = 1 . Clearly, we have
α ∈ (1, n] and the proof is completed.

REMARK 3.3. (i) It must be noted that the inequality (4) is stronger than (3), see
[2, 3]. So, if it is possible, it is better to use (3) rather than (4). For example, for the
proof of F(x) > 0 (x < 0) in (i) of Theorem 3.2, we may use (3) instead of (4) in the
following manner:

A′x
n − G′x

n = −A′x
n

[(
A′

n

G′
n

)−x

− 1

]
= −A′x

n

∞∑
k=1

(
−x ln A′

n
G′

n

)k

k!

> −Ax
n

∞∑
k=1

(
−x ln An

Gn

)k

k!
= Ax

n − Gx
n (x < 0).

(ii) Since F has two distinct roots and lim
x→+∞ F(x) = 0 , F′ has at least two distinct

roots. It will be interesting to show that whether F′ has exactly two distinct roots?

Figure 1: y = F(x)
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Figure 1 shows the behavior of the function F drawn for the special case n = 3 ;
x1 = 1

2 , x2 = 1
3 and x3 = 1

4 :

4. Applications

APPLICATION 1. If xi ∈ (0, 1
2 ] (i = 1, . . . , n) , then for any x > 0 ,

(
A′

n

G′
n

) A′xn(Ax
n−Gx

n)

Ax
n (A′xn−G′x

n)

� An

Gn
�
(

A′
n

G′
n

) G′x
n(Ax

n−Gx
n)

Gx
n(A′xn−G′x

n)

. (13)

The inequalities in (13) become sharper as x decreases and when x → 0+ , equality
holds in each of them.

Also, we have

(
A′

n

G′
n

) A′n
An

� An

Gn
�
(

A′
n

G′
n

)(G′
n

Gn

)n

. (14)

Equality holds in each inequality if and only if x1 = · · · = xn .
Since the exponents are greather than or equal to one (here, in the case of x1 =

· · · = xn , the expression 0
0 is understood as one), the left-hand inequalities in (13) and

(14) sharpen (3), whereas the right-hand ones give some inverses of it.
The proof of (13) in the nontrivial case, follows immediately from the following

lemma, taking a = An
Gn

and b = A′
n

G′
n
.

Finally, (14) follows from (13) by taking x = 1 in the left and x = n in the right,
and considering (4) and (5).

LEMMA 4.1. If a > b > 1 , then

b
a−x−1

b−x−1 < a < b
ax−1
bx−1 (x > 0). (15)

The inequalities become sharper as x decreases and when x → 0+ , equality holds in
each of them.

Proof. We can prove (15) by the usual differentiation method, but we prefer to
establish it by integration only.

Fix a x > 0 . Integrating both sides of the trivial inequality

b−xt > a−xt (t > 0)

with respect to t from zero to one, we get

b−x − 1
−x ln b

>
a−x − 1
−x ln a

,

which gives the first inequality in (15).
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Similarly, the second inequality in (15) is achieved by integrating both sides of the
trivial inequality

bxt < axt (t > 0)

with respect to t from zero to one.
Since, a > b > 1 , by Lemma 3.1, the functions

a−x − 1
b−x − 1

= 1 +

(
1
b

)x − ( 1
a

)x
1 − ( 1

b

)x ,

and
ax − 1
bx − 1

= 1 +
ax − bx

bx − 1
,

are strictly decreasing and strictly increasing respectively. Therefore, the inequalities in
(15) become sharper as x decreases; the best ones, actually equality, are obtained when
x → 0+ , and the worst ones, actually b < a < +∞ , are obtained when x → +∞ .

APPLICATION 2. If xi ∈ (0, 1
2 ] (i = 1, . . . , n) , then

A′x
n

(− lnA′
n)k

− G′x
n

(− ln G′
n)k

� Ax
n

(− lnAn)k
− Gx

n

(− lnGn)k
, (16)

(x � n; k = 0, 1, . . .).

In particular, when x = k = n ,(
A′

n

− lnA′
n

)n

−
(

G′
n

− lnG′
n

)n

�
(

An

− lnAn

)n

−
(

Gn

− lnGn

)n

. (17)

Except than the trivial case k = 0 and x = n = 2 , equality holds if and only if
x1 = · · · = xn .

Taking x = n and k = 0 , it is clear that the inequality (16) is an extension of (5).

Proof. Clearly equality holds if x1 = . . . = xn . Suppose that xi (i = 1, . . . , n)
are not all equal. By (iii) of Theorem 3.2, we have

A′
n
x − G′

n
x
> Ax

n − Gx
n (x > n).

Integrating both sides of this inequality from x to +∞ , we get

A′
n
x

− lnA′
n
− G′

n
x

− lnG′
n

>
Ax

n

− lnAn
− Gx

n

− lnGn
(x � n).

Now, (16) follows by induction on k .

We conclude the paper by proposing the following open problem:

OPEN PROBLEM. As you know, the arithmetic and geometric means are members
of the family of power means, which is defined (in the unweighted case) by

Mr = Mr(x1, . . . , xn) =

(
1
n

n∑
i=1

xr
i

) 1
r

(r �= 0),
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M0 = M0(x1, . . . , xn) = lim
r→0

Mr(x1, . . . , xn) =
n∏

i=1

x
1
n
i .

This leads to the following question: Is it possible to extend the given inequalities to
power means? In particular, determine all real parameters r and s such that

(M′
r)

x

(− lnM′
r)k

− (M′
s)

x

(− lnM′
s)k

� (Mr)x

(− lnMr)k
− (Ms)x

(− lnMs)k
(18)

is valid for xi ∈ (0, 1
2 ] (i = 1, . . . , n) , x � n and k = 0, 1, 2, . . . , where M′

r(x1, . . . , xn) =
Mr(1 − x1, . . . , 1 − xn) .
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