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GENERALIZATION OF SOME THEOREMS

ON CLASSES OF NUMERICAL SEQUENCES

JÓZSEF NÉMETH

(communicated by J. Pečarić)

Abstract. The theorem proved here is a generalization of some earlier results due to L. Leindler
and to the present author regarding embedding relations among classes of Fourier coefficients.

1. Introduction

Several authors have studied the problems of L1 convergence of Fourier series
([1]–[5], [14]–[21]). In connection with this topic many classes of coefficients have
been defined. For example Telyakovskiı̌ [18] introduced the following very applicable
definition of a class of sequence {an} and denoted by S .

A null-sequence {an} belongs to the class S if there exists a monotonically
decreasing sequences {An} such that

∞∑
n=1

An < ∞ and |Δ an| � An for all n.

Some further classes are listed as follows. Here and later a := {an} denotes
always a null-sequence (an → 0) and furthermore p � 1.

1. A sequence a belongs to the class Fp if

∞∑
n=1

n−1/p

( ∞∑
k=n

|Δ ak|p
)1/p

< ∞ (1.1)

(Fomin [2]).
2. a ∈ F∗

p if

∞∑
m=0

2m(1− 1
p )

⎧⎨
⎩

2m+1∑
n=2m+1

|Δ an|p
⎫⎬
⎭

1/p

< ∞ (1.2)
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(Fomin [2], Leindler [9]).
3. a ∈ Sp if there exists a monotonically decreasing sequence A := {An} such

that
∞∑
n=1

An < ∞ and

1
n

n∑
k=1

|Δ ak|p
Ap

k

= O(1) (1.3)

(Č. V. Stanojevič and V. B. Stanojevič [17]).
4. a ∈ Sp(δ) if there exists a δ -quasi-monotone sequence A (i.e. An > 0

and ΔAn � −δn and δn > 0 ) satisfying
∞∑

n=1
An < ∞ and

∞∑
n=1

n δn < ∞ and (1.3)

(Tomovski [19]).
5. a ∈ Sp(A) if there exists a null-sequence {An} satisfying

∞∑
n=1

n|ΔAn| < ∞ (1.4)

and (1.3) (Leindler [9]).
Many authors investigated the embedding relations among the classes above men-

tioned. See for example [2], [4], [8], [9], [10], [12], [13], [16], [20], [21]. The strongest
result is due to Leindler [8], [9]. Namely he proved

THEOREM A. [9] If p > 1 then

Fp ≡ Sp ≡ F∗
p ≡ Sp(δ) ≡ Sp(A). (1.5)

Later in [10] L. Leindler generalized this result using a certain positive monotonic
sequence ρn instead of n−1/p (see for example (1.1)). Namely he considered the classes
Fp(ρ), F∗

p (ρ), Sp(ρ), Sp(δ, ρ) and Sp(A, ρ) obtained from Fp, F∗
p , Sp, Sp(δ) and Sp(A)

by replacing (1.1) by
∞∑

n=1

ρn

( ∞∑
k=n

|Δ ak|p
)1/p

< ∞, (1.6)

(1.2) by

∞∑
m=0

2mρ2m

⎧⎨
⎩

2m+1∑
n=2m+1

|Δ an|p
⎫⎬
⎭

1/p

< ∞, (1.7)

and (1.3) by
n∑

k=1

|Δ ak|p
Ap

k

= O(ρ−p
n ), (1.8)

respectively.
Before formulating Leindler’s result concerning the embedding relations of classes

defined above we recall some definitions.
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We shall say that a sequence γ := {γn} of positive terms is quasi β -power-
monotone increasing (decreasing) if there exist a natural number N := N(β , γ ) and a
constant K := K(β , γ ) � 1 such that

K nβ γn � mβ γm (nβ γn � K mβ γm) (1.9)

holds for any n � m � N.
[In (1.9) and later in the sequel K and Ki denote positive constants, not necessarily

the same on any two occurrences].
Now we formulate the result of Leindler.

THEOREM B. [10] Assume that p � 1 and a given positive sequence ρ := {ρn},
for a certain positive β is quasi β -power-monotone decreasing and simultaneously
quasi (1 − β) -power monotone increasing. Then the following embedding relations

Fp(ρ) ⊆ F∗
p (ρ) ⊆ Sp(ρ) ⊆ Sp(δ, p) ⊆ Sp(A, p) ⊆ Fp(ρ) (1.10)

hold, i.e. these classes are identical.

Very recently we generalized the result of Leindler being in Theorem A by using
functions more general than the power functions. Namely, following M. Mateljevič and
M. Pavlovič [11], we redefined and defined the following classes of functions.

Δ(q, p) (q � p > 0) denotes the family of the nonnegative real functions ϕ(x)
defined on [0,∞) with the following properties: ϕ(0) = 0, and there exist q � p > 0
such that ϕ(t)

tq is nonincreasing and ϕ(t)
tp is nondecreasing on (0,∞). Δ will denote

the set of the functions ϕ(x) belonging to Δ(q, p) for some q � p > 0. We need some
subclasses of Δ. Δ(1) and Δ(2) denote the families of functions ϕ(x) belonging to
Δ(q, p) for some q � p � 1 and q � p > 1, respectively. And Δ(3) is the collection
of functions ϕ(x) belonging to Δ(q, 1) for some q > 1 such that for all positive A
there exists 1 < p(A) = p satisfying that ϕ(x)

xp is nondecreasing on (0, A). Using these
classes of functions we introduced the classes Fϕ , F∗

ϕ , Sϕ , Sϕ(δ), Sϕ(A) obtained from
Fp, F∗

p , Sp, Sp(δ), Sp(A) by replacing (1.1) by

∞∑
n=1

ϕ

⎛
⎜⎜⎝

∞∑
k=n

ϕ(|Δ ak|)
n

⎞
⎟⎟⎠ < ∞, (1.11)

where ϕ denotes the inverse of ϕ ; (1.2) by

∞∑
m=1

2m ϕ

⎛
⎜⎜⎜⎝

2m+1∑
n=2m+1

ϕ(|Δ an|)
2m

⎞
⎟⎟⎟⎠ < ∞, (1.12)

and (1.3) by
1
n

n∑
k=1

ϕ(|Δ ak|)
ϕ(Ak)

= O(1), (1.13)
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respectively.
The embedding relations of the above mentioned classes are formulated in the next

statement.

THEOREM C. [13] If ϕ ∈ Δ(3) then the following relations

Fϕ ⊆ Sϕ ⊆ Sϕ(δ) ⊆ Sϕ(A) ⊆ F∗
ϕ ⊆ Fϕ (1.14)

hold, i.e. these classes are identical.

The aim of the present paper is to combine the two directions of generalizations
stated in Theorem B and C. Before formulating our result we need the definition of new
classes of sequences. Let η := {ηn} be a positive monotonically increasing sequence.
Then the new classes

Fϕ(η), F∗
ϕ(η), Sϕ(η), Sϕ(δ,η), Sϕ(A,η)

can be defined from
Fp, F∗

p , Sp, Sp(δ), Sp(A)

by changing (1.1) to

∞∑
n=1

ϕ

⎛
⎜⎜⎝

∞∑
k=n

ϕ(|Δ ak|)
ηn

⎞
⎟⎟⎠ < ∞, (1.15)

(1.2) to

∞∑
m=0

2mϕ

⎛
⎜⎜⎜⎝

2m+1∑
k=2m+1

ϕ(|Δ ak|)
η2m

⎞
⎟⎟⎟⎠ < ∞, (1.16)

and (1.3) to
∞∑
k=1

ϕ(|Δ ak|)
ϕ(Ak)

= O(ηn). (1.17)

2. Result

We now proceed to formulate our new result.

THEOREM. Assume that ϕ ∈ Δ(q, p) (p � 1) and a given positive sequence η :=
{ηn} for certain negative γ is quasi γ -power-monotone increasing and for certain
positive β is p(β − 1) -power-monotone decreasing. Then the following embedding
relations

Fϕ(η) ⊆ F∗
ϕ(η) ⊆ Sϕ(η) ⊆ Sϕ(δ,η) ⊆ Sϕ(A,η) ⊆ Fϕ(η) (2.1)

hold, i.e. these classes are identical.

It is easy to verify that if ϕ(x) = xp, p > 1 and ηn = n then Theorem A
follows from our Theorem, furthermore if ηn = n then Theorem C is a consequence



GENERALIZATION OF SOME THEOREMS ON CLASSES OF NUMERICAL SEQUENCES 609

of the Theorem for ϕ ∈ Δ(2)(⊂ Δ(3)) and finally Theorem B can be obtained from our
Theorem if ϕ(x) = xp, p � 1 and ηn = ρ−p

n where {ρn} is satisfying the conditions
required in Theorem B.

Furthermore it should be noted that if ϕ(x) = x(∈ Δ(1)) then in the Theorem
ηn cannot be equal to n, but it follows from our Theorem C that if for example
ϕ(x) = x log(1 + x) then ηn = n can be taken. It is obvious that this function is
belonging to Δ(3) which is narrower than Δ(1) but wider than Δ(2).

3. Lemmas

LEMMA 1. If ϕ ∈ Δ(q, p) (q � p > 0) and 0 � Θ � 1, 1 � η then

Θqϕ(t) � ϕ(Θ t) � Θpϕ(t) (3.1)

and
ηpϕ(t) � ϕ(η t) � ηqϕ(t) for t � 0. (3.2)

Result (3.1) is a part of Lemma 1 in [11] and (3.2) is an obvious consequence of
(3.1).

LEMMA 2. [13] If ϕ ∈ Δ(1) then

ϕ

( ∞∑
i=1

ai

)
�

∞∑
i=1

ϕ(ai), (3.3)

where ai � 0 for all i.

LEMMA 3. [21] Let {cn} be a δ -quasi-monotone sequence with

∞∑
n=1

n δn < ∞. (3.4)

If
∞∑
n=1

cn converges, then
∞∑

n=1
(n + 1)|Δ cn| < ∞.

LEMMA 4. [10] If {Rn} is a nonnegative monotonically decreasing sequence
such that ∞∑

n=1

Rn < ∞ (3.5)

then there exists a monotone decreasing sequence {An} such that for any n � 1

Rn � An, (3.6)

An � K A2n, (3.7)

and ∞∑
k=1

Ak < ∞. (3.8)
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LEMMA 5. If {An} is a null-sequence such that
∞∑
n=1

n|ΔAn| < ∞ and Dm :=

2m+1∑
n=2m

|ΔAn|, moreover Cm := A2m + Dm, then the following relations hold:

∞∑
m=1

2mDm < ∞, (3.9)

∞∑
m=1

2mA2m < ∞, (3.10)

and

An � Cm, if 2m < n � 2m+1. (3.11)

This statement can be found in the proof of Theorem 1 of L. Leindler in [9].
Before formulating the following lemmas we need two more definitions due to L.

Leindler.
We shall say that a sequence c := {cm} of positive terms is quasi geometrically

increasing if there exist numbers μ := μ(c), N := N(c) and a constant K := K(c) � 1
such that

cm+μ � 2cm (3.12)

and

cm � K cm+1 (3.13)

hold for all m � N.

A sequence γ := {γn} will be called bounded by blocks if the inequalities

α1Γ(k)
m � γn � α2Γ

(k)
M , 0 < α1 < α2 < ∞

hold for any 2k � n � 2k+1, k = 1, 2, . . . where

Γ(k)
m := min(γ2k , γ2k+1) and Γ(k)

M := max(γ2k , γ2k+1).

LEMMA 6. [7] A positive sequence γ := {γn} bounded by blocks is quasi β -
power monotone increasing with certain negative exponent β if and only if the sequence
{γ2n} is quasi geometrically increasing.

LEMMA 7. [6] For any positive sequence γ := {γn} the inequality

m∑
n=1

γn � K γm (m = 1, 2, . . . ; K � 1)

holds if and only if the sequence γ is quasi geometrically increasing.
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LEMMA 8. If ϕ ∈ Δ(q, p) (p � 1) and k � 1 then

k1/pϕ(t) � ϕ(kt) (3.14)

holds for all t ∈ [0,∞).

Proof. Using (3.1) we have that for all x ∈ [0,∞)

ϕ(x) = ϕ(k−1/pk1/px) � k−1ϕ(k1/px). (3.15)

From (3.15) it follows that
ϕ(kϕ(x)) � k1/px. (3.16)

Taking t = ϕ(x) we get from (3.16) that (3.14) holds. Thus Lemma 8 is proved.

LEMMA 9. If ϕ ∈ Δ(q, p) (p � 1) and the sequence {ηn} has the same properties
as in the Theorem and {bn} is an arbitrary sequence of positive real numbers then for
any n � 1

n∑
m=0

2mϕ
(

bn

η2m

)
� K2nϕ

(
bn

η2n

)
, (3.17)

where K is independent of {bn} and n.

Proof. First we show that the sequence c := {cm} :=
{

2mϕ
(

bn
η2m

)}
is quasi

geometrically increasing for any fix bn such that μ, N and K being in the definition
do not depend on {bn}.

Since ηn is a p(β − 1) -power-monotone decreasing for some β > 0, there exist
K1 � 1 and N1 such that

ηnn
p(β−1) � K1ηmmp(β−1) (3.18)

holds if n � m � N1.
Using (3.18) for arbitrary number μ and for m � log2 N1 we get that

2m+μϕ
(

bn

η2m+μ

)
= 2m+μϕ

(
bn 2(m+μ)p(β−1)

η2m+μ 2(m+μ)p(β−1)

)

� 2m+μϕ
(

bn 2(m+μ)p(β−1)

K1η2m2m(β−1)p

)

= 2m+μϕ
(

bn 2μ(β−1)p

K1η2m

)
= I.

(3.19)

Since 0 < β < 1 therefore there exists μ such that

k :=
K1

2μ(β−1)p � 1. (3.20)

Applying (3.14) for this number k with t = bn
η2m

we have that

I � 2m+μ
(

2μ(β−1)p

K1

)1/p

ϕ
(

bn

η2m

)
= II. (3.21)
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Since β > 0, μ can also be choosen such that

2μβ

K1/p
1

� 2 (3.22)

be satisfied besides (3.20), and it is obvious that (3.22) is equivalent to

(
2μ(β−1)p

K1

)1/p

� 21−μ (3.23)

from which

II � 2 · 2mϕ
(

bn

η2m

)
. (3.24)

follows.
Taking into account (3.19), (3.20), (3.21) and (3.24)we have that (3.12) is fulfilled

for μ choosen above, if m � N := [log2 N1] + 1.

Similar calculation gives (3.13) with K = 2−βK1/p
1 and for the same N as obtained

before, that is c is quasi geometrically increasing, indeed.
It is very important to emphasize that the numbers μ, K and N just obtained are

independent of {bn}.
The following part of the proof is based on the idea used by Leindler in Lemma 7.
Let n arbitrary and (i − 1)μ + N < n � iμ + N, furthermore let dN � 1 such

that η2m � dNη2N for all m = 1, 2, . . . , N − 1.

Then, for any fix n and for any bn using (3.14), we have that

n∑
m=0

2mϕ
(

bn

η2m

)
�
(

2
dN

)1/p n∑
m=N

2mϕ
(

bn

η2m

)
= J. (3.25)

Applying (3.12) and (3.13) with cm := 2mϕ
(

bn
η2m

)
and with μ, K, N obtained above,

we get that

J � 2
dN

i−1∑
k=1

μk+N∑
m=μ(k−1)+N

2mϕ
(

bn

η2m

)
+

2
dN

n∑
m=(i−1)μ+N+1

2mϕ
(

bn

η2m

)

� 4
dN

(i−1)μ+N∑
m=(i−2)μ+N+1

2mϕ
(

bn

η2m

)
+

2
dN

n∑
m=(i−1)μ+N+1

2mϕ
(

bn

η2m

)

� 4
dN

2μ∑
m=0

Km2nϕ
(

bn

η2n

)
= K̂2nϕ

(
bn

η2n

)
,

(3.26)

where K̂ is depending only on dN , K,μ, but it is independent of {bn}.
Taking (3.25) and (3.26) we get (3.17), thus Lemma 9 is proved.
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4. Proofs

First we prove the relation Fϕ(η) ⊆ F∗
ϕ(η). Let a ∈ Fϕ(η). Since ηn is mono-

tonically increasing thus an easy computation gives that

∞∑
m=1

2mϕ

⎛
⎜⎜⎜⎝

2m+1∑
k=2m+1

ϕ(|Δ an|
η2m

⎞
⎟⎟⎟⎠ � K

∞∑
m=1

2m∑
n=2m−1+1

ϕ

⎛
⎜⎜⎝

∞∑
k=n

ϕ(|Δ ak|)
ηn

⎞
⎟⎟⎠

= K
∞∑

n=1

ϕ

⎛
⎜⎜⎝

∞∑
k=n

ϕ(|Δ ak|)
ηn

⎞
⎟⎟⎠ < ∞,

and this was to be proved.
Next we prove the statement F∗

ϕ(η) ⊆ Fϕ(η). Suppose that a ∈ F∗
ϕ(η). Since

ηn ↑ thus we have that

∞∑
n=2

ϕ

⎛
⎜⎜⎝

∞∑
k=n

ϕ(|Δ ak|)
ηn

⎞
⎟⎟⎠ � K

∞∑
m=0

2mϕ

⎛
⎜⎜⎝

∞∑
k=2m+1

ϕ(|Δ ak|)
η2m

⎞
⎟⎟⎠ = I. (4.1)

Using Lemma 2 and in the last step Lemma 9 we get

I � K
∞∑

m=0

2m
∞∑

n=m

ϕ

⎛
⎜⎜⎜⎝

2n+1∑
k=2n+1

ϕ(|Δ ak|)
η2m

⎞
⎟⎟⎟⎠

= K
∞∑

n=0

n∑
m=0

2mϕ

⎛
⎝ 1
η2m

2n+1∑
k=2n+1

ϕ(|Δ ak|)
⎞
⎠

� K
∞∑

n=0

2nϕ

⎛
⎜⎜⎜⎝

2n+1∑
k=2n+1

ϕ(|Δ ak|)
η2n

⎞
⎟⎟⎟⎠ < ∞.

(4.2)

Combining (4.1) and (4.2) proves the statement.
In the following step we prove that Fϕ(η) ⊆ Sϕ(η). Suppose that a ∈ Fϕ(η) and

set

Rn := ϕ

⎛
⎜⎜⎝

∞∑
k=n

ϕ(|Δ ak|)
ηn

⎞
⎟⎟⎠ .
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Since {Rn} is monotone decreasing and (by (1.15))
∞∑

n=1

Rn < ∞,

thus by Lemma 4 we know that there exists a monotone decreasing {An} such that

Rn � An (4.3)

An � 2A2n (4.4)

and ∞∑
n=1

An < ∞

hold.
To prove a ∈ Sϕ(η) we have to show that (see (1.17))

n∑
k=1

ϕ(|Δ ak|)
ϕ(Ak)

= O(ηn). (4.5)

Let 2i � n < 2i+1. Then using (4.3), (4.4) and Lemma 1 we get

n∑
k=2

ϕ(|Δ ak|)
ϕ(Ak)

=
n∑

k=1

ηkϕ(Rk) − ηk+1ϕ(Rk+1)
ϕ(Ak)

�
i∑

m=0

2m+1−1∑
k=2m

[ηkϕ(Rk) − ηk+1ϕ(Rk+1)]
1

ϕ(Ak)

� K
i∑

m=0

η2mϕ(R2m)
1

ϕ(A2m+1)
� K1

i∑
m=0

η2m = σi.

(4.6)

Since σi can be estimated by Lemma 7, using that {η2m} is quasi geometrically
increasing because of Lemma 6, thus we get that

σi � K1η2i � Kηn. (4.7)

(4.6) and (4.7) give (4.5), that is the embedding Fϕ(η) ⊆ Sϕ(η) is proved.
The embedding relation

Sϕ(η) ⊆ Sϕ(δ,η)

obviously holds without any additional condition, it is enough to take δn := n−3.
Now we will prove the relation

Sϕ(δ,η) ⊆ Sϕ(A,η).

Since a ∈ Sϕ(δ,η) there exists a δ -quasi monoton sequence {An} with
∞∑

n=1
nδn <

∞. Applying Lemma 3 we get that
∞∑

n=1
n|ΔAn| < ∞. At the same time (1.17) is

automatically satisfied by a ∈ Sϕ(δ,η). Thus Sϕ(δ,η) ⊆ Sϕ(A,η) is proved.
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Finally we verify
Sϕ(A,η) ⊆ F∗

ϕ(η).

Suppose that a ∈ Sϕ(A,η). By using Lemma 5 we can get that

∞∑
m=1

2mϕ

⎛
⎜⎜⎜⎝

2m+1∑
n=2m+1

ϕ(|Δ an|)
η2m

⎞
⎟⎟⎟⎠ =

∞∑
m=1

2mϕ

⎛
⎜⎜⎜⎝

2m+1∑
n=2m+1

ϕ(|Δ an|)
ϕ(An)

ϕ(An)

η2m

⎞
⎟⎟⎟⎠

�
∞∑

m=1

2mϕ

⎛
⎜⎜⎜⎝

2m+1∑
n=2m+1

ϕ(|Δ an|)
ϕ(An)

ϕ(Cm)

η2m

⎞
⎟⎟⎟⎠ = I.

(4.8)

Since a ∈ Sϕ(A,η) we get by (1.17) that

I �
∞∑

m=1

2mϕ
(

Kη2m+1ϕ(Cm)
η2m

)
= II. (4.9)

Using that ηn is quasi p(β − 1) -power-monotone decreasing, from Lemma 1 and
Lemma 5 we have that

II � K1

∞∑
m=1

2mCm < ∞ (4.10)

from which it follows that the first sum of (4.8) is also finite, that is a ∈ F∗
ϕ(η),

which gives Sϕ(A,η) ⊆ F∗
ϕ(η). Taking into account that Fϕ(η) ≡ F∗

ϕ(η), the proof
of Theorem is completed.
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