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ON THE WAY OF WEIGHT COEFFICIENT AND
RESEARCH FOR THE HILBERT-TYPE INEQUALITIES

BICHENG YANG AND THEMISTOCLES M. RASSIAS

(communicated by S. Saitoh)

Abstract. The Hilbert-type inequalities are certain significant weight inequalities, which play
an important role in mathematical analysis and its applications. In this paper, we introduce the
way of weight coefficient and consider its applications to the Hilbert-type inequalities. We will
summarize how to use the way of weight coefficient to obtain some new improvements and
generalizations of the Hilbert-type inequalities.

1. Introduction
1.1. Hilbert’s inequality and equivalent form

If {a,},{b.} are sequences of real numbers such that 0 < > a? < oo and

n=1

0 < Y b2 < oo, then (see Hardy et al. [1, Ch. 9])

n=1

ZZ’:JM (S 2> ) . (1.1)

n=1 m=1 n=1 n=1
where the constant factor 7 is the best possible. Its equivalent form is
(oo} (oo}

2 o0
3 Zmazn <n2;a3, (1.2)

n=1 \m=1

where the constant factor 7 is also the best possible. Inequality (1.1) is well known
as Hilbert’s inequality, which is important in mathematical analysis and its applications
(see Mintrinovi¢ et al. [2, Ch. 5]).

The associated equivalent integral forms of (1 1) and (1.2) are the following:

If f, g are real functions such that [ f(t)dt < oo and [;° g*(t)dt < oo, then
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/OOO /Oooj%g(yy)dxdy< ﬂ(/ooof2(t)dt/ooog2(t)dt> 1/2; (1.1a)
/O (0 f()dx)d <7r/f (1.2a)

where the constant factors 7 and 7? are both the best possible.
More accurate equivalent forms of (1.1) and (1.2) are (see Mintrinovié et al. [3]):

1/2
sz+n+l<ﬂ:<2a Zb) : (1.1b)

n=0 m=0 n=0 n=0

o] 0o 2 o]
A
S (S ) <P 1:20)

n=0 “m=0

where the constant factors 77 and 7> are both the best possible.

Hardy [1, Th. 324] pointed out an important role of (1.1b) in building the following
Hardy-Littlewood’s inequality:

If f(x) is a real function in L*(0,1) such that folfz(t)dt < o0, we define
ay := fol X'f (x)dx (n=0,1,...). Then

oo 1
Zaﬁ < n/o f2(x)dx, (1.3)
n=0

where the constant 7 is the best possible.
Since Ingham [4] gave the following result:

sz+n+2a ”(Z“ﬁzbﬁ)m (a}%), (L.1c)

n=0 m=0 n=0 n=0

we can obtain an equivalent form as follows:

[e%S) [e%S) a, 5 [e%9) 1
S (Xarie) <PXd (azgp) (1.2¢)
n=0 m=0 n=0

It is obvious that (1.1) and (1.2) are particular results of (1.1c) and (1.2c) for
o =1, and (1.1b) and (1.2b) are particular results of (1.1c) and (1.2¢) for o = 1/2.
Hence, (1.1c) provides a unification of Hilbert’s inequalities and (1.2c) unifies their
equivalent form.

We can write the general equivalent integral forms of (1.1¢) and (1.2¢) as

If a € R,f, g are real functions, such that

o0

f2(x)dx < oo and / g*(x)dx < oo,

—a —a
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then one has

o - 1/2
/ / x+y+2adXdy < ﬂ( ﬂxfz(x)dx/ﬂX gz(x)dx> ; (1.1d)

/_oo ( /_ ) %dx)zdy < _Oof 2 (x)dx, (1.2d)

where the constants 77 and 7> are the best possible.

REMARK 1.1. For a = 0, (1.1d) reduces to (1.1a). Inequality (1.1d) provides
a generalization of (1.1a). On the other hand, setting X = x— o, ¥ =y — «,
F(X) =f(x) and G(Y) = g(y) in (1.1a), we can obtain

/_o: /_O: xFiiX;ig;dXdY < n{ /_O: F2(X)dX /_o: GZ(Y)dY}l/z.

It follows that (1.1a) and (1.1d) are equivalent; so are (1.2a) and (1.2d).

1.2. Some research results on Hilbert’s inequality

(1) In the year 1991, Xu et al. [5] initialed the way of weight coefficient and gave
a strengthened version of (1.1) as follows:

SEat AR Fs e o

where 6 = 1.1213". In [5] it was asked to determine the best constant 0, that keeps
(1.4) valid. In 1992, by using the improved Euler-Maclaurin’s formula (see [6, (2.6)]),
Gao [6] found that the best constant is max 6 = 1.2816697 .

Xuetal. [7] also gave a strengthened version of Hardy-Hilbert’s inequality applying
the same method. In the last ten years, by using the way of the weight coefficient, several
new weight inequalities are being given.

(2) In the year 1992, by introducing the function as

 o(xt?
k(x) = %/0 I(J:tgdt—e(x), (1 — e(x) + e(y) = 0)

and using Cauchy’s inequality, Hu [8] gave an improvement of (1.1a) in the form:

//fx+ydxdy< /f dx /f }
x[(/ooo ()dx) (/Ooogz(x)k(x)dx)z}}l/z. (1.5)

Similarly, Hu [9] gave an improvement of (1.1b) and Hu [10] provided a survey of
his reseach results in inequalities.
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(3) In the year 1998, by using the way of matrix and inner product, Gao [11] gave
an improvement of (1.1a) as follows:

{/ow /ooo J%giy)dx"y}z < /wazwdx /000 £(x)dx — G(£.n.8),  (1.6)

where G(£,1,8) = ([&]|(n,8)) —2(£,8)(n, 8)(.8) + (Imll(&,m)” > 0 and

- W(g)mﬂx% n= m(f—c)mg(y)-

Furthermore by the same method, Gao [12] gave another improvement of (1.1a) as

{/OOO /Ooo]%g;y)dxdy}z < *(1—R) /Ooof2(x)dx/ooo g (x)dx, (1.7)

where, ,
1
SRR ALY
gl IF

. 1/2 1/2,, _g 00 o=
Wlthx:(%)/(g,e),y:(Zn)/(f,e ), and e(r) = [~ &=ds
(4) In the year 1998, B. G. Pachpatte [13] builded a new inequality similar to (1.2)
as follows

m n

AP IPIL L k r 12
I P T v R T

=1 n=

1
Zhao [14, 15] considered some further generalizations of (1.8). Recently, Yang [16, 17]
considered some new Hardy-Hilbert’s type inequalities.
(5) In the year 2001, by introducing the I" function, Hong [18] provided a gener-
alization of (1.1a) in the form:

Ifa>0,b>0,p > 1 satisfy Zpizlandfi>0,ri>b77t>%(”*1*r%)
(= [[Tp/pis = 1,2.....). then
j=1

Hfi (x;)dx1dx, . . . dx,

i=1

[Llss

< TGO -D)rG -5 (1= 2)) [To sy
In particular fora =b =1, A =n—1,p; =n, n € N\ {1}, and r, = n"_l(,l;gf):

obtain
/ / / —_ Hfl (x;)dxidx; . . . dx,
0 xz

i=1
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<l (-G [ roa™ o

REMARK 1.2. For n = 2, inequality (1.10) reduces to (1.1a). Hence (1.10) is a
generalization of (1.1a); so is (1.9). In the following we will obtain an improvement of
inequality (1.9).

2. The way of weight coefficient and research for Hilbert’s inequality

2.1. Simple introduction to Xu Lizhi’s way of weight coefficient

In the year 1991, Xu et al. [5] in order to improve (1.1) initiated the way of weight
coefficient, that is as follows:
For the left-hand side of (1.1), uses Cauchy’s inequality as follows:

sz+n_ZZ{m+ 1/2( )1/4%“m(%)1/4b4

n=1 m=1 n=1 m=1

o0 o0 1

S DD DI (O R BID SETe 5 BT SCR)

Then, it is defined the weight coefficient w(n) as follows

=1
:Z(m—i—n)(

m=1

1/2
) (n €N). (2.2)

3=

By (2.1), it follows that

Sy o (X oma S omi} " 23)

n=1 m=1 m=1 n=1

A decomposition of the weight coefficient @ (n) is written in the form

o) =m— % (n eN), (2.4)

where 0(n) := (m — w(n))n'/>. We obtain

[n i m+n( )1/2} 125 9:=1.1213  (neN).

m=1

Using (2.4), we have

w(n) < m— (n €N, 0 =1.1213"). (2.5)

W2

Hence by (2.3), it follows that (1.4) is valid.
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The open problem that was posed in [5] is asking for the maximal value of 0, that
keeps (2.5) true. Since Gao [6] proved that {6(n)} is a strictly increasing sequence, it
follows that

6 := 121611{11 O(n) = 06(1) = 1.281669",

and 6(n) > 6y, (n € N). The equality holds when n = 1. Hence (2.5) reduces to

0
w(n) <7 — 1—(/’2 (n €N, 6 = 1.281669"),
n

where the equality holds for n = 1.
The answer of Xu’s open problem is that 6y = 1.2816697 .

2.2. Some strengthened inequalities of (1.1b)

First, we introduce the improved Euler-Maclaurin’s formula (see [19, 20]) in the
form:

If f € C7[0,00) satisfies (—1)/f@(x) >0, fD(c0) =0, (i=1,2,...,7) and
[ f(x)dx < oo, (n € Np), then

ICE / s o+ [ e

k=n

7_f 720f ) < /(X> p1(x)f" (x)dx < —éf/(n), (2.6)

where p;(x) = x — [x] — 1/2 is the first-order Bernoulli’s function. One applies here a
method similar to the process of building (2.1). We have

sz+n+l {Z‘I’(”)“ﬁzd’('@)bﬁ}l/z, 2.7)
n=0 m=0 n=0 n=0

where the weight coefficient @(n) is defined by

= n+1\1/2
:mz;) T <m+1) (neNo=NU{0}).  (28)

Applying the following decomposition:

- B (n)
(U(n)_ﬁ__(n+1)l/2>

> 1 n+1\1/2 |
19(n):[77:_20(m+n+1)(m:1) }(n+1)/2’

by (2.6) we obtain (see [20])

B(n) > B = min 8(n) = §(0) = 0.5292496".
n€Ny
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Then we have
_ %
(n+1)l2

where the equality holds for n = 0. Substituing (2.9) into (2.7), we have a strengthened
version of (1.1b) in the form

@n) <m— (n € No, 9 = 0.5292496™"), (2.9)

sz+n+l {g[n— Vn+1 }aii[ \/—l}bz} /27 (2.10)

where ¥y = 0.52924967 .
REMARK 2.1. (i) Yang et al. [21] gave a new inequality of (2.8) as follows:

o(n) <m— (n € Ny), (2.11)

7
5(vn+3)
and proved that the right-hand side of (2.11) and (2.9) were not comparable. Hence a
new strengthened version of (1.1b) is given by:

a,b, > 2 > [ 7 :|b2 1/2
;%Zm—&-n—kl {Z_g[” (f+3}a"nz: 5(vn+3) } '
(2.10a)
(ii) Yang et al. [22] set a new weight coefficient of (1.1b) by considering
N - 1 2n+ 1\1/2
1 (n) '_mzo(m+n+l)(2m+l) (n € No),
and obtained the following inequality
5
01(n) < T — —— n € Np).
l( ) 6\/m ( O)

Then a new strengthened version of (1.1b) is obtained by

Clm n > 5 2 > |: 5 :| 5 1/2
T—— n———>|b } , (2.10b
sz+n+1 {z_g{ 6\/2n+1}a"§ ovan 1) o (2100
which is not comparable to (2.10) and (2.10a).

(iii) Yang [23] also obtained

_ 6
(2n + 1)3/2

Then a new strengthened version of (1.1b)was built as:

: . .,
Doy e < (Xl i - ) -

n=0 m=0 n=0 (Zn +
(2.10c)

@y(n) < 7 — (0 =0.92955", n € Np).
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2.3. Applications to the equivalent form and Hardy-Littlewood’s inequality

1 Application to an improvement of (1.2b).
Setting b, := Zo i, by (1.2b), we have

m=

o0 oo o0 2
0<Zobi_zo(zm+an+l) < o0

n=0 n=0 m=0 =0 m=0
X ela X - e
; n+1 “ ; n+1
[eS) 190 , [eS) ,
<rn [n—i_} n( bn).
n=0 n+1 ‘ ;

Hence we have a strengthened version of (1.2b) in the form:

o] oo a 2 oo 190
; (n;) m) P [ﬂ - m}aﬁ (9 = 0.5292496"). (2.12)

(2) Application to an improvement of (1.3).
Since we have

1
an:/o X'f (x)dx (n=0,1,...),

suppose {b,} is a sequence of real numbers, such that 0 < > b2 < co. Then by
n=0
Cauchy’s inequality,we have

o0 2 ol 2 I 2
(nz_ganbn) - (Z_g/o bnx"f(x)dx) - [/0 (;bnx )f(x)dx}
< /1 (ibnx")zdx/lfz(x)dx

/ (Zmebnx'H" )ax / £

n=0 m=0

=3 b [ / F2 @
n=0 m=0

bubn
:sz+n+l/f

n=0 m=0
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\/%}bﬁ/olfz(x)dx

Hence, for b, = a, in the above inequality, we have an improvement of (1.3) in the
form:

(iai)z < f; [n - \/’%}ai /Olfz(x)dx (9 = 0.5292496%).  (2.13)

n=0 n=

By (2.10), it follows that

(San) <3|

n=0

2.4. Some generalizations of Hilbert’s integral inequality (1.1a)

In the year 1998, Yang [24] first introduced the B function and considered some
generalizations of (1.1a). By introducing some parameters, Yang [25, 26, 27, 28]
obtained the following two theorems.

THEOREM 2.1. If A > 0,f, g are real functions, such that

0</ 172 (1)dt < 0o and 0</ =g (1)drt < oo,
0 0

then

/ / x+y dd <B(§ g){/Oootl_*fz(t)dt/oootl‘*gz(t)dt}l/z,

(2.14)

where the constant factor

AAN [ 1 —144/2
B(z’z)_/o 1 +ur" du

is the best possible (B(u,v), (u,v > 0) isthe B function). Its equivalent form is given

by
[ el o< pGA)] [Toroa @

&
2

)] is still the best possible. In particular,
hav

where the constant factor [ (
(i) for A =2n (n €N),

/ / x+y an xdy < [E )!)]!2{/000 tznl_lfz(t)dt/ooo tzn%gz(t)dt}l/z;

w1 [ [T f(¥) 2 (n— D [ 1
/0 v {/0 de} dy < [(2n — 1)!}2/0 tzn_lfz(f)df7 (2.15a)
(ii) for A =2n+1 (n € N), we have

o] ] X n— ..2 o o
[ %‘Wﬂ%ﬂ{ | wroa [ meoa)”s

(2.14b)

&
2
we
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ool [T f) 2 [(2n — 1)11]* * 1
/0 )2 [ /0 7(x+y)2nﬂdx} dy < S e /O S 2(0)dr,  (2.15b)

where the constant factors in the above inequalities are all the best possible.

Proof. Define the weight function ®(x) as

o(x) = /000 ﬁ(;)l_l/zdy, x € (0, 00).

Setting u = y/x in the above integral, we find w(x) = B(z, 2)
Cauchy’s inequality and the method similar to building (2.1), we have

[ e —/ / L) mﬂy@>%
// /1/2 /0 000 x+y y)( Mz)dxdy}z
:{/0 w()f()dx/o 00ED}

B(i ’;){/ xlfifz(x)dx/ YR (y )dy}l/z. (2.16)

If (2.16) takes the form of equality, then there exists constants a and b, which are
not all zero, such that (see [29, p. 29])

=4 By using

1— /1/2

, ae.in(0,00) x (0,00).

2x) xy (12 2 (1-2/2)
f ) (5) /2>:b(g(y) (y)l 2

g y
(x+y)* x+y)*

It follows that ax>~*£2(x) = by>*g>(y), a.e. in (0,00) x (0,00). Hence there exist
areal constant C and

ax* M f(x) = by* *g*(y) = C, ae. in(0,00).

Suppose a # 0 such that x'~*£2(x) = (C/a)x~", a.e. in (0,00). It would contradict
the fact that 0 < [ x'"*f%(x)dx < oco. Hence, (2.16) takes the form of strict
inequality and (2.14) holds.

If the constant factor B( > 2) in (2.14) is not the best possible, then there exists
a positive constant K (with K < B(%,%)), such that (2.14) is still valid if we replace
B(%,%) by K. For 0 < € < A/2, setting

fe) =228 rel,00);  felt) =0, te(0,1),

one has

(2 2) ) = [

<K{/0 A ()dt/oot1 Agﬁ()dt}l/zzf

&
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A A - . A A

It follows that B(%,%) < K, which contradicts the fact K < B(%,%). Hence the
A2
2772

constant factor B(%, %) in (2.14) is the best possible.
Setting g(y) as

b e 0.0)

one obtains

{/Ooyl)LZ
0

/ 0 xlff;z) - dx} 2dy}2

A / e

( 2)} /0 XA () /0 Y e )y,

0<A ﬂ”[A @T?Vﬁr@Amfxf@My
< {B(%,%)r/owxllfz(x)dx< 0.

If follows that the above two inequalities take the form of strict inequalities by the fact
0< [y *g%(y)dy < oo and using (2.14). Hence, we have (2.15).
On the other hand, if (2.15) is valid, by Cauchy’s inequality, we have

/ / x+y dd _/000 [yul)/z/ooo f(x) dx} [y“*’l)/zg(y)}dy

(x +y)*
{] [ <xffy)>ldxfdy/ )

By (2.15), we have (2.14). Hence, (2.14) and (2.15) are equivalent. We can conclude

that the constant factor in (2.15) is the best possible by the equivalence of (2.14) and
(2.15).

The theorem is proved.

~{
-1
<[

THEOREM 2.2. If 0 < a< b < oo,A >0, f and g are real functions, such that

/ 72 (0)dt < 0o and / 1142 (1)dr < oo,
0

0
then, (i) for 0 < a < b < o0, we have

[ [ 108y (3 2) s () o0 [ ol
(2.17)
/ayl ([ Ll o< {s(5.5)[- ) [ iroa

’ (2.18)
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[ < 5(5.5)
(LT a4 e cwa) e
[ [ L a< sG] [ [ 20 o

(2.20)

(iii) for 0 < a < b = 0o, we have
[ [ <af2 2
A {1&(?)“%1-%%%/“ 13 ) e
[l el < BEON [ 15 s

(2.22)

REMARK 2.2. (i) For A = 1, since B(1/2,1/2) = =, (2.14) reduces to (1.1a).
Hence (2.14) is a generalization of (1.la) with a single parameter. It is obvious
that (2.17), (2.19) and (2.21) are generalizations of (1.1a) with a single parameter, and
(2.18), (2.20) and (2.22) are generalizations of (1.2a) and (2.15) with some parameters.

(ii) For A = 1, some new improvement of (2.17), (2.19) and (2.21) are given as
follows (see Xie et al. [30]):

/ab /abj%giy)dxdy < (n 4arctan\/7 / Nt dt/ (1d } 2; (2.17a)
/ / f (y ddy<{/0b (nZarctan\/g)fz(t)dt
X /Ob (n — 2arctan \/%)gz(t)dt}l/z; (2.19a)
/ / [ dd <{/uoo (n—Zarctan\/g)fz(t)dt
X /aOo (n — 2arctan \/g)gz(t)dt}l/z. (2.21a)
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2.5. A generalization of Hilbert’s inequality (1.1) with a single parameter

THEOREM 2.3. If 0 < A < 4,{a,},{b.} are real sequences, such that

0<Zn1 a2 < oo and 0<Zn1 *b? < o0,

n=1

then (see Yang [31])
3 gt <n(3.5) {(Sna ) e
n=1 m=1 n=1 n=1

where the constant factor B(%, %) is the best possible. In particular, for A =
1/2,2,3,4, we have

aﬂ'l n /
Z;Zlm \/— {Z\fﬂn;\/—b} , (2.24)
N b ) N N
;;W<{§;“3§;bﬁ} ’ (225)
=N~ mbn [ = ()2 e (an\ 212
;;W<§{;(7) Z_;(;) [ (2.26)
S mbn lrex1 > 1 12
E;oﬁﬁ <& ;Wli; b (2.27)
The equivalent form of (2.23) is given by

m 2 A, A’ 2 X _

an l[zlwiin)*} <[5(3:3)] 2 e, (2.28)

where the constant factor [B ( ,%)]2 is still the best possible. In particular, for

A =1/2,2,3,4, we have

> % {i \/,Zm—ﬂr 1/4 2V (2.29)

n=1 m=1 n=1

in[i (miimn)zr < i_o; %ag; (2.30)

n=1 m=1

e e ” ) 1 e 1
n=1
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The idea for the proof of Theorem 2.3. Similarly as we builded (2.1), we have

SN et {wa 2> anme”
n=1

n=1 m=1

where the weight coefficient @ (n) is defined by

. > 1 ny1-1/2
au(n):—-gggzqujajx(;g) (n 6]‘)
Setting f, (1) = —2—= (¢ € (0,00)), we find

(t+n)ri =2 /2

@) (n) = n' =2 an(m) = nl_l/z{/ooofn(t)dt —0(n)|.

By using (2.6) and integration by parts, we obtain

/fn ndi — Zf,, (0<A<4neN),

m=1

and [ f,()dt = n=*/?B(%,%) . By (2.35), we find

( ) (0<A <4,neN).

In view of (2.33), we have (2.23).
For 0 < £ < A/2, setting @, := n~'*(*=9)/2 then by (2.6) we find

S Gt > (03 5) +o) 2
= 1

1/2
DO R

n=1

If the constant factor B(%, %
and (2.38), we can obtain a contradiction.

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

) in (2.23) is not the best possible, then by (2.37)

REMARK 2.3. When A > 4, we can not verify that (2.23) and (2.28) are valid.

3. Some strengthened versions of Hardy-Hilbert’s inequalities

In the year 1925, Hardy-Riesz extended Hilbert’s inequality (1.1) as (see Hardy

[32]):
Iftp>1,
such that

1
P

O<§:aﬁ<oo and O<§:b3<oo,

n=1 n=1

+ é =1, {a,}, {b,} are non-negative sequences of real numbers,
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then
1/q

erzn;r;z sin( ﬂ/p){iaﬁ}l/p{ibg} ’ (3.1)

=1 n=1

where the constant factor W is the best possible. Inequality (3.1) is well known as

Hardy-Hilbert’s inequality, and the equivalent form is

Z (Z ma—tn)p [sm (m/p) } ;a"’ (3.2)

n=1 m=1

3

where the constant factor [ >]p is still the best possible.

sin(r/p
More exact the following Hardy-Hilbert’s inequalities and equivalent forms are
a n N N V"
m2n , by 3.3
;;m+n+l sin(n/p){ga”} {; " (3.3)

Z (mZ—O #)p [sm (n/p) } nza’” (3.4)

n=

where the constant factors sm(’fz ) and [sm arn >]p are all the best possible.

In the year 1991, Xu et al. [7] used the way of weight coefficient, and built a
strengthened version of (3.1) as follows:

mbn = - /
ZZ rZJrn {; [Sin(z’/p) B n1/17p+ nlfl/q}az}l ’

n=1 m=1
X{ Z:; [sin(::/p) - nl/qq_‘:nl_l/p}bZ}l/q- (3.5)

For p = g =2, (3.5) reduces to

sz+n {i[n n1/2+n m}a,i{ m}bﬁ}l/z, (3.6)

n=1 m=1 n=1

which is different from (1.4).
About the meaning of the word “strengthened”, in 1986, Mikhlin [33] gave the
following Karlson’s inequality and its improvement for illustration:
If {a,} is a sequence of real numbers, such that 0 < >~ n’a% < oo, then
n=1

(iaﬁy < nzzaﬁanai, (3.7)
n=1 n=1

where the constant factor 7z is the best possible. Mikhlin said, the constant 7% in (3.7)
could not be made smaller, although itself might be strengthened as:

i 4 ad i 1\2
(Zaﬁ) < ﬁzgaﬁ 2 (n - 5) a. (3.8)

n=1
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For getting a version similar to (1.4), we can rewrite (3.8) in the form:

(Z ) Z Z(ﬂ:f—)naz (3.8a)

n=1 n=1 n=1

3.1. Two strengthened versions of (3.1)

(1) A strengthened version of (3.1) similar to (1.4).
Let y be the Euler constant, 1 —y = 0.42278433% . We established a strengthened
version of (3.1) as

sz+n {Z[ﬁln—%y]aﬁ}i{ZLm@)l Y}bq}a (39)

1
n=1 m=1 n=1 na

In the year 1997, Yang and Gao [34] derived (3.9). In 1998, Gao and Yang [35]
considered some of its applications. In the following we discuss the Key idea of the
proof:

First, by Holder’s inequality, we have

Z Z e { i wq(n)aﬁ}l/p{ i wp(n)bZ}l/q, (3.10)

n=1 m=1

where the weight coefficient o, (n) is defined by:
o "
Setting the decomposition of w,(n) in the form

or(n) = sin(yff/r) - nelr*(’f/)f7 (3:12)

( )l/r (neN, r=p,q). (3.11)

by (3.11) and (3.12), we have

v/

sin(7/r)

By using (2.6) and some computational analysis, we show that {6,(r)} is a strictly
increasing sequence. Therefore

L (%)l/r}nlfw. (3.13)

m+n

NE

0,(n) := [

m=1

o0

60.(n) > min{6,(n)} = 6,(1) = — ﬂ/r Zm+1( ) v (3.14)

It follows that
0,(1) > inﬁ{@,(l)} = lim 6,(1)=1-—y.
r> r—o0

Hence we find
0,(n) > infmin{6,(n)} =1—y (n eN).

r>1 neN
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In view of (3.12), we build the following inequality of the weight coefficient:

T 1—y

sin(7/p) o= (r=p,gn €N). (3.15)

w,(n) <

Hence, by (3.10) we have (3.9).
(2) A strengthened version of (3.1) similar to (3.5).
In 1998, Yang and Debnath [36] obtained the following interesting inequality:

= = n] n - T 1 l/p
ZZ {g Lin(ﬂ/p) - 2n1/P+n_1/‘Jaﬁ}

n=1 m=1

X{ ”Z:; Lin{;/ﬁ) ~ 2nl/a +1 n*l/p}bz}l/q' (3.16)

By using (3.9) and (2.6), the following inequality of (3.11) was obtained

T 1
, : - —p.gneN). 3.17
(n) < sin(n/p)  2n'=Vr 4 p=1/r (r=p.qn€N) (3.17)

Then by (3.10) we get (3.16).

REMARK 3.1. Inequality (3.16) is an improvement of (3.5). We compare the
right-hand side of (3.15) and (3.17) as follows.
For n =1, 2, we obtain

T B 1—v < T B 1
sin(m/p) al=Vr " sin(m/p)  2nl=Vr 4=l

and for n > 3, we deduce

T B 1—v - T B 1
sin(/p) n'=Yr " sin(z/p) 2nl-Yr 4 polr

It follows that (3.9) and (3.16) are not related and these are two distinct strengthened
versions of (3.5).

(3) Two distinct strengthened versions of (3.2).
We have (see [36])

Z} (Z marn)p < [sm (n/p) } Z [sm (m/p) lnl_/Py]aﬁ; (3.18)

n=1

Z (i ma—tn)p < [sinﬂ )r_l ni_o; [sinyz ) — }ap~ (3.19)

n n
n=1 m=1 p 14 2np +na
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3.2. Two strengthened versions of (3.3)

(1) A strengthened version of (3.3) similar to (3.9).
In the year 1999, Yang [37] built the following strengthened version of (3.3):

> — 1/p
ZZ m+n + 1 {g {sin(yitr/p) B (Zr:nfl)ll/l’}az}

n=0 m=|
8 ; [Sin(ff/p) - (2212 1_)111/4}1’3}%7 (3.20)

where, In2 — y = 0.1159315" (y is Euler constant).

The idea of proof. By Holder’s inequality, we have

S5 e < (S ama) (S aom) " oo

n=0 m=0 n=

where the weight coefficient @,(n) is defined by

- 1 2n+1\Ur
, = No, r=p,q). 3.22
w(n) mZQm+n+l(2m+1) (nE 0: 7 =P>4) ( )

Consider the decomposition of @,(n) in the form:

- B T O(n,r)
@r(n) = sin(m/r)  (2n+ 1)2-1r° (323)

By (3.22) and (3.23), we have

B(n,r) = Lmn/ i) ! (2”+1)1/r}(2n+1)2-1/’. (3.24)

m+n+1\2m+1

By using (2.6), we may show that {0(n,r)} is strictly decreasing for r, and
{0(n,00)} is strictly increasing. Hence, we obtain

O(n,r) > mininf{@(n,r)} = 6(n0,r) =n2 —y. (3.25)

neNy r>1

By (3.23), we find the following inequality of the weight coefficient as:
n In2 -y

Or(n) < sin(m/p)  (2n+ 1)2-1/r

By (3.21) we derive (3.20).
(2) Another strengthened version of (3.3) similar to (3.16).
In the year 2000, Yang [38] obtained another strengthened version of (3.3) as:

> 1/p
ZZ m+n+ 1 {nz_; Lin(fr/p) S 1B+ 1)(12n+ 1)1/P}a£}

(r=p,q, n € Ny). (3.26)
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1/q
{ |:SII1 (n/p) 13(n—|— 1)(12n+ I)I/Q}bz} '

Furthermore using (3 20) and (2.6), we find the following inequality of the weight
coefficient:
/) 1

Or(n) < sin(m/p)  13(n+ 1)(2n+ 1)1=1/r

Hence, by (3.21) we have (3.27). Obviously, we can show that (3.20) and (3.27) are
not comparable.

(3) Two distinct strengthened versions of (3.4).

By the proof of the equivalence in Theorem 2.1 and (3.28), we have

; (mZO #)p < [ﬁrq Z Lin?%) o 2oy l}aﬁ; (3.29)

2n+1)"r

(3.27)

(r=p,q, n € Ny). (3.28)

3.3. Generalization and improvement of Hardy-Littlewood’s inequality (1.3)

In the year 2000, by using (3.27), Yang [39] gave a generalization and an improve-
ment of (1.3) as follows:

THEOREM 3.1. If p > 2,5 + o = 1,f € L*(0,1), such that

1 1
0< / fi(x)dx < oco and a,= / X'f (x)dx (n € Ny),
0 0

then
(nz_;“?)Hﬁ <lmml {2 {sinj(r%)13(n+1)1(2n+1)1%}aﬁ<”1>}ﬁ/0f2(X)dx;
(3.31)
(;“@H sm% {Z“p(p Y /f (3.32)

Proof. Since 19 C IP, (0 < g < p) (see [29,p. 24]), and for p > 2, {a,} € I,

(C PP=D), then we have 3" a2”") < 0. By Cauchy’s inequality we obtain
n=0

(gaﬁ)z = {ia’,’l_l /l)c"f()c)dx}2
([ Sy« [ (S o
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(/liia” Lab = xm /Olfz(x)dx

n=0 m=0

(ZZ@” Lab~ 1/1x'"+"dx) /1f2(x)dx

n=0 m=0
_["" . lb”l /f
N m+n+1
In view of p = g(p — 1) , by (3.27) we have

> > _ P
(Za{z)z S {; [sin(fr/p) C 13(n+ 1)(12n+ 1)1/P}az<p >}1

n=0

o0

1/q !
{Z Lln (n/p)  13(n+ 1)(12n+ l)l/q}aﬁ} /0 fi(x)dx. (3.33)

n=
Hence we find

(Zag)Hﬁ S [sinj(rﬁ)r{z{ o 1 ™ ﬁ/f

pr 5 Lsin(3) 13(n+1)(2n+1%

(3.34)
It is obvious that {a,} € I (p > 2). Then by (3.27), inequality (3.33) takes the form
of strict inequality; so does (3.34). Hence we have (3.31), and then we have (3.32).

REMARK 3.4. For p = 2, inequality (3.32) reduces to (1.3). It follows that (3.32)
is a generalization of (1.3). In (3.33), for p = g = 2, since it does not take the form of
equality, we have

&S] [eS) 1
(Zaﬁ)z < ; [7'[7 B+ 1)(12n+ 1)1/2}51%/0 fz(x)dx7 (3.35)

n=0

which is an improvement of (1.3). Obviously, (3.35) and (2.13) are not comparable.

4. Some generalizations of Hardy-Hilbert’s inequality

Hardy et al [1, Ch. 9] pointed out that the integral form relating (3.1) and (3.2) can
be expressed in the form:
Ifp> 1,% + é =1, f, g are real functions such that

0</ fP(t)dt < 0o and O</ gl (r)dt < oo,
0 0

then

/0 ) /0 oofi(;f;y Laxay < ST /0 “rrwan) /0 Cear} s @)

[ o< [0 [Crwa 62
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where the constants sm(’; 7 and [Sin(’; /p)]p are all the best possible. Inequalities (4.1)
and (4.2) are equivalent.

Inequality (4.1) is well known as Hardy-Hilbert’s integral inequality. For p =
q =2, (4.1) reduces to (1.1a), and (4.2) reduces to (1.2a). On generalizing (4.1) with
single parameter, Hardy et al [1, Th. 340] claimed:

1fp>1,q>1,l+l>1and0<A=2—;—;<1,then

/ / x+y dxdy < K{ /Ooofp(x)dx}l/p{ /Ooo g"(y)dy}l/q, (4.3)

where the constant K = K(p, q) is related p and ¢.

For % + i =1LA=2- % — i = 1, since K(p,q) = WZ/P)’ it follows that
(4.3) is a generalization of (1.1a). Since the parameter A in (4.3) relates p, g, it may
be improved. In the year 1998, by introducing the 8 function and some parameters,
Yang [24] gave some generalizations of (1.1a) and (1.2a), and Yang [40, 41] gave some
further generalizations of (4.1). In the year 2000, Yang [42,43] proved that the constant
factors in the extended inequalities are all the best possible.

4.1. On generalizations of (4.1) and (3.1) with single parameter

THEOREM 4.1. If p > 1,% + é =1, A >2—min{p,q}, f, g are non-negative
real functions, such that

0</ AP (n)dt < 0o and 0</ 1~ g4(1)dt < oo,
0 0

then

[ f)gy) p+A—=2qg+A-2
/o (x+y)* dudy < B( p 7 q )
tl

/
x{/ooo —* p(t)dt}’%{/o = ()a’t}é (4.4)
/0°°y<m><p1>[/o°° f () Adxrdy

(x+y)
A—=2 A—=2\1P [
< {B(p + 4t )} / A AFP (1), (4.5)
p q 0
where the constant factors B(‘Hif_z, ‘MT_Z) and [B(’%, ‘MT_Z)][’ are all the best

possible. Inequalities (4.4) and (4.5) are equivalent. In particular, for A = 2, we have

/ / s +y s <{ OOOpr() }l/p{/oml ()dt} " 4e)
/0 y,,l[/om (;J(rxi)zdx} dy </ %f”(t)dt- (4.7)

REMARK 4.1. For A = 1, (4.4) reduces to (4.1), and (4.5) reduces to (4.2). It
follows that (4.4) and (4.5) are generalizations of (4.1) and (4.2) with the best constant
factors. It is obvious that (4.4) is more elegant than (4.3).
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The method of proving Theorem 4.1. Similarly to the proof of Theorem 2.1, by
Holder’s inequality, we have

/ / f iy < {/000 ©3(9,%) ,,(x)dx}%{/o“ wA(va)gq(y)dty}é,

(4.8)

where the weight function w, (r,t) is defined by

m(r,;):_/oooﬁ(é)l_wds (r=p.gic(0,00).  (49)

Setting u = s/t in the integral of (4.9), we have

> 1
_ -2 —1+(r+A=2)/r _
) (rt) =t /0 (1+u)/1u ( )" du (r=p,9q).

In view of the following formula related the § function and the T function (see [44, p.
117]):

Y A S L () Y O
B(u,v) _/o i +t)u+vdt— Tt v) = B(v,u) (u,v > 0), (4.10)

and‘”*i—_erqMszz/l,wehave

B(er)L 72’q+)L —Z)XFA'

0. (q,x) = W (p,x) = » 7

Hence, by (4.8), we have (4.4).
For € > 0 small enough, define the functions f,(¢) and g.(¢) as
fe(t) = ge(r) =0, for re(0,1);
fe(t) = 4727900 g (1) = {47270 for 1€ (1 00);

we find that - y - y )
{/ 1= g(;)dr} p{/ tlf’lg‘g(t)dt} . =
0

//fg gel dd—g(p+i2,q+22)+o(l) (e — 0F).

We may show that the constant factor B(’%, ‘MT_z) in (4.4) is the best possible,
by using the method of Theorem 2.1.
Setting g(y) as

gy) =yl {/0""’ (xf+(xy))A dx]pil (v € (0,00)),

(4.11)

then we have

/Oooy” <>dyf/ /
// x+yy3

P
dy
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By (4.4), we have (4.5). Furthermore using the method of Theorem 2.1, by (4.5) and
Holder’s inequality, we have (4.4). Hence (4.4) and (4.5) are equivalent. We can show
that the constant factor in (4.5) is the best possible by the equivalence of (4.4) and (4.5).

THEOREM 4.2. If p > 1, 3 + o =1, 2 —min{p,q} <A <2, {a,}, {b} are
non-negative real sequences such that

o0 o0
0< anf’laﬁ <oo and 0< anf’lbz < 00,

n=1 n=1
then (see [45])
5 g ot S S’
(4.12)
;nu_l)(p ) {n; } [B(eri 27q+)t 2)} ; i
(4.13)

where the constant factors B(’%7 W%) and [B(’%, W%)]p are the best

possible. Inequalities (4.12) and (4.13) are equivalent. In particular, for A =2, we

have o . -
ZZ Clm n {Znap}l/p{Z%bZ}l/q’ (414)
n=1 m:l n=1 n=1

o0

in(‘” 2 [Z } Z —-ab (4.15)

1

REMARK 4.2. For A = 1, (4.12) reduces to (3.1), and (4.13) reduces to (3.2);
for p = g = 2, (4.12) reduces to (2.23), and (4.13) reduces to (2.28). It follows that
(4.12) is a generalization of (3.1) and (2.23), and (4.13) is a generalization of (3.2) and
(2.28). Their associated integral inequalities are (4.4) and (4.5).

The method of proving Theorem 4.2. By Holder’s inequality, we have
1D Up (oA 1/q
ZZ ‘ {Zau g} { S ol (416)
n=1 m=1 n=1

where the weight coefficient @, (r,n) is defined by:
= 2=2)/r
)= Z ( ) (neN,r=p,q). (4.17)
m:l

For 0 < 2 — min{p,q} < A < 2, we have

e 1 n\ 2=A)/r
Wy, (r,n) < wy(r,n) = - dy.
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Then by (4.11), we have

A=2 A=2
cT);L(r,n)<B(p+ 7q+ )nlf’l (neN,r=p,q).
p q
In view of (4.16), we have (4.12).
For € > 0 small enough, setting
Gy = n*—20lp, b, = n*—2-¢)/q (n € N),

we find

o — ambn o A—2— o 1 A—2—
R e

n=1 m=1 x+y)
1 /p+A—-2 g+A-2

= -8B 1);

—5( — = ) +o(1)

(S (5"

n=1 n=1

> 1
1+Z <1+/1 Tredi = —(1+e).

If the constant factor in (4.12) is not the best possible, we may get a contradiction
following the above results. The rest of the proof is similar to the method of proving
Theorem 4.1.

4.2. Further generalizations of (4.1) and (3.1) with a single parameter

In the year 1998, Kuang [46] provided the following generalization of (4.1):
If max{1/p,1/q} < A <1, then

f y T
/o / ot Y S T Sin( pA)) Ur (sin(m ) Ve

><{/Oo = ”(t)dt}l/p{/Oo tlf’lgq(t)dt}l/q. (4.18)
0 0

For A = 1, inequality (4.18) reduces to (4.1). In the year 2000, Hu [47] gave a
generalization of Hardy-Littlewood-Polya’s inequality with a single parameter A , and
then, Yang [48] improved (4.18) in the following:

Setting x = X*,y = Y* (A > 0) in (4.1), one has dx = AX*~'dX,dy =
AY*~1dY and

[ [

1/q
- A—lepyh A—1,q(yA
— n/p / AX*1pr(x )dX /0 AYlgi(y )dY}

s [ rwad "{ [ ema)
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Setting F(X) = X*~1f (X*), G(Y) = Y*~'g(Y*) in the above inequality, we find
~ 1% F(X)G(Y) 7
—————=dXdY < —————
/0 /0 X+ v = Zsin(n/p)

o Up [0 y
x{/ X0-V-Rpr(x)ax | ,,{/ yaba-Aga(y)ay} L (419
0 0

It is obvious that (4.19) and (4.1) are equivalent, and the constant factor in (4.19)
is the best possible. Applying the same way, we can build a generalization of (4.2), that
is equivalent to (4.19).

THEOREM4.3. If p > 1
such that

+-=1,A >0, f, g are non-negative real functions

1,1
P q

/ (P2 (1t < 00,  and / 19~ D=2)ed (1) dr < o0,
0 0

[ <
x{/o AP=DU=2)¢p(1\g }/p{/o ,<q—1)(1—l)gq(;)d;}l/q; (4.20)

/Oooy“(/ooo x{f)ldx)pdy < {m]p/omt@”“”f”(t)dt, 4.21)

where the constant 5 Sz /p) and [ T sm?[ﬂ /p>]p are all the best possible. Inequalities
(4.20) and (4.21) are equivalent.

then

REMARK 4.3. Inequality (4.20) is obviously more elegant than (4.18), which is a
generalization of (4.1) with a single parameter.

THEOREM 44. If p > 1, 4+ =1, 0 < A < min{p,q}, {a.}, {ba} are
non-negative real sequences, such that

Zn” D=4k < o0, and an D=Apa < o0,

n=1 n=1

then
1 o 1
p l 1 )L P r q— l 1 )qu q 422)
/1 ) B { n a} {Zn } , (4.
nlmlm +I’l A’Slnp n= n=1

;Mﬁ(; m’laijnl) [?L sin(7m/p) } Zn(p B (423)

n=1
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where the constant factors Sz /p) and [ T Sin’(fﬂ 7 ]p are all the best possible. Inequal-
ities (4.22) and (4.23) are equivalent.

Idea of the proof. By Holder’s inequality, we have

>3 s = 3 [ () ()]

n=1 m= 1 n=1 m=1
b, nt/P\1-2 piq
orrarm) G
(mh + nt)a \m'/4 m
mPlINT=2 rmy 2y 5 S na/p 1-2 .1
{};;Wﬂ—i—nl( n ) ( ) } {;;ml—&—n*(m) (%) }
s 1/, 1/
= {3 onpmmr00- Pt} ”{Zm (gm0 =P
m=1
(4.24)
where the weight coefficient @, (r,n) is defined by
. > 1 nl(lfl/r)
@3 (r,n) ::mz:‘:m*+nl' ——7  (r=p.aneN). (4.25)

For 0 < A < min{p,q}, wehave 1 —A/r >0 (r =p,q), and then

B o) 1 n)L(l—l/r)
a)/x(r7n)</0 P vy dr.

Setting y = (¢/n)* in the above integral, we obtain @ (r,n) < 7/[Asin(n/r)]. By
(4.24), we have (4.22).
The second step. For € > 0 small enough, setting

&, = n~(1Here=D0=2)/p by, = n~1Hetla=D-Al/q (n €N),

then we obtain
g—1)(1-1)]/q

oo oo y7[1+e+(
ZZ b / et - D(-1))/p / T i
+n 1 xt +y

n=1 m=1

= l(m (1) (e 0");

(S (St rm)

n=1 n=1

=1 oo 1
:1+Zn1+5<1+/1 t1+edt S(1+2).

n=2

If the constant factor in (4.22) is not the best possible, we may get a contradiction
by using the above results.
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The third step. Similar to the way of proof in Theorem 4.1, we can show that
(4.22) and (4.23) are equivalent. Then by the equivalence of (4.22) and (4.23), we may
show that the constant factor in (4.23) is the best possible.

4.3. Two new generalizations of (3.3) with single parameter

(1) In the year 1999, by introducing a parameter A and the 8 function, Yang and
Debnath [49] gave generalizations of (3.3) and (3.4) as follows:

THEOREM 4.5. If p > 1,% +$ = 1,2 —minp,q < A < 2,{a,},{b,} are
non-negative real sequences, such that

Z(n +1/2)*a < o0, and Z(n +1/2) b < 0,
n=0 n=0

then

amby p+7tf2 L]+A’*2
ZZ (m+n+1 <B( p ’ q )

n=0 m= 0
x{i(n+ }W{i )= Abg}l/q; (4.26)
n=0 n=0
S o[ e
< [B(p+ﬁ_2,q+2_2)r2(n+%)“‘a% (4.27)
n=0

where the constant factors B(’%, M%) and [B(’%, sz)]p are all the best
possible. Inequalities (4.26) and (4.27) are equivalent. In particular,
(i) for A =2, we have two equivalent inequalities as:

ZZ CETEy {22 +1 ”}W{Zznﬂ } (42

n= OmO

>+ [ gyl < Z i 6

n=0
(ii) for p = q =2, we have 0 < A <2, and

2 TR S ARTRES RIS LY
n=0

n=0 m=| 0 n=0

o0 o0

Yot N i) <G Rerya e

n=0 m=0
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REMARK 4.4. For A = 1, (4.26) reduces to (3.3), and (4.27) reduces to (3.4).
Hence inequalities (4.26) and (4.27) are generalizations of (3.3) and (3.4) with the best
possible constant factors.

The idea of proof of Theorem 4.5. By using Holder’s inequality, we have

ZZ m—f’;—: 7S {Z(M q;n a”} /p{iw)t(p,n)bZ}l/q, (4.32)
n=0

where the weight coefficient w (r,n) is defined by

0 (rym) = (m+1/2

No,r = . 4.33
o (m—l—n—&—l)* (ne 0,7 p7q) ( )

By using (2.6), we obtain
A

ot < (o) [ () T e (e 3) Tt a0

where,

1 17/17¥ 1/(2n+1) 1 1 (27/1)/rd
Ry(r,n) : = ( —) <_)
A (r,n) n+2 /0 (1 +u)* \u !

B {3r+2—?t N A } 202=A)/r
6r RnA+ 1)1 (n+1)*
Integration by parts, implies R (r,n) > 0. Hence by (4.34), we have

wa(rm) < <n+%)14 A%ﬁ(%)(zxmdu

_ (n+%)1_13(p+i2,q+i2) (r=p,q). (4.35)

By (4.32), we have (4.30). Similarly to the proof of Theorem 4.4, one can finish the
proof.

(2) In the year 2003, Yang [50] gave further generalizations of (3.3) and (3.4) as
follows:

THEOREM 4.5. If p > 1, 3 + o =1, 0 < A < minp,q, {a,}, {b.} are
non-negative real sequences, such that

Z(n +1/2)PV0=Hgh < o0 and Z(n +1/2)=D0=Ap0 < o,
n=0 n=0

then

»3 mf';;z <2(5:3)

{i n+ p=1)(1=2) g }W{ (n+%)<q71><14>b3}1/q; (4.36)

n= n=0
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i(”%)“{; e < {B(%%)]pi(n%)@1><M>az, (437)

where the constant factors B(%, %) and [B(%, %)]p are all the best possible. Inequal-
ities (4.36) and (4.37) are equivalent.

REMARK 4.6. By (4.26) and (4.36), it follows that there are two more distinct
generalizations of (3.3) with the same double series form and the best constant factors.
The method of proof of Theorem 4.5 is following the same way as in Theorem 4.4.

5. On an extended multiple Hardy-Hilbert’s integral inequality

On multiple Hardy-Hilbert’s integral inequality, Hardy et al. [1, Th. 322] stated:

If p,q,...,r are n numbers,suchthatp > 1,g > 1,...,7 > 1,},—&—5—&-...—&-% =
1, K(x,y,...,z) is a positive function of n variables x,y,...,z, and of a homogenous
form of degree —n + 1, such that

/ / K(l,y,....2)y V.. .z7Vrdy. . .dz=k

/OOO /Ooo'"/OOOK(xvyw“vZ)f(x)g()’)-~-h(Z)dxdy...dz
k(/omfp(x)dX)l/p(/ooog‘f(y)dy)l/q... (/000 h’(z)dz)l/r. (5.1)

We give an improvement and an extension of (5.1)in the following (see Yang [51]).
THEOREM 5.1. If n € N\ {l},p; > 1,A > n—min{p;;1 < i < n}, satisfy

n
L =1, and
pi

then

fi >0, 0</ PP (A < 00 (i=1,2,...,n0),
0

then
[1fi(xi
> it A— ;
/ / =L dxl dx,,<—H (p + / 1= )Lf”’()dt}p
0 (S x)h s
i=1
(5.2)
where the constant factor 1‘ HF(”’M’ ") is the best possible. In particular,
(i)for A=n—1, wehave
Hfl -xl n 1
1 pi— 1 /°° ) P
Codx, < r— fPi(nde
[ e e o
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(ii) for p;=n, (i=1,2,...,n), we have A >0, and

Hft t

[ / < UGN T

(5.4)

REMARK 5.1. For n =2, (5.2), (5.3) and (5.4) reduce respectively to (4.4), (4.1)
and (1.1a). Inequality (5.2) is a generalization of (5.3) with a single parameter, which
is more elegant than (5.1) and (1.9) (for a = b = 1). The main result of [52] is (5.4).

We prove some lemmas before we give a proof of the theorem.

k+1
LEMMA 5.1. If r; > 0 (i € N), setting A(k) = >_ r; (k € N), then
i=1

k k+1
/ / _ H Wi duy . Hr r). (5.5)
(14> up)

j=1

Proof. We establish (5.5) by mathematical induction. For k = 1, we have (5.5)
) =

by (4.10). Suppose for k € N, that (5.5) is valid. Then for k + 1, since A(k + 1
kt1

S i+ r, by setting v = uy /(1 + ), we obtain
i=2

k+1
/ / H Mr’ ldul .dug

(k+1) i=1

k+1

oo vrl—l
/ / k+l duz . dl/lkJr] |:/(; WCZV} . (56)

(k+1)7r1

Since we have
k+1

o0 Vrlfl 1
/o T+ e = Tk 1))F(Z”’)F(”)'

By the assumption of Mathematical induction for k, we have

k+1
H ui'~ ' k42
/ / k+1 duz e dukH k+2 H F 7‘,

EGRIE (> r) =

i=2

By (5.6), we have (5.5) for k+ 1. By induction, it follows that (5.5) is valid for k € N..
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LEMMA 5.2. If n € N\ {1}, p; > 1, A > n—min{p; 1 < i < n}, satisfy

;[% =1, andfor j€ {1,2,...,n}, set w;(x;) as

1 lf.n
a)j(x]) = m H Xi pi dx1 AN dxj;ldx]:“ AN dx,,. (57)

0 (Zl x)* 1<ii<n
i=

Then each w;(x;) is constant, that is

pi+A— .
w;(x;) = ( Hr( ) (Gj=1,2,...,n). (5.8)
i=1 pi
Proof. Fix j. Setting p; and u; as p, = p;, and
ﬁi:Pi7”i:)ﬁ> for l:172>7-]_1’
Xj
Bi=piui= " for i=j....n—1
Xj
in (5.7), by simplification we have
nl a—n
w;(x;) / / —_— Hu,-pi duy ...du, . (5.9)
0 1+ Z }» i=1

Substitution of n — 1 for k, A for A(k),and 1 — (n—A)/p; for r; (i =1,2,...,n)
into (5.5), by (5.9) we have

n

() = (Hr(”’+[i ") = (Hr(”’+[i ) G=1.2,.0m)
(5.10)

Equality (5.8) is valid.

LEMMA 5.3. Following the assumption of Lemma 5.2, if 0 < € < A —n+
min{p;; 1 <i< n} then

/ /0 zn: dxy...dx, > F(l/l)ﬁr(piJr[in)—’_O(l) (e —0").

(5.11)

Proof. Setting u; = x;/x, (i=1,2,...,n— 1), we have

o) o) 1 n /lfnl—e
.s/ / . [T ™ dn...dx, > [0a(x) +0(1)] — €A,  (5.12)
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where, A is defined by

n—1
[e%¢) 3 1 Ain.—e
A::/1 xan[/.../DTui pi dul...dun,l}dx,,,

j=1 J

with

Dj:{(ul,uz,...mn_l):o, up < 1/x,, 0 < < o0 (k;éj)}.

We can obtain that A = O(1), and by (5.12) and (5.8) (for j = n ), we have (5.11)

Proof of Theorem 5.1. By Holder’s inequality and (5.9), we have

AR s
-/ /w T{-L9 [ T

Zx )i 1<iAi<n
n

H{/ WA (xJ)de}pL.

J=1

f, (xi)dxy ... dx,

.. dx,

Since the above equality does not hold (see [29, p. 29]), by (5.8), we have (5.2)
For 0 < € <A —n+min{p —i; 1 <i < n}, setting

A—n—¢

filg) =0, x€(0,1); filx)=x "

,x €[l,00) (j=1,2,...,n),

n L
we obtain € [ { e t"‘l_*f?”'(t)dt} " =1, and by (5.11), we have
i=1

/ /0 in Hf, x)dx, .. dx,,/%ﬁl"(%)+o(l).

i=1

If the constant factor in (5.2) is not the best possible, then by the above results, we
may get a contradiction.

REMARK 5.2. We do not consider the equivalent form and the series form of (5.2)
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