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ON EXTENSIONS AND REFINEMENTS OF HERMITE-HADAMARD
INEQUALITIES FOR CONVEX FUNCTIONS

LIANGCHENG WANG

(communicated by J. Pecaric)

Abstract. Inthis paper, we obtain two theorems: Theorem 1 is extensions and infinite refinements
of Hermite-Hadamard inequalities; Theorem 2 is extensions from Theorem 1.
1. Introduction

The inequalities

£ (42 < [ e <LAH0) m

which hold for all convex functions on a closed interval [a,b], it is called Hermite-
Hadamard inequalities[1]. In this paper, we establish new extensions and refinements
for (1). The result from other inequalities connected with (1) can be seen in [1-7],
where further references are given.

2. Main results

THEOREM 1. Let f be a continuous convex function on la,b],0 < t < l,u =
ta+ (1 —1)b, andlet A,B and C be defined by

1 u b
A m/a Vuf(wr(l—t)y)dy] dx,

u b
R i) [ / f<<<b—y>x+(y—u)u)/(t(b—a)))dy]dx

1 u b
e V f(((u—X)uHx—a)y)/((l—t)(b—a)))dy]dx,

t u 1—¢ (°
C = 7(1_0(17_@)/“f(x)dx+7t(b_a)/uf(x)dx.

Mathematics subject classification (2000): 26D15.
Key words and phrases: Hermite-Hadamard inequalities, convex function, extension, refinement.

© ey, Zagreb 659

Paper MIA-06-59



660 LIANGCHENG WANG

For any positive integer n, then we have

1 1 1
fla+(1-0b) < ASB<(FW+0)<5(A+0) <5 (B+C)<
1 | 1 1 1 21
< — < —A < 5B
ol W+ 5 CS A+ —5—C< 5B+ ——C
1 2n+1_1
< g/ () + ——C
< . .<C<tf(a)+ (1 =1)f (D). (2)

Proof. Let D = [a,u] x [u,b], then |D| = t(1 — #)(b — a)®>. According to
Theorem 112 of [8], for u, then thereisa A so that

[+ (1 =0y) > f () + A (x+ (1 —t)y—u),xy € a,b]. 3)
For (x,y) € D, integrating (3) yields

r

b
/ f(x+ (1 —1)y) dy}dx

= / f (tx + (1 — t)y)dxdy
> /D/ [f (u) + A (tx + (1 — )y — u)]dxdy

— f(w) D]+ A {// (tx+ (1 —t)y)dxdy—u|D] . @)

Combining (4) with the equally

u b u b
// (tx+ (1 —t)y)dxdy:t/ xdx/ dy+ (1 —t)/ dx/ ydy = u|D|,
D a u a u

we obtain

fla+ (1 =0b)=f(u) < ﬁ D/f (tx + (1 = 1)y)dxdy = A. (5)

From the convexity of f and the property of integration, we obtain

‘D| //[ (b yt(x—ﬁ-(Y) u)u >+(1t)f <%>}dxdy
[D] //f( - yt)();+(g) D1y %)dxﬁ

= ﬁ /f (tx+ (1 —1r)y)dxdy = A, (6)

B =

WV
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B < %/D/[I((b—y)f(t)&-ﬁ-%—u)f(u))

g (e 0]

- {f(u)/uu Vub@—x)dy

u b
+/ (x—a)dx/ f(y)dy}:t(lt)(ba)3

and

dx+/auf(x)dx/ub (b — y)dy

1
- LW o). )
From (5) and (6), we have
2" —1 1 2" —1 1 2" —1
< < R —
2n 2n 2n 2n 2n

1
ﬁf (u) +

where n =1,2,....
From (7) we have

| 1 /1 2" — 1 1 -1

n n 2 n
where n=1,2,....
From the convexity of f , we obtain

1 “lrr
A < m/u U (gf(x)+(1t)f(y))dy]dx

- [r/jf(x)dx/ubdw(l 1) /audX/ubf(y)dy]

t “ 1—t [
- - d - dx = C. 10
T | f W s [ s (10)
For any nonnegative integers n, from (5) and (10) we get
1 2n+1 -1 1 2n+1 -1
F‘f (M) + on+l ¢ < on+l C+ on+l c=C (11)

From the convexity of f and the property of definite integral, we obtain

u b
%/ﬂ F(x)dx /af(ta+(1—t)x)dx
b

< / if (a) + (1 — 0)f ()] dx

a

b
t(b—a)f(a)+ (1 —1) / f(x)dx, (12)
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and
b b
l/f(x)dx = /f(ter(lft)b)dx
b

< / of () + (1 — 0 (b)) dx

a

b
t/ fx)dx+ (1 =) (b —a)f (b). (13)
Expression (12) plus (13), with a simple manipulation we get
C<if(a) + (1 —0)f (b). (14)
Combination of (5), (6), (7), (8), (9), (11) and (14) yields (2).
REMARK. If we choose # = 1/2 in Theorem 1, then
[ (tla+(1—=1)b) < C <if (a) + (1 —1)f (b)
reduce to the inequalities (1).

COROLLARY. Let f be a continuous convex function on [a,b], and let x; = a +
(b—a)i/k (i=0,1,2,...,k; k> 1), uy = (a+ b)/2, then for any positive integer
n, we have

k
+b 1
f(a2 ) _f< Xi/(k+1)><A1<31<§(f(u1)+cl)
i=0
1 1 1 m_ 1
< A+ =B1+C)<...< = C
2( 1+ 1) 2( 1+ 1) 2nf(u1)—|— o 1
< 1A +2nilC < 1B +2nilc
X on 1 on 1 x on 1 o 1
1 2n+1_1 1 b
< 2”+1f(u1)+WC1<“.<b—a af(x)dx
k
[ i) +f ()
< Y L) B[y
2
k
fla)+7(b)
S ) [+ ) S ——=—, 15
;jf(x)/( +1) : (15)

where

4 up b
Al—m/ﬂ l/ulf((xJFY)/z)d)’]dxv

u b
Bl_#)Z/a [/f(2((by)x+(yul)ul)/(ba))d)’ dx

ui
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uy
a

b
= [ 1 @ =2+ (5= )6 - @)y

1 b
Clzb_a/af(x)dx.

Proof. For 0 < h < uy, define two functions G and H, by
Gx) = ((£(b) = f(a) (x —a))/(b—a) + [ (a),
H(x) = ((f (wr +h) = f (w1 = b)) (x —wr + 1))/ (2h) +f (w1 = h).
From the convexity of f we obtain
fla) +f(b) =2G(w) =2 2H(u1) = f (wr + h) +f (1 — h). (16)
By (16) and (1), we obtain

i=0 i=1
_ 1 f o) +£ ()
= T |- ER T ;ﬂxl)]
= R LY@+ )= ) 1 )] 0
(k is an odd number), or
- T {Z @)+ 8) — (7 (50 +7 (s )] + LD —f(ul)} >0
(17)
(k is an even number).
The second inequality of the right in (15) is proved.
By (17), we obtain
a)+f(b 1< Xi—1) +f (x; 1 a)+f(b) <A
[@+70) E;f( )t _ L [(k_ NAGRIAL _;f(xi)] =0

The first inequality of the right in (15) is proved.
By (1), we obtain

Lt 1 & X — Xt =S (1) Hf (x0)
ba/af(x)dx:ba;/)qlf(x)dxé bialg 12

1 k Xi— Xi
:%Z;f( )

2
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The third inequality of the right in (15) is also proved.
k

Since Zx,-/(k+ 1) = (a+b)/2 = uy, then choosing ¢t = 1/2 in Theorem 1,
i=0

we obtain the rest in (15).
REMARK. The (15) is refinements of (1).

THEOREM 2. Let f be a continuous convex function on [a,b], and let any x; €

@b, 650 (=12, ks k22), =50 (i=1,2,....k), uo—Zt,xl/Tk
i=1

-
If xi < x» < ... < x¢and a natural number m (1 < m < k — l)exzsts so that
Xm < Xmi1, then there is [ag,bo] C [a,b] (a0 < bo) and for any positive integer n, the
following inequalities

k
1 1 1
f Ztixi T | < Ao<Bo< =(f(uo) +Co) < = (A + Co) < = (Bo+ Cp)
— 2 2 2
1 2" —1 1 2" —1
S X A, C X —A C
Zﬂf (uo) + 2” O 2" O + 2" 0
1 2" —1 1 ontl
S 5ot ——CG < ﬁf(uo) + o

/N
/N
&
/N
&
=
}

IS

E

hold, where
2 I
Ao= (Tk*Tm);:i(bo—ao)z/ [ S ((Toxt-(Ti=Tn)y )/Tk)dyl dx,
Tk o by
By = (Tx—T ) (bo—ap)? /ao [ ; f (Tk((bo—y)x+(y—uo)uo)/(Tm(bo_ao)))dy] dx

T (bo—aq .

Tk uo bo
+7)2/u [ ) f(Tk((uo—x)uo+(x—ao)y)/((Tk—Tm)(bo—ao)))dy]dx,

_ Tm ! dx kaTm
Co= (Te—Tn)(bo—ao) /ao S + Tin(bo—ao) J, f( )dx

Proof. We define ag and by by

def
Cl() - Z tlxl/ -xm < xm+l Z 1ix; Tk - ) = bO>

i=m+1
then [ao, bo] C [a,b] and ag < by. Let 1 =T,,/Ty,then 0 < ¢ < 1 and

tag + (1 — )by = uy.
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Thus applying to (2), we obtain

k
1
FAD i [Te) = 1 (a0 + (1= 1)bo) < A0 < Bo < 5 (F (o) + Co)
i=1

N
|
al
(=}
+
S
/AN
|
N
+
S
N
— /A
|
s
+

N
|
>
)
+

N
[\)
=
=
\
<
+
[\)
=
i
&
N
N
&

+ ———"f (bo). (19)

N
|
)

Combining (19) with Jensen inequalities of convex function [8, 9]

m

f(GO) :f Ztixi Tm < Zttf (-xi) Tm
i=1

i=1

and
k k
Fo)=f > i [ (T—Tw) | < Y tf () / (Tu — T)
i=m+1 i=m+1
we get (18).

REMARK. If we choose k = 2 in Theorem 2, then Theorem 2 reduce to Theorem 1.
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