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ON THE STABILITY OF HOMOGENEOUS FUNCTIONAL

EQUATIONS WITH DEGREE t AND n –VARIABLES
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Abstract. In this paper, we obtain a generalization of Hyers-Ulam-Rassias stability for the family

of the functional equation f (◦(x1, x2 · · · , xn)) = H
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, where H

is a homogeneous function of degree t and ◦ is an n -times-symmetric operation on the set S .
As a consequence we can obtain the Hyers-Ulam stability.
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