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ON THE STABILITY OF HOMOGENEOUS FUNCTIONAL
EQUATIONS WITH DEGREE ¢ AND n-VARIABLES

GWANG Hur Kim

(communicated by Charles Pearce)

Abstract. In this paper, we obtain a generalization of Hyers-Ulam-Rassias stability for the family
of the functional equation f (o(xy,x3 -+ ,x,)) = H (f (xl)% J(x2) i s f () %) , where H

is a homogeneous function of degree ¢ and o is an n-times-symmetric operation on the set S.
As a consequence we can obtain the Hyers-Ulam stability.

1. Introduction

In 1940, S. M. Ulam [12] raised the following problem for the stability of Cauchy
equations: Given a group G, a metric group G, with a metric d(-,-),andan ¢ > 0,
fixed a & > 0 such that, if f : G, — G, satisfies d(f (xy),f (x)f (y)) < & for all
x,y € Gy, then there exists a homomorphism g : G; — G, such that d(f (x), g(x)) < e
forall x € G;.

In 1941, D. H. Hyers [3] answered this question in the affirmative when G and G,
are Banach spaces. In 1978, Rassias [9] generalized the result of Hyers. This property
is called the Hyers-Ulam-Rassias stability of Cauchy equation. This terminology is also
applied to other functional equations.

Throughout this paper, let S be a nonempty set and G be a multiplicative subsemi-
group of the real or complex field with 1 € G and the property that u’, ui € G forall
u € G andforafixed t > 0. Letf : S — G beafunctionandlet H: Gx---xG — G
be a G-homogeneous function of degree # > 0, that is, H satisfies

H(uuy, ung, -+ uy) = wH(up,ua, -+ uy) (uyug,up, - uy € G) (L.1)

for some fixed natural number 7.
An operation o : § X --- x § — § will be called n -times-symmetric if o satisfies
the following identity:

o [O(xla-x27"' ’_xn)7... 7o(_xh_xz’... ’_xn)]

= O[O(x1>"' ,)C]),O(.Xz"' ,)CQ),"' 7O(xn>"' 7-xn)]~
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Péles, Volkmann and Luce [8] proved the Hyers-Ulam stability for the functional
equation f(xoy) = H(f (x),f(y)) (x,y € S), where o : S x§ — S is a square-
symmetric operation, and H is a continuous G-homogeneous function of degree 1 and
two variables on the set S.

In this paper, we extend the above result to n-variables and homogeneuos of
degree ¢, and obtain a generalization of Hyers-Ulam-Rassias stability for the following
functional equation:

floer,x, ) = H(f () o f ()7, of (0)7) (oo yxm €5). (1.2)
A particular case of (1.2) is the Cauchy functional equation for n-variables
Frtx+dx) =) +f )+ +F0)  (x,-,xmeSs),

where S is a semigroup with the operation + and f : S — C.
As acorollary we obtain the Hyers-Ulam stability and Hyers-Ulam-Rassias stability
for this functional equation without the direct proof.

2. n-times-symmetric operation

In the following result we show that if the equation (1.2) has sufficiently many
solutions then o is necessarily 7 -times-symmetric.

LEMMA 1. Assume that the set of solutions of the functional equation (1.2) sep-
arates the points of S, that is, if u,v € S and u # v, then there exists a solution
f 8 — G of(1.2) suchthat f (u) # f (v). Then the operation o is n-times-symmetric.

Proof. Let x1,x3,+- ,x, € S,andlet f : S — G be an arbitrary solution of (1.2).
Then, using the degree 7-homogeneity of H and (1.2) several times, we obtain

F (ool X2, xa), -+, 0(xr, X2, X))
=H(f(°(x1>x2>“' 7xn))%7"' S (o (er,xp, - - 7xn))%)
=f(0(xl,X2,-~-,xn))H(1,~-~,1)
= H(f ()T of (2) 7o f () ) H(L 1)

:H((f(xl)H(l,~-- 71))%7 (f(xz)H(1,~-~ 71))%’... ,(f(xn)H(l,--- ’1))
:H(H(f(xl)%,-- f () %) H(f(x2)F, - f ( xZ)%)%’...’

H(f () of () )
:H(f(o(x1,~-~,xl))%,f(o(xz,n ) f (0 ()
:f(o 0(x1, -+ x1), 082, -+ s X2), -+ 00k, - ,xn)])-

By the assumption of separability, o is n-times-symmetric. []

~I—
N—

)

The next result describes a set of 7 -times-symmetric operations.
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COROLLARY 1. Let G be a multiplicative subsemigroup of C, let H : G X - -+ X
G — G satisfy (1.1), and let ¢ : S — G be an arbitrary bijective function. Then the
operation o : S X --- x § — § defined by

O(xlax27 e ,Xn) = q)il (H(¢(x1)%7¢(x2)%a e 7¢(xﬂ)%)) (x1’x27 T X € S)
(2.1
is n-times-symmetric.

Proof. Clearly, ¢ is a solution of the functional equation (1.2) (with the operation
o defined in (2.1)). By its injectivity, it separates the points of S. Thus, due to the
previous lemma, o must be an 7 -times-symmetric operation. [

LEMMA 2. Let o be an n-times-symmetric operation on S. Define, for x € §,
the sequence x[n*] (k=0,1,2,---) by

=X, X7 i= o(x[nh], - -, x[HY]), ke N. (2.2)
Then, for each k € N, the mapping x — x[nX] is an endomorphism of (S,0), that is

o(xy, X, -+ ,x,,)[nk] = o(xl[nk},xz[nk}, e ,x,,[nk]) VX1, %2, ,x €S (2.3)

Proof. We prove by induction on k € N. For k = 1, the statement is equivalent
to the n-times-symmetry of the operation o. Assume that (2.3) is true for k. Then,
using (2.2), the n-times-symmetry, and the inductive hypothesis,

o(x1, X2, -+, x,)[n*]
= ofo(x, X2, %) [BX], -+, o(xp, X2, - -+, x) [1F]]
= ofo(xi[n"], -+, x[n"]), -+ o [n], -+ xa[n])]
= ofo(xi[n],- -+, x1[n"]), o(x2[n], - - - axz[”k])w" s o(a[n], - xa[)]
= o(x [7FY], 2 [, - - [ H).

Thus, (2.3) also holds for k+ 1. O

3. A generalization of the Hyers-Ulam-Rassias stability of (1.2)

In this section, let G be a closed multiplicative subsemigroup of C. In each
theorem of this paper, @ and ®; (i = 1,2,3,4) are real mappings from § X --- x S
into G.

We will investigate the generalization of Hyers-Ulam-Rassias stability for the
functional equation (1.2). By using an idea in Gévruta [1], and Pales, Volkmann and
Luce [8] we can obtain the following results:
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THEOREM 1. Let o be an n-times-symmetric operationon S, and H : G X - -+ X
G — G be a continuous G-homogeneous function of degree t suchthat |[H(1,--- ,1)| #

0 and ———— = € G. Assume that a function g : S — G satisfies the inequality

H(L...’])

glo(xr,xa, -, x,)) — H(g(x1)7, g(x2)7,-

5 8(xn) ) < Q(xr, x5 %) (3.1)

forall x;,xp,-- ,x, € 8.
If the function @ satisfies

I R ) N
i ) (32)

lim sup \/(p (x1[p5 1), X [mE =1, - - xp 0K Y)) < |H(L, -+, 1), (3.3)

k—o00

then there exists a unique function f : S — G such that f is a solution of (1.2) and

f(x) —g@)| < Pufx,---,x)  (x€S), (3-4)
here @ ) = S et T e T ) . S
wnere l(x17x2? 7xﬂ) Z |H(1,---,1)|k fora x17x27 7xn 6 .

Proof. We consider the sequence p; defined by

_ O [, xa [nF 1), - g [RRY))
pi(x1, %2, ) X)) = |H(1,--- 1) .
Note that
lim Suppk+l(x17x2’ e 7xn)
koo P(X1,X2,7 7 Xn)
= lim sup Qi [n], xa [, -+ 2 [])
k—o0 (p(XI [nk—l]’xz[nk—l]’ . 7x”[nk—l])‘H(17 e 1)|
1
T lmi x1 [nF =1 xa [k —1] - xp[nk—1]) <1
hknﬂllorolf . l(E’(Xl ['jéjfx[z[nk] - Mr;k ‘H( -, 1)

forall x;,xz, -+ ,x, €S by (3.2). Similarly in case (3.3)

k k—1 k—1 k—1
. . (p(xl[n }7x2[n }7 7xn[n D
lim su kpk X1,X2,++ ,X,) = limsu \/ < 1.
P v ) = linsup H(L,—. 1]
By ratio and root test in each case we see the series @, converges forall x;,xp,--- ,x, €
S, namely it is bounded.
Replacing xi,x;,- -+ ,x, by x in (3.1) and using the degree ¢-homogeneity of H ,
we get
lg(x[n]) —g()H(L, -, D[ < @(x,---,x)  (x€S). (35)

Let x € S be fixed, and replace x by x[n*~!] (defined in Lemma 2) in (3.5).
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Then by Lemma 2 we obtain
gelr')) g™ | _ oG, - xnT)
H(l,--- 1)  H(l,--- D1 T

forall x€ S and k € N.

Let go := g and define, for k£ € N, the function g; by

HilL,- 1 (x€9).
Since

H(l’,l,,’l) € G, g : S — G is a function and, due to (3.6), we have

ai( Z |gk(x) = gk—1(x)]

k=i+1

|g]

o3 o )

k=i+1 D

for j > i > 0. Therefore, by letting i — oo in the last inequality, the sequence g (x)
is a Cauchy sequence for each fixed x € S from the boundedness of @, . Since the set
G is closed, we can define a mapping f : S — G by

Fl) = Jim () (res).
It follows from (3.6) that
k 1] i—1
Q[ - X[ T])
i)~ < 2 ot
e w1 i—1
(p )C 7... ,)C[Vl] D
< :
j:ZI |H(1v71)‘j

=®(x, - ,x).
Taking the limit K — oo, we obtain (3.4)

To see that f satisfies (1.2), replace xy,xa, - - - ,x, by x1[n¥], x2[nk], - -, x,[n*] in
(3.1). Using Lemma 2, we get

8o (e, ) [0]) = H (gLl gl ), gl )

< (P(Xl [nkaZ[nk]’ T ’xn[nk})'

Hence, by the degree 7-homogeneity of H and (3.7)

960 (xr -+ %)) = H(gelxn)F e(xo)

< (p(xl [nk]’xz[nk]7 o

X

: 7gk(xn)%)

: 7xn[”k])
|[—](17 A 71)‘k
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forall x1,xz,---,x, €S and k € N. Taking the limit k — oo, by the continuity of H
and the boundedness of @, it follows that

(o Gaoxa, o 0) = H(FG)Fof () o () )

Thus (1.2) holds.

Assume that & : § — G is an another function which satisfies (1.2) and (3.4).
Since f (x[nf]) = £ (x)H(1,--- , 1)* and h(x[n*]) = h(x)H(1,--- ,1)* from (1.2) for
all x € S and k € N. It follows from (3.4) that

=0 (Xl,)CQ,-'-,XnES).

)~ ()] = ) 7 ()
S ﬁ (1h(x[n"]) — g(x[n])] + |8 (x[n*]) — f (x[n])))
2

S m‘bl(X[n"L~-~ ,x[nk])

PR G ) KSR )
_22 [H(L,---, 1)}

j=k+1

forall x € S and &k € N. By letting k — oo in the preceeding inequality, we
immediately see the uniqueness of f from the boundedness of @®;, and the proof of
theorem is completed. [

THEOREM | ——'. Let o be an n-times-symmetric operation on S, and H :
G x --- x G — G be a continuous G-homogeneous function of degree t such that

1
H(l,---,1 0 and ———=
H(L 1) £0 and ——

( 0 € G. Assume that a function g : S — G satisfies

the inequality (3.1).
Then there exists a unique function f : S — G such that f is a solution of (1.2)

1 ] e — o o [nk71]7X2[nk71]7"' axfl["k71]>
and satisfies (3.4) with ®1(x1,x2, -+ ;%) = Y HOL D < oo for
k=1 ”

all xy,x2,--- ,x, € S.

COROLLARY 2. Let o be an n-times-symmetric operation S, and H: G X --- X

G — G be a continuous G-homogeneous function of degree t suchthat |H(1,--- ,1)| >

1 and m € G. Assume that, for some € > 0, a function g : S — G satisfies

the stabilit); ine(;uality

‘g( © (x17x2a to 7xﬂ)) - H(g(xl)%7g(x2)%7 e ,g(Xn)%) <€ (xlax27 X € S)
(3.8)
Then there exists a function f : S — G such that f is a solution of (1.2) and
&
— K77 €9s).
)-8l < oy 6€ 9

Proof. Apply Theorem 1 with @y (x;,x2,--- ,x,) = €. [
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We say that the operation o has the divisibility property if, for each x € S, there
exists a unique element y € S such that o(y,--- ,y) = x.

THEOREM 2. Let o be an n-times-symmetric operation with the divisibility prop-
ertyon S, and H: G x --- x G — G be a continuous G-homogeneous function of
degree t. Assume that a function g : S — G satisfies the inequaliry (3.1).

If the function @ satisfies

liminf q)(xl [n_k]>x2 [n_k]> % [n_k])

k—oo @(xi[n= %1, xp[n %=1, - xu[n k)| H(L, - 1)) > 1, (3.9)

then there exists a unique function f : S — G such that f is a solution of (1.2) and

f (x) —g(x)| < P2x,---,x)  (x€S), (3.10)
where (Dz(xth, T 7xﬂ) = Z (P(X] [nikaZ[nik]a e axn[nik}”H(la Tty 1)‘k71 for
k=1
all xy,x2,-- ,x, € S.

Proof. The proof of this theorem is analogous to that of Theorem 1. We consider
the sequence p; defined by

pk(x17x2> ce >xn) = q)(xl [n_k}7x2[n_k]7 T 7xn[n_kD|H(17 Tt 1)|k_1'
Note that
hm Suppk+1(x17x27 o 7xn)
k—o0 pk(-xl7-x2> e 7-xn)
—k—1 —k=11 ., k=1
= lim sup (p(xl[n ]k7x2[n - ]7 >xn[nk ])‘H(1> 1)
k—o0 (p(xl[ni ],Xz[l’li }7 7xn[n7 ])
= ! <1
IRTI @[tk [nk], - e [n=K])
L T o e i e e i o VR
forall xi,xz,--- ,x, € S by (3.9).
By ratio test we see the series @, converges for all x;,x2,--- ,x, € S, namely it

is bounded.

It follows from the divisibility assumption that the equation y[n*] = x has a unique
solution y for each fixed x € S and k € N. Denote this unique element y by x[n*].
Clearly, the mapping x — x[n~*] is also an endomorphism of (S, o). Replacing each

x; (i=1,---,n) by x[n7¥] in (3.1), and using the degree 7-homogeneity of H, we
get

g(x[n' ™)) — g(ln T DH(L, - D < @pxfn ], xn7H])  (xe S kEN).
Thus



682 G. H. Kim

for x € S, k € N. Let go := g and define, for k € N, the function g; by

ge(x) == g(xln M PH(L, - 1) (x€S).

Then g, : S — G and, by (3.11), as in the proof of Theorem 1, we can deduce that the

sequence gi(x) is a Cauchy sequence for all fixed x € S from the boundedness of @, .

Define f as the pointwise limit function of the sequence g;. It follows from (3.11)

that (3.10) satisfies by analogous way to that of Theorem 1 by taking the limit k — oo .
We show that f satisfies (1.2). Replace x1,x2, -+ ,x, by x1[n7X], x2[n7¥], -

x,[n¥] in (3.1). Then we get, by an endomorphism of the above mapping x — x[n~ ]

n
‘g(o (X1, X2, - -+ 7xn)[n_k]) _H(g(xl[n_k})%7g(x2[n_k})%>'" ,8(xa[n™ %)

)

g (p(xl [nik]vXZ[nikL e 7xn[n7k])'
Hence, by the definition of g,
‘gk( © (xla-x27 e 7xﬂ)) - H(gk(xl)%7gk(‘x2)%a co ,gk(-xn)%)
< q)(xl [nik}7x2[nik]7 T 7xn[nik})|H(17 T 1)‘k
forall x;,x2,- - ,x, €S, k € N. Taking the limit X — oo, by using the continuity of

H and the boundedness of @, , it follows that

(o s, 0) = H(F ) )t of () )| =

Therefore (1.2) holds and the uniqueness can be proved as similar arguments of Theorem
1. O

THEOREM 2 ——'. Let o be an n-times-symmetric operation with the divisibility
propertyon S, and H : G X --- X G — G be a continuous G-homogeneous function
of degree t. Assume that a function g : S — G satisfies the inequality (3.1).

Then there exists a function f : S — G suchthatfis a solution of (1.2) and satisfies

(Xl,)CQ,-'- ,Xn € S)

(3.10) with @y (x1, X2, , %) = Z ox1[n ), x2[n 7K, xu[n D H(L, - D)
< oo forall xi,xp,--- x5 € 8.

COROLLARY 3. Let o be an n-times-symmetric operations with the divisibility
propertyon S, and H: G X --- x G — G be a continuous G-homogeneous function
of degree t such that |H(1,---,1)| < 1. Assume that, for some € > 0, a function

g : S — G satisfies the inequality (3.8)
Then there exists a function f : S — G such that f is a solution of the equation

(1.2) and
E

If () =g < 7= H(L, -, 1)

Proof. Apply Theorem 2 with @(x1,x2,--- ,x,) = €. O

From the results of Theorem 1 and 2, for the case when S = G, we have the
following corollaries for functional equation

1 1 1
g(H(x[ ,x], - xt)) = H(glx)7,g(x2)7, -+, g(x)

) (xl,x2,~-~,xn€G).
(3.12)
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COROLLARY 4. Let G be a closed multiplicative subsemigroup of C and H :
G x -+ x G — G be a continuous G -homogeneous function of degree t such that

1
H(l.--- .1 - -
HL - )] #0 and s

€ G. Assume that a function g : G — G satisfies

the inequality

‘g(H(xl%axz%f" a-xié)) 7H(g(x1)%7g(x2)%7"' 7g(xﬂ)

)

< (p(x17x2a e 7xn)
(3.13)
forall x;,x3,--- ,x, €G.
Ifthe function @ satisfies one of the conditions (3.2), (3.3), (3.9), then there exists
a unique function f : G — G such that f is a solution of (3.12) and

(Dl(x’... ’x)

By (x, - ) (x € G), (3.14)

vwﬂm<{

where ®1 and ®, are the series in Theorem I and 2.

Proof. In order to apply Theorem 1 or 2, let S := G and o(xj,x2, -+ ,X,) =
H (x ,xz% e ,x,% ) . By Corollary 1, o is a n-times-symmetric operation. In the case
|H(1,---,1)] # 0, the statement of Theorem 1 is fulfilled.

For the application of Theorem 2, it suffices to show that o satisfies the divisibility
assumption. Indeed, for arbitary x € G, we can find that there exists a unique element
¥ € G such thatthe equation x = o(y, - - - , y), whichisequivalentto yH(1,--- ,1) = x.

Since the element H(1,<1~,1) isin G, we have y = ﬁ eG. O

——i

COROLLARY 4 ——'. Let G be a closed multiplicative subsemigroup of C and
H:GXx---xG— G bea continuous G -homogeneous function of degree t such that

1
H(l,---,1 0 and ————
H(1 )] £0 and ———

( ’ ) 1)
the inequality (3.13).
Then there exists a unique function f : G — G such that f is a solution of (3.12),

and satisfies (3.14) with the functions ®; and ®, are the bounded series in Theorem
I ——"and2 ——'.

€ G. Assume that a function g : G — G satisfies

COROLLARY 5. Let G be a closed multiplicative subsemigroup of C, and H :
G X --- X G — G be a continuous G-homogeneous of degree t function such that

1
|H(1,---,1)| # {0,1} and m

€ G. Assume that a function g : G — G
satisfies the inequality

1

)) — H(g(x1)7,g(x2), -, g(xa)7)

SN

1 1
’g(H(-xlt7x2ta"'7xi gﬁ (-xla-x27"'a-xn€G)-

Then there exists a function f : G — G such that f is a solution of the equation
(3.12) and

)~ 80l < gy W € 6)
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Proof. Apply Corollary 4 with @(x;,xp,- - ,x,) = €. Byseparating |H(1,--- ,1)]

> land [H(1,---,1)| <1 for ®(x;,x2,- - ,x,) and @5 (x1,x2,- - - , X,) respectively,
the proof is completed. [

4. Applications to the stability of homogeneous functions

In this section, we shall investigate a generalization of Hyers-Ulam-Rassias stability
of the functional equation

Flo(xt,x2, x)) = arf (x1) + aof (x2) + -+ - + anf (xa). (4.1)
In the case when X = C or X = R these results are also corollaries of Theorems 1 and
2 if one takes the homogeneous function H(xy,x, -+ ,x,) = a1x1 +axxa + - - - + dpXy -

THEOREM 3. Let X be a Banach space over K, where K denotes the field of real
or complex numbers. Let o be an n-times-symmetric operation on S. Let a; € K
(i=1,---,n) suchthat |ay + az + - - - + ay| # 0. Assume that a function g : S — X
satisfies the inequality

lg(o(xr, x2, -+ X)) — (alg(xl)Jrazg(xz) +- -Jrang(xn))\ < Q(x,x2, %) (4.2)

forall x;,x3,-+ ,x, €S.
If the function @ satisfies

s (p(xl[nk_leZ[nk_lL"' 7xn[nk_1D
1 f n 1 4.3
e i, o) TRt el > #3)
or
lim sup {‘/fp(m[n"”LXA"k"L“- [t ]) <lay+ao + -+ ), (4.4)

k—o00

then there exists a unique function f : S — X such that f is a solution of (4.1) and

f (x) =) < @3(x,---,x)  (x€9), (4.5)
here @ ) = 3 et T et T ) S
where ®3(xy,x2, -+ ,Xp) = D PR TR—— forall xi,x,--- ,x, €S.
k=1

Proof. As in the proof of Theorem 1, putting the sequence p; by
kil]axZ[nkilh e a-xn[nkil})

ar+ a2+ - + aul*

P(x1[n

pk(xl7x2a e 7xn) -
In each cases (4.3) and (4.4), appling the ratio test to p; and Ypy as

k =T b1, 1))
lim sup X1,X0, -+ ,Xy) = limsu \/q)(xl[” , X2 , s Xn '
k_mp Prlxi, x ) k—mp lay +ar + - + a)
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We note that the series @3 converges in each case for all xi,x;,--- ,x, € G,
namely it is bounded.
Substituting each x; by x in (4.2),

lg(x[n]) = (a1 + @z + -+ an)g(¥)| < @(x, -+, x). (4.6)
Replacing x by x [2*7!] in (4.6), we get

g(x(n']) g0t ~1)) G e )]

(a1+a2+-~-+an)k (a1+a2+-~-+an)k71 = lar +ax+ - -+ a,f

Let go := g and define, for k € N, the function g; by

ulx) = g(x[n"])
lay +az+-- +ay

7 (xeS).
We can define the function f from the limit of g; . By employing analogous steps
in the proof of Theorem 1 with # = 1, we can get the desired result. [

THEOREM 3 ——'. Let X be a Banach space over K, where K denotes the field of
real or complex numbers. Let o be an n -times-symmetric operation on S. Let a; € K
(i=1,---,n) suchthat |ay + az + - - - + ay| # 0. Assume that a function g : S — X
satisfies the inequality (4.2).

Then there exists a unique function [ : S — X such that f is a solution of (4.1),

k—1 [ k—1

and satisfies (4.5) with ®3(x1,x2, -+ , %) = > oLl ool
=1

D
oo Jor
lai+az+---+an|k < f

all xy,x2,-++ ,x, € S.

COROLLARY 6. Let X be a Banach space over K, where K denotes the field of
real or complex numbers. Let o be an n -times-symmetric operation on S. Let a; € K
suchthat |a; + ax + - - - + a,| > 1. Assume that, for some € > 0 afunction g: S — X
satisfies the inequality

g(o(xt, -, xn)) — (a1g(x1) +azg(x2) + -+ +angln))| <& (x1,2x2,-++ 3y €5).
(4.7)
Then there exists a unique function f : S — X such that f is a solution of (4.1)

and
)

x) —gx)| <
PO = sl S T a1

THEOREM 4. Let X be a Banach space over K, where K denotes the field of
real or complex numbers. Let o be an n-times-symmetric operation on S with the
divisibility property. Consider that a function g : S — X satisfies the inequality (4.2).

If the function @ satisfies

(xes).

.. (p(xl [Vl >x2[n7k]> e 7-xn[n7k])
1 f > 1, 4.8
e [ xa[n kxR e +ar -+ (42)

then there exists a function f : S — X such that f is a solution of (4.1) and

f () = g < Pafx,--- %) (x€S), (4.9)
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where @y (x1,x2,- -+ ,Xy) ioj o1 [n 8, x2[n ), xan ) |an +az -+ anft for
all xy,x2,--- ,x, € S. !

Proof. Putting the sequence p; by
4]

pr(x1, X2, %) = @(xi[n ], a7 ], x T )] Faz e+ a T

As in the proof of Theorem 2, we note that the series @4 converges for all

X1,X2, -+ , X, € S, namely it is bounded.
Replacing each x; by x[n*] in (4.2), by an endomorphism of the mapping
x — x[n~¥], we have
g (xln' ™)) = (a1 + a2 + -+ + an)g(xn™ )| < @xfn ™", x[n 7))

(x € S,k eN).
Thus we find that, forall x € § and k € N,
gl M) (a1 +az + - + @)t = g(xn (@ + @+ -+ an)|
<o, xn M) |ar +ar+ -+ @[T (410)
Let go := g and define, for k € N, the function g; by
a(x) = gx[n M )]ar +ax + -+ a (xeSs).

We can define the function f from the limit of g .
Now, using (4.10), an analogous arguments such as Theorem 2 with ¢t = 1 shows
that f satisfies the desired conditions of this theorem. [J

THEOREM 4 ——'. Let X be a Banach space over K, where K denotes the field
of real or complex numbers. Let o be an n-times-symmetric operation on S with the
divisibility property. Assume that a function g : S — X satisfies the inequality (4.2).

Then there exists a function f : S — X such that [ is a solution of (4.1),

and satisfies (4.9) with ®4(x1,%2,- - , %) = > @(x] [n*k]’xz[n*k], oo 7xn[n*k])‘m +
k=1
ay -+ a,|f7! < oo forall x1,xy,-++ ,x, €8.

COROLLARY 7. Let X be a Banach space over K, where K denotes the field of real
or complex numbers. Let S be anonempty set and o be an n -times-symmetric operation
on S with the divisibility property. Let a; € K such that |a; + az + -+ a,| < 1.
Assume that, for some € > 0, a function g : S — X satisfies the inequality (4.7). Then
there exists a function f : S — X such that f is a solution of (4.1) and

IF (x) — ()| < °

Sl—|afay+ -+ a

(x€S).

From the results of Theorem 3 and 4, for the case when S = G, we have the
following corollaries for functional equation

glawxy +axxa + -+ anxy) = a1g(x1) + axg(x2) + - - - + ang(x,). (4.11)
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COROLLARY 8. Let G be a closed multiplicative subsemigroup of C and H : G x

-++XG — G be acontinuous G -homogeneous function such that |a;+ax+- - -+a,| # 0

1
and € G. Assume that a function g : G — G satisfies the
ay+ax+---+a
inequality

|g(a1x1 +axxy + -+ anxn) - (alg(xl) + azg(xz) et a,,g(x,,))|

(4.12)
< (P(xl7x2>"' 7-xi’l)

forall x1,xp,-+ ,x, €G.
Ifthe function @ satisfies one of the conditions (4.3), (4.4), (4.8), then there exists
a unique function f : G — G such that f is a solution of (4.11) and

CD:;()C,"' ’x)

Da(x, - %) (x €G), (4.13)

vwﬂm<{

where the functions ®3 and @4 are the series in Theorem 3 and 4.

Proof. Apply an analogous argument such as the proof of Corollary 4 with Theorem
3or4. O

COROLLARY 9. Let X be a Banach space over K, where K denotes the field of
real or complex numbers. Let H : X X --- x X — X be a continuous homogeneous
function. Let a; € K such that |a; + a; + -+ + a,| # 0. Assume that a function
g : X — X satisfies the inequality (4.12).

Then there exists a unique function f : X — X such that f is a solution of (4.11)
and satisfies (4.13) with the functions ®, and ®, are the bounded series in Theorem
3——',4—-.

COROLLARY 10. Let X be a Banach space over K, where K denotes the field of
real or complex numbers. Let H : X X --- x X — X be a continuous homogeneous
function. Let a; € K such that |ay + ax + - - - + ay| # {0,1}. Assume that a function
g : X — X satisfies the inequality

lg(aix) + axxa + -+ + anxy) — (a18(x1) + a2g(x2) + -+ + ang(xa))| < €

forall x;,x3,--+ ,x, € X.
Then there exists a unique function f : X — X such that f is a solution of (4.7)
and

£
x) —gx)| < x € X).
) =60 € e (€N
REMARK. If we apply @i (x1,x2,- - ,x,) = O(|x1|" + |x2|" + -+ - + |x,]|") into our

results, then from them we can obtain the Hyers-Ulam-Rassias stability.
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