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A–STATISTICAL CONVERGENCE OF APPROXIMATING OPERATORS

O. DUMAN, M. K. KHAN AND C. ORHAN

(communicated by N. Elezović)

Abstract. In this paper we provide various approximation results concerning the classical Ko-
rovkin theorem via A -statistical convergence. We also study the rates of A -statistical conver-
gence of approximating positive linear operators and give some examples.

1. Introduction

Approximation theory has important applications in the theory of polynomial
approximation, in various areas of functional analysis,numerical solutions of differential
and integral equations [1], [4], [12], [17]. Most of the classical approximation operators
tend to converge to the value of the function being approximated. However, at points
of discontinuity, they often converge to the average of the left and right limits of
the function. There are, however, some sharp exceptions such as the interpolation
operator of Hermite-Fejer (see [2]). These operators do not converge at points of simple
discontinuity. For such a misbehavior, the matrix summability methods of Cesáro type
are strong enough to correct the lack of convergence (see [3]). The Cesáro summability
method also corrects Gibbs phenomenon of some non-positive approximation operators
such as the partial sums of Fourier series (see [18], [22], [23]). In recent years another
formof regular (non-matrix) summability transformationhas shown to be quite effective
in “summing” non-convergent sequences which may have unbounded subsequences [7],
[8]. The aim of this paper is to investigate their use in approximation theory settings.

Let K be a subset of N , the set of all natural numbers. The density of K is defined

by δ(K) := lim
n

1
n

n∑
k=1

χK(k) provided the limit exists, where χK is the characteristic

function of K . A sequence x := (xk) is called statistically convergent to a number L
if, for every ε > 0 , δ{k ∈ N : |xk − L| � ε} = 0 [6] (also see [8]). Let A := (ank) ,
n, k = 1, 2, . . . , be an infinite summability matrix. For a given sequence x := (xk) , the
A -transform of x , denoted by Ax := ((Ax)n) , is given by

(Ax)n =
∞∑
k=1

ankxk,
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provided the series converges for each n . We say that A is regular if lim
n

(Ax)n = L

whenever lim x = L [14]. Assume now that A is a non-negative regular summability
matrix. A sequence x = (xk) is called A -statistically convergent to L provided that
for every ε > 0 ,

lim
n

∑
k:|xk−L|�ε

ank = 0.

We denote this limit by stA − lim x = L [7] (also see [5], [11], [16], [21]).
Recently some Korovkin type approximation theorems have been studied via sta-

tistical convergence in [13]. In the followingwe will consider the analogs of the classical
Korovkin theorem via A -statistical convergence by using an arbitrary interval of R .
Furthermore, we examine some A -statistical rates of convergence of positive linear
operators.

2. A -Statistical convergence of positive linear operators

In this section, using A -statistical convergence,we prove a Korovkin type theorem
on an arbitrary interval of R . Throughout I will be an interval of R , and C(I) will
be the linear space of all real-valued continuous functions on I . If we take I = [a, b] ,
then C(I) is a Banach space with norm ‖f ‖C[a,b] := sup

x∈[a,b]
|f (x)| , for f ∈ C[a, b] . Let

g be a non-negative increasing function on [0,∞) with g(0) = 1 , then the set Cg(I)
is given by

Cg(I) :=

⎧⎨
⎩f ∈ C(I) : lim

|x|→∞
x∈I

|f (x)|
[g(|x|)]c = 0 for any c > 0

⎫⎬
⎭ .

When I = [a, b] , our notation Cg(I) will stand for C[a, b] with g(x) ≡ 1 . It is clear
that Cg(I) is a linear space. We will be concerned with Korovkin type results dealing
with the problem of approximating a function f by a sequence {Ln(f , x)} of positive
linear operators over Cg(I) (see, for instance, [15]). With this terminology the classical
Korovkin theorem shows that:

“Let {Ln} be a sequence of positive linear operators from C[a, b] into C[a, b].
Then the following two statements are equivalent:

(i) lim
n

‖Ln(f , x) − f (x)‖C[a,b] = 0 for all f ∈ C[a, b] .

(ii) lim
n

‖Ln(f i, x) − f i(x)‖C[a,b] = 0 for i = 0, 1, 2 where f 0(y) = 1 , f 1(y) = y

and f 2(y) = y2 .”
If I is an arbitrary interval of R and if we apply A -statistical limit operator instead

of limit operator in the Korovkin theorem, then we may conclude the following analogs.

THEOREM 1. Let I be an arbitrary interval of R . For an x ∈ I, let {μn,x : n � 1}
be a collection of measures defined on (I,B) , where B is the sigma field of Borel
measurable subsets of I. Let g be a function such that f 2(y) = y2 is in Cg(I) and for
any δ > 0, sup

n∈N

∫
I \Iδ

g(|y|)dμn,x(y) < ∞, where Iδ := [x− δ, x + δ ]∩ I . Let {Ln} be
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defined by

Ln(f , x) =
∫
I

f (y)dμn,x(y), n ∈ N and f ∈ Cg(I).

Let A = (ank) be a non-negative regular summability matrix. Then the following two
statements are equivalent:

(i) stA − lim
n
|Ln(f , x) − f (x)| = 0 for all f ∈ Cg(I) .

(ii) stA − lim
n

|Ln(f i, x) − f i(x)| = 0 for i = 0, 1, 2 where f 0(y) = 1 , f 1(y) = y

and f 2(y) = y2 .

Proof. The implication (i) ⇒ (ii) is clear. So we will prove the implication
(ii) ⇒ (i) . Let f ∈ Cg(I) and fix x ∈ I . Since f is continuous on I , for every
ε > 0 there exists a real number δ > 0 such that |f (y) − f (x)| < ε for y satisfying
|x − y| � δ . Now we can write

|f (y) − f (x)| = |f (y) − f (x)| χIδ (y) + |f (y) − f (x)| χI \Iδ (y).

Using this, positivity and linearity of the operator, we get

|Ln(f , x) − f (x)| = |Ln(f − f (x)f 0, x) − f (x)(Ln(f 0, x) − f 0(x))|
� Ln(|f − f (x)f 0| , x) + |f (x)| |Ln(f 0, x) − f 0(x)|
=

∫
Iδ

|f (y) − f (x)| dμn,x(y) +
∫

I \Iδ

|f (y) − f (x)| dμn,x(y)

+ |f (x)| |Ln(f 0, x) − f 0(x)|
� ε

∫
I

dμn,x(y) + |f (x)| |Ln(f 0, x) − f 0(x)|

+
∫

I \Iδ

|f (y) − f (x)| dμn,x(y)

= εLn(f 0, x) − εf 0(x) + εf 0(x) + |f (x)| |Ln(f 0, x) − f 0(x)|
+

∫
I \Iδ

|f (y) − f (x)| dμn,x(y).

So we have the inequality

|Ln(f , x) − f (x)| � ε + (ε + |f (x)|) |Ln(f 0, x) − f 0(x)|
+

∫
I \Iδ

|f (y) − f (x)| dμn,x(y). (1)

It follows from the Cauchy-Bunyakowsky-Schwarz inequality that
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∫
I \Iδ

|f (y) − f (x)| dμn,x(y) =
∫

I \Iδ

χI \Iδ (y) |f (y) − f (x)| dμn,x(y)

�

⎡
⎣∫

I

χI \Iδ (y)dμn,x(y)

⎤
⎦

1
p
⎡
⎢⎣

∫
I \Iδ

|f (y) − f (x)|q dμn,x(y)

⎤
⎥⎦

1
q

where 1
p + 1

q = 1 and p > 1 . By hypothesis and the definition of the function g we
conclude that f ∈ Cg(I) implies f q ∈ Cg(I) and also that there exists a number K
such that ⎡

⎢⎣
∫

I \Iδ

|f (y) − f (x)|q dμn,x(y)

⎤
⎥⎦

1
q

< K. (2)

Now define the function ϕ : I → R by ϕ(y) = (y−x)2

δ 2 , so we have

μn,x(I\Iδ ) =
∫
I

χI \Iδ (y)dμn,x(y)

�
∫
I

ϕ(y)dμn,x(y)

=
1
δ 2

[
(Ln(f 2, x) − f 2(x)) − 2x(Ln(f 1, x) − f 1(x)) + x2(Ln(f 0, x) − f 0(x))

]
.

Using the inequality |x + y|α � |x|α + |y|α for each α ∈ (0, 1] , we have

[μn,x(I \Iδ )]
1
p � 1

δ
2
p

{
x

2
p |Ln(f 0, x) − f 0(x)|

1
p + 2

1
p |x| 1

p |Ln(f 1, x) − f 1(x)|
1
p

+ |Ln(f 2, x) − f 2(x)|
1
p

}
. (3)

Combining (1) with (2) and (3) we conclude that

|Ln(f , x) − f (x)| � ε + (ε + |f (x)|) |Ln(f 0, x) − f 0(x)| + K

δ
2
p

{
x

2
p |Ln(f 0, x) − f 0(x)|

1
p

+2
1
p |x| 1

p |Ln(f 1, x) − f 1(x)|
1
p + |Ln(f 2, x) − f 2(x)|

1
p

}
.

Taking B(x) := max

{
ε + |f (x)| , K

δ
2
p
, K

(
|x|
δ

) 2
p
, K

(
2|x|
δ 2

) 1
p
}

, we have

|Ln(f , x) − f (x)| � ε + B(x)
{
|Ln(f 0, x) − f 0(x)| + |Ln(f 0, x) − f 0(x)|

1
p

+ |Ln(f 1, x) − f 1(x)|
1
p + |Ln(f 2, x) − f 2(x)|

1
p

} (4)

for each n ∈ N . Given r > 0 , choose ε > 0 such that ε < r . Define
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D :=
{

n : |Ln(f 0, x) − f 0(x)| + |Ln(f 0, x) − f 0(x)|
1
p + |Ln(f 1, x) − f 1(x)|

1
p

+ |Ln(f 2, x) − f 2(x)|
1
p � r − ε

B(x)

}
,

D1 :=
{

n : |Ln(f 0, x) − f 0(x)| � r − ε
4B(x)

}
,

D2 :=
{

n : |Ln(f 0, x) − f 0(x)|
1
p � r − ε

4B(x)

}
,

D3 :=
{

n : |Ln(f 1, x) − f 1(x)|
1
p � r − ε

4B(x)

}
,

D4 :=
{

n : |Ln(f 2, x) − f 2(x)|
1
p � r − ε

4B(x)

}
.

Then it is easy to see that D ⊂ D1 ∪ D2 ∪ D3 ∪ D4. Thus (4) yields that∑
k:|Lk(f ,x)−f (x)|�r

ank �
∑
k∈D

ank �
∑
k∈D1

ank +
∑
k∈D2

ank +
∑
k∈D3

ank +
∑
k∈D4

ank

and taking limit as n → ∞ part (i) follows. �
An argument similar to the above proof leads to the following

COROLLARY 2. If I is a closed and bounded interval, then the following statements
are equivalent:

(i) stA − lim
n

‖Ln(f , x) − f (x)‖C[a,b] = 0 for all f ∈ C[a, b].

(ii) stA − lim
n

‖Ln(f i, x) − f i(x)‖C[a,b] = 0 for f i(x) = xi , i = 0, 1, 2 .

Furthermore, when A is replaced by the identity matrix one obtains the classical
Korovkin theorem.

3. Rates of A -statistical convergence

In the classical summability settings rates of summation have been introduced in
several ways (see for instance, [9], [19], [20]). The concept of statistical rates of con-
vergence, for nonvanishing two null sequences, is studied in [10]. In this section we
introduce various ways of defining rates of convergence in the A -statistical sense. Un-
fortunately no single definition seems to have become the “standard” for the comparison
of rates of summability transforms. The situation becomes even more uncharted when
one considers rates of A -statistical convergence. In this section our aim is to propose
several different ways one may define rates of A -statistical transforms.

DEFINITION 1. Let A = (ank) be a non-negative regular summability matrix and
let (an) be a positive non-increasing sequence. We say that the sequence x = (xk) is
A -statistically convergent to the number L with the rate of o(an) if for every ε > 0 ,

lim
n

1
an

∑
k:|xk−L|�ε

ank = 0.
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In this case we write

xk − L = stA − o(ak), (as k → ∞).

DEFINITION 2. Let the matrix A = (ank) and the sequence (an) be the same as in
Definition 1. We say that the sequence (xk) is A -statistically bounded with the rate of
O(an) if for every ε > 0 ,

sup
n

1
an

∑
k:|xk|�ε

ank < ∞.

In this case we write
xk = stA − O(ak), (as k → ∞).

In the above two definitions the “rate” is more controlled by the entries of the
summability method rather than the terms of the sequence (xk) . For instance, when
one takes the identity matrix I , if ann = o(an) then xk − L = stA − o(ak) for any
convergent sequence (xk − L) regardless of how slowly it goes to zero. To avoid such
an unfortunate situation one may borrow the concept of convergence in measure from
measure theory to define the rate of convergence as follows.

DEFINITION 3. Let the matrix A = (ank) and the sequence (an) be the same as in
Definition 1. We say that the sequence (xk) is A -statistically convergent to L with the
rate of om(an) if for every ε > 0 ,

lim
n

∑
k:|xk−L|�εak

ank = 0.

In this case we write

xk − L = stA − om(ak), (as k → ∞).

DEFINITION 4. Let the matrix A = (ank) and the sequence (an) be the same as in
Definition 1. We say that the sequence (xk) is A -statistically bounded with the rate of
Om(an) if for there is a positive number M such that

lim
n

∑
k:|xk|�Mak

ank = 0.

In this case we write
xk = stA − Om(ak), (as k → ∞).

It is perhaps possible to define more variants of the above definitions. Instead of
presenting an exhaustive list, we will now show that, as far as approximation theory
is concerned, all four definitions lead to analogous results. For this purpose, first let
us mention a few standard concepts from approximation theory. Let f ∈ C(I) . The
modulus of continuity of f , denoted by w(f , δ), is defined to be

w(f , δ) = sup
x,y∈I

|x−y|< δ

|f (x) − f (y)| .

The modulus of continuity of the function f in C(I) gives the maximum oscillation of
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f in any interval of length not exceeding δ > 0 . It is well known that a necessary and
sufficient condition for a function f ∈ C[a, b] is

lim
δ→0

w(f , δ) = w(f , 0) = 0.

It is also well known that for any constants c > 0 , δ > 0 ,

w(f , cδ) � (1 + [c])w(f , δ) (5)

where [c] is defined to be the greatest integer less than or equal to c .
We will need the following lemma.

LEMMA 3. Let x = (xk) and y = (yk) be two sequences. Assume that A = (ank)
is a non-negative regular summability matrix. Let (an) and (bn) be positive non-
increasing sequences. If for some real numbers L1, L2 , we have xk − L1 = stA − o(ak)
and yk − L2 = stA − o(bk) as k → ∞ , then the following hold:

(i) (xk − L1) ± (yk − L2) = stA − o(ck) ,
(ii) (xk − L1)(yk − L2) = stA − o(ck)

where cn = max{an, bn} . Similar conclusions hold with little “o” replaced by big
“O”.

Proof. (i) Using hypothesis we see that

1
cn

∑
k:|(xk−L1)±(yk−L2)|�ε

ank � 1
an

∑
k:|xk−L1|� ε

2

ank +
1
bn

∑
k:|yk−L2|� ε

2

ank

from which the result follows immediately.
(ii) Apply the fact that if αβ � ε , then α �

√
ε

2 or β �
√
ε

2 for any α ,
β � 0 . �

The above proof can easily be modified to prove the following analog.

LEMMA 4. Let x = (xk) and y = (yk) be two sequences. Assume that A = (ank)
is a non-negative regular summability matrix. Let (an) and (bn) be positive non-
increasing sequences. If for some real numbers L1, L2 , we have xk −L1 = stA −om(ak)
and yk − L2 = stA − om(bk) as k → ∞ , then the following hold:

(i) (xk − L1) ± (yk − L2) = stA − om(ck) , where ck = max {ak, bk}.
(ii) (xk − L1)(yk − L2) = stA − om(akbk)

Similar conclusions hold with little “om ” replaced by big “Om ”.

Now we will find the rates of A -statistical convergence of the sequence of positive
linear operators in Theorem 1.

THEOREM 5. Let I be an arbitrary interval of R . For an x ∈ I , let {μn,x : n � 1}
be a collection of measures defined on (I,B) . Let g be a function such that f 2(y) = y2 is
in Cg(I) and for any δ > 0 , sup

n∈N

∫
I \Iδ

g(|y|)dμn,x(y) < ∞, where Iδ := [x−δ, x+δ ]∩I .

Let {Ln} be defined by

Ln(f , x) =
∫
I

f (y)dμn,x(y), n ∈ N and f ∈ Cg(I).



696 O. DUMAN, M. K. KHAN AND C. ORHAN

Suppose that A = (ank) is a non-negative regular summability matrix and assume the
operators Ln satisfy the conditions

(i) Ln(f 0, x) − f 0(x) = stA − o(an(x)) with f 0(y) = 1 ,
(ii) w(f ,αn(x)) = stA − o(bn(x)) with αn(x) =

√
Ln(ϕx, x), and ϕx(y) =

(y − x)2 ,
where (an(x)) and (bn(x)) are positive non-increasing sequences. Then

Ln(f , x) − f (x) = stA − o(cn(x)), as n → ∞,

where cn(x) = max {an(x), bn(x)} . Similar results hold when little “o” is replaced by
big “O”.

Proof. Using the definition of Ln(f , x) and applying (5), for any δ > 0 we have

|Ln(f , x) − f (x)| =

∣∣∣∣∣∣
∫
I

f (y)dμn,x(y) − f (x)

∣∣∣∣∣∣
�

∫
I

|f (y) − f (x)| dμn,x(y) + |f (x)| |Ln(f 0, x) − f 0(x)|

�
∫
I

w

(
f , δ

|y − x|
δ

)
dμn,x(y) + |f (x)| |Ln(f 0, x) − f 0(x)|

�
∫
I

(
1 +

[ |y − x|
δ

])
w(f , δ)dμn,x(y) + |f (x)| |Ln(f 0, x) − f 0(x)| .

Therefore

|Ln(f , x) − f (x)| � w(f , δ)
∫
I

(
1 +

ϕx(y)
δ 2

)
dμn,x(y) + |f (x)| |Ln(f 0, x) − f 0(x)|

� w(f , δ)
{

Ln(f 0, x) +
Ln(ϕx, x)

δ 2

}
+ |f (x)| |Ln(f 0, x) − f 0(x)| .

Put δ = αn(x) :=
√

Ln(ϕx, x) , so we get

|Ln(f , x) − f (x)| � w(f ,αn(x)){1 + Ln(f 0, x)} + |f (x)| |Ln(f 0, x) − f 0(x)|
� 2w(f ,αn(x)) + w(f ,αn(x)) |Ln(f 0, x) − f 0(x)|

+ |f (x)| |Ln(f 0, x) − f 0(x)| . (6)

Given ε > 0 , by (6) we have

1
cn(x)

∑
k:|Lk(f ,x)−f (x)|�ε

ank

� 1
bn(x)

∑
k:2w(f ,αk(x))� ε

3

ank +
1

cn(x)

∑
k:w(f ,αk(x))|Lk(f 0,x)−f 0(x)|� ε

3

ank

+
1

an(x)

∑
k:|f (x)||Lk(f 0,x)−f 0(x)|� ε

3

ank.
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Now conditions (i) , (ii) and Lemma 3 yield the proof. �

The following analog also holds.

THEOREM 6. Let I be an arbitrary interval of R . For an x ∈ I , let {μn,x : n � 1}
be a collection of measures defined on (I,B) . Let g be a function such that f 2(y) = y2 is
in Cg(I) and for any δ > 0 , sup

n∈N

∫
I \Iδ

g(|y|)dμn,x(y) < ∞ , where Iδ := [x−δ, x+δ ]∩I .

Let {Ln} be defined by

Ln(f , x) =
∫
I

f (y)dμn,x(y) , n ∈ N and f ∈ Cg(I).

Suppose that A = (ank) is a non-negative regular summability matrix and assume the
operators Ln satisfy the conditions

(i) Ln(f 0, x) − f 0(x) = stA − om(an(x)) with f 0(y) = 1 ,
(ii) w(f ,αn(x)) = stA − om(bn(x)) with αn(x) =

√
Ln(ϕx, x) , and ϕx(y) =

(y − x)2 ,
where (an(x)) and (bn(x)) are positive non-increasing sequences. Then

Ln(f , x) − f (x) = stA − om(cn(x)), as n → ∞,

where cn(x) = max {an(x), bn(x), an(x)bn(x)} . Similar results hold when little “om ”
is replaced by big “Om ”.

4. Concluding remarks

In this section, we first explain what type of positive linear approximation oper-
ators may have the property that they are not convergent to the function, and yet they
are A -statistically convergent. Then we discuss A -statistical rates for some classical
approximation operators.

Let Pn(f , x) be a positive linear operator which can be decomposed as follows

Pn(f , x) = An(f , x) + un(x) Bn(f , x),

where An(f , x) is convergent to f (x) pointwise (or norm-wise), and Bn(f , x) is
bounded in n pointwise (or norm-wise) and un(x) is pointwise (or norm-wise) A -
statistically null sequence. Then Pn(f , x) will be A -statistically convergent pointwise
(or norm-wise). To show how one can easily construct such operators, first note that
if A = (ank) is a non-negative regular matrix such that lim

n
max

k
|ank| = 0 , then A -

statistical convergence is stronger than convergence [16]. Assume now that (un) is an
A -statistically null sequence but not convergent. Without loss of generality we may
assume that (un) is a non-negative; otherwise we would replace (un) by (|un|) . Now
define (Pn) on C[a, b] by Pn(f , x) = (1 + un)Ln(f , x) where (Ln) is the sequence
of positive linear operators in the Korovkin theorem. Now observe that (Ln) being
convergent and (un) being A -statistically null, their product will also be A -statistically
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null. Hence (Pn) will not be convergent to f but will be A -statistically convergent to
f .

Now we provide an example showing the A -statistical rate of convergence of
some classical approximation operators. Consider a sequence of positive linear oper-
ators Ln(f , x) over I = [a, b] obeying the conditions of Korovkin’s theorem such as
the classical positive linear approximation operators among which the Bernstein poly-
nomials operator is a typical prototype. In this case we get the following A -statistical
rate.

COROLLARY 7. If a sequence of operators (Ln) obeys the conditions of Korovkin’s
theorem then we have

‖Ln(f , x) − f (x)‖C[a,b] = stA − O

(
1
n

)
for all f ∈ C[a, b]

where A is the Cesáro summability method.

Proof. The result follows from the fact that Ln(f ) converges to f implying that
for any ε > 0 , the inequality ‖Ln(f ) − f ‖C[a,b] > ε takes place for at most finitely
many values of n . �

Again we may obtain analogs of the above result if we use the other definitions
of rates of convergence. Similar results could be stated in terms of pointwise limits of
some positive linear operators that are defined over Cg(I) when I is an unbounded
interval. We omit the straight forward details.

In the end we should remark that our primary focus dealt with positive linear
operators. However A -statistical convergence concept could be used for nonpositive
approximation operators such as the Dirichlet operator for 2π -periodic functions. It
is a well known fact that the Fejer kernel, being the Cesaro summability transform of
the Dirichlet kernel, is able to correct the lack of convergence behavior of the Dirichlet
operator. It is still an open question as to how useful is the A -statistical summability
concept in correcting the lack of convergence of such nonpositive operators.
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