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Abstract. In this article we characterize an inequality resulted from the chaotic order of two
operators on a Hilbert space in terms of Heinz-Kato-Furuta-type inequalities. Consequently,
some new characterizations of the weaker version for the Löwner-Heinz inequality are obtained.
Finally we introduce the notion of high-order Cauchy-Schwarz inequalities, and its applications
are given.

1. Notations and introduction

In what follows the capital letters mean bounded linear operators on a Hilbert space
H . By a positive operator T (written T � O) we mean (Tx, x) � 0 for all x ∈ H. If
S and T are selfadjoint, we write T � S in case T − S � O. T = U|T| is the polar
decomposition of T with U the partial isometry, and |T| the positive square root of the
positive operator T∗T. We write T > O if T is invertible and T � O. For A, B > O we
denote as usual the chaotic order log A � log B of A and B by A � B in short, which
is clearly weaker than the condition that A � B. It is known that Ando’s characterization
of the chaotic order [1] was generalized in [4], and a different proof without using Ando’s
result was shown in [7]. In this article we present characterizations of the chaotic order of
A and B in terms of Heinz-Kato-Furuta-type inequalities. Consequently, we obtain new
characterizations of the Löwner-Heinz inequality under a weaker condition. Related
log -hyponormal operators and p -hyponormal operators are discussed. Finally, we
introduce the notion of high-order Cauchy-Schwarz inequalities, and its applications
are given.

2. Basic results

We shall start with three lemmas below as basic tools.

LEMMA 1. Let T = U|T| be the polar decomposition of T and r > 0. Then
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(i) U∗U|T|r = |T|r .
(ii) |T∗|r = U|T|rU∗.

Proof. The proof can be found in [2] by a straightforword verification.

LEMMA 2. For any x, y, z ∈ H the following statements are equivalent:
(1) |(x, y)| �‖ x ‖‖ y ‖ (Cauchy-Schwarz inequality);
(2) 2|(z, x)(x, y)| �‖ x ‖2 [‖ y ‖‖ z ‖ +|(z, y)|].
Proof. (1)⇒ (2). In (1) replace x by ∇ = 2(z, x)x− ‖ x ‖2 z and notice that

‖ ∇ ‖=‖ x ‖2‖ z ‖, since

‖ ∇ ‖2 = (2(z, x)x− ‖ x ‖2 z, 2(z, x)x− ‖ x ‖2 z)

= 4|(z, x)|2 ‖ x ‖2 −2|(z, x)|2 ‖ x ‖2 −2|(z, x)|2 ‖ x ‖2 + ‖ x ‖4‖ z ‖2

=‖ x ‖4‖ z ‖2 .

Hence, from (1) we have

|(2(z, x)x− ‖ x ‖2 z, y)| = |(2(z, x)(x, y)− ‖ x ‖2 (z, y)|
�‖ x ‖2‖ y ‖‖ z ‖,

and (2) follows.
(2)⇒ (1). Just let z = x in (2).

LEMMA 3. For A, B > O, A � B if and only if B−1 � A−1.

Proof. (⇒ ) First we consider the case log A > log B. Equivalently, there exists
α ∈ (0, 1] such that Aα > Bα by [7, Corollary 2]. So, B−α > A−α . It follows that
B−α > A−α + δ for some δ > 0. Therefore,

α log B−1 = log B−α � log(A−α + δ) > log A−α = α log A−1.

Hence, log B−1 > log A−1. The case log A = log B is now trivial.
(⇐ ) By similar arguments, and the proof is finished.
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Recall the Furuta inequality [3]: If A � B � O, then for each r � 0,

(i) A
p+r
q � (Ar/2BpAr/2)

1
q
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and
(ii) (Br/2ApBr/2)

1
q � B

p+r
q

hold for p � 0 and q � 1 with (1 + r)q � p + r.
In fact, without loss of generality we may assume that A, B > O with A � B > O

in the Furuta inequality. Also, assuming that p � 1 is sufficient, since (i) and (ii) hold
for 1 � p � 0 by the Löwner-Heinz inequality, namely, if A � B � O, then Aα � Bα

for α ∈ [0, 1]; but the inequality does not hold in general for α > 1. Yet, a weaker
condition (use A � B, instead of A � B � O) for the Furuta inequality is possible as
shown next.

Recall a result with weaker condition due to Fujii et al. [7, Theorem 5]: For
A, B > O, A � B if and only if (i) in the Furuta inequality holds for p � 0, q � 1
and r � 0 such that rq � p+ r. It is essential to distingush conditions between the two
results above; one is (1 + r)q � p + r in the original Furuta inequality and the other is
rq � p + r. Correspondingly, for (ii) of the Furuta inequality we have the next result.

COROLLARY 1. For A, B > O, A � B if and only if (ii) in the Furuta inequality
holds for p � 0, q � 1 and r � 0 such that rq � p + r.

Proof. By hypothesis and Lemma 3 we have B−1 � A−1. It follows from above
remark and (i) that

B− p+r
q � (B−r/2A−pB−r/2)

1
q .

The required inequality follows by taking inverses of the inequality above. The converse
is trivial now.

COROLLARY 2. For A, B > O, if A � B , then

(Br/2ApBr/2)
αr
p+r � Bαr

holds for r > 0, p � 0 and α ∈ [0, 1].

Proof. If A � B, then by Corollary 1 the inequality (Br/2ApBr/2)
1
q � B

p+r
q holds

for p � 0, q � 1 and r � 0 such that rq � p + r. Let r > 0, α ∈ (0, 1] and
q = p+r

αr . Then q � 1 and rq = p+r
α � p + r > 0. It follows that the inequality

(Br/2ApBr/2)
αr
p+r � Bαr holds for r > 0, p � 0 and α ∈ (0, 1]. But if α = 0, our

inequality becomes a trivial case I � I, the identity operator. So, we conclude that
α ∈ [0, 1].

3. Characterizations of inequality resulted from chaotic order

The next result is characterizations of the inequality from Corollary 2 in terms of
Heinz-Kato-Furuta-type inequalities [5], i.e., inequalities of types (2), (3) and (4) in
Theorem 1 below.

THEOREM 1. Assume A, B > O, then the following statements hold and they are
equivalent:
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(1) If log A � log B, then

(Br/2ApBr/2)
αr
p+r � Bαr

for r > 0, p � 0 and α ∈ [0, 1];
(2) For an invertible operator T such that log A2 � log |T|2 and log B2 �

log |T∗|2,

|(T|T|αr+βs−1x, y)|2 � ((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y)

for all x, y ∈ H, p, q, r, s > 0 and α, β ∈ [0, 1] with αr + βs � 1;
(3) For an invertible operator T such that log A2 � log |T|2 and log B2 �

log |T∗|2,

|(|T|2αrz, x)(T|T|αr+βs−1x, y)|
� ((|T|rA2p|T|r) αr

p+r x, x)((|T∗|sB2q|T∗|s) βs
q+s y, y)1/2 · ((|T|rA2p|T|r) αr

p+r z, z)1/2

for all x, y, z ∈ H, p, q, r, s > 0 and α, β ∈ [0, 1] with αr + βs � 1;
(4) For an invertible operator T such that log A2 � log |T|2 and log B2 �

log |T∗|2,

|(|T|2αrx, x)(T|T|αr+βs−1x, y)|
� ((|T|rA2p|T|r) αr

p+r x, x)3/2((|T∗|sB2q|T∗|s) βs
q+s y, y)1/2

for all x, y ∈ H, p, q, r, s > 0 and α, β ∈ [0, 1] with αr + βs � 1.

Proof. Note that (1) holds true due to Corollary 2. We shall use the following
substitutions: In Lemma 2 replace x by U|T|αrx, y by |T∗|βsy, and z by U|T|αrz,
and then use Lemma 1 to simplify relations. More precisely,

|(U|T|αrx, |T∗|βsy)| = |(U|T|αr+βsx, y)| = |(T|T|αr+βs−1x, y)|.

(1)⇒ (2). Since, by (1) in Lemma 2 and equalities above,

|(T|T|αr+βs−1x, y)|2 = |(U|T|αrx, |T∗|βsy)|2

�‖ |T|αrx ‖2‖ |T∗|βsy ‖2

� ((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y).

The last inequality is due to (1).
(2)⇒ (1). In (2) put T = B, β = α, s = r, q = p and y = x. It follows that

(B2αrx, x) � ((BrA2pBr)
αr
p+r x, x)

holds for A2 � B2, and so we have (1) if A � B.
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(1)⇒ (3). Since, by (2) in Lemma 2,

2|(|T|2αrz, x)(T|T|αr+βs−1x, y)|
�‖ |T|αrx ‖2 [‖ |T∗|βsy ‖‖ |T|αrz ‖ +|(T|T|αr+βs−1z, y)|]
� ((|T|rA2p|T|r) αr

p+r x, x) · [((|T∗|sB2q|T∗|s) βs
q+s y, y)1/2((|T|rA2p|T|r) αr

p+r z, z)1/2

+ ((|T|rA2p|T|r) αr
p+r z, z)1/2((|T∗|sB2q|T∗|s) βs

q+s y, y)1/2]

= 2((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y)1/2 · ((|T|rA2p|T|r) αr
p+r z, z)1/2.

(3)⇒ (4). Let z = x in (3).
(4)⇒ (1). The proof is the same as that (2)⇒ (1), i.e., let T = B, β = α, s = r,

q = p, and y = x in (4).

Remark that (2) in Theorem 1 has been already given in [6]. In the proof of
Theorem 1 we may use different substitutions and get the same result. For example,
replacing x by |T|αrx, y by U∗|T∗|βsy, and z by |T|αrz in Lemma 2 and use Lemma 1
to simplify relations. Also remark that when A � B � O we can talk about the Löwner-
Heinz inequality Aα � Bα for α ∈ [0, 1]. Indeed, the inequality is obtained from (ii)
in the Furuta inequality by letting r = 0 there. Correspondingly, when A � B for
A, B > O, we don’t get exactly the same inequality but we have (B1/2ApB1/2)

α
p+1 � Bα

for p � 0 and α ∈ [0, 1]. This is obtained by setting r = 1 in Corollary 2. In fact, we
have the following characterizations of this inequality.

COROLLARY 3. Assume A, B > O, then the following statements hold and they
are equivalent:

(1) If log A � log B, then

(B1/2ApB1/2)
α

p+1 � Bα

holds for p � 0 and α ∈ [0, 1];
(2) For an invertible operator T such that log A2 � log |T|2 and log B2 �

log |T∗|2,

|(T|T|α+β−1x, y)|2 � ((|T|A2p|T|) α
p+1 x, x)((|T∗|B2q|T∗|) β

q+1 y, y)

for all x, y ∈ H, p, q � 0 and α, β ∈ [0, 1] with α + β � 1;

(3) For an invertible operator T such that log A2 � log |T|2 and log B2 �
log |T∗|2,

|(|T|2αz, x)(T|T|α+β−1x, y)|
� ((|T|A2p|T|) α

p+1 x, x)((|T∗|B2q|T∗|) β
q+1 y, y)1/2 · ((|T|A2p|T|) α

p+1 z, z)1/2

for all x, y, z ∈ H, p, q � 0 and α, β ∈ [0, 1] with α + β � 1;
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(4) For an invertible operator T such that log A2 � log |T|2 and log B2 �
log |T∗|2,

|(|T|2αx, x)(T|T|α+β−1x, y)|
� ((|T|A2p|T|) α

p+1 x, x)3/2((|T∗|B2q|T∗|) β
q+1 y, y)1/2

for all x, y ∈ H, p, q � 0, and α, β ∈ [0, 1] with α + β � 1;
(5) For an invertible operator T such that log A2 � log |T|2 and log B2 �

log |T∗|2,
|(Tx, y)|2 � ((|T|A2p|T|) α

p+1 x, x)((|T∗|B2q|T∗|) 1−α
q+1 y, y)

for all x, y ∈ H, p, q � 0, and α ∈ [0, 1];
(6) For an invertible operator T such that log A2 � log |T|2 and log B2 �

log |T∗|2,
|(|T|2αz, x)(Tx, y)|

� ((|T|A2p|T|) α
p+1 x, x)((|T|A2p|T|) α

p+1 z, z)1/2 · ((|T∗|B2q|T∗|) 1−α
q+1 y, y)1/2

for all x, y, z ∈ H, p, q � 0, and α ∈ [0, 1];
(7) For an invertible operator T such that log A2 � log |T|2 and log B2 �

log |T∗|2,
|(|T|2αx, x)(Tx, y)| � ((|T|A2p|T|) α

p+1 x, x)3/2((|T∗|B2q|T∗|) 1−α
q+1 y, y)1/2

for all x, y ∈ H, p, q � 0, and α ∈ [0, 1].

Proof. Let s = r = 1 in Theorem 1. Then we have equivalence of statements
(1), (2), (3) and (4). Moreover, if we put s = r = 1 and α + β = 1 in Theorem 1,
then equivalence of statements (1), (5), (6) and (7) follows, since (7)⇒ (1) holds by
putting T = B, q = p and y = B2α−1x.

Recall that T is a log-hyponormal operator if T is invertible and log T∗T � log
TT∗, and denoted as usual by T∗T � TT∗ in short. Thus, T is log-hyponormal if and
only if |T|2 � |T∗|2. Let A = B = |T| in (2), (3) and (4) of Theorem 1, so that T is
log-hyponormal. This leads to the next result and we shall omit the proof.

COROLLARY 4. Let T be a log-hyponormal operator. Then the following inequal-
ities hold, and are equivalent to each other:

(1) |(T|T|αr+βs−1x, y)| �‖ |T|αrx ‖ ((|T∗|s|T|2q|T∗|s) βs
q+s y, y)1/2

for all x, y ∈ H, q � 0, r, s > 0, and α, β ∈ [0, 1] with αr + βs � 1;

(2) |(|T|2αrz, x)(T|T|αr+βs−1x, y)|�‖|T|αrx‖2‖|T|αrz‖((|T∗|s|T|2q|T∗|s) βs
q+s y, y)1/2

for all x, y, z ∈ H, q � 0, r, s > 0, and α, β ∈ [0, 1] with αr + βs � 1.

Recall that T is a p -hyponormal operator if (T∗T)p � (TT∗)p for p > 0.
Evidently a hyponormal operator is 1 -hyponormal, and a hyponormal operator is p -
hyponormal for 1 � p > 0 by the Löwner-Heinz inequality. Obviously, it is superfluous
to consider a log- p -hyponormal operator, since a log- p -hyponormal operator is a log-
hyponormal operator and vice versa. Now, let s = r = 1 and α, β ∈ [0, 1] with
α + β = 1 in Corollary 4. Then we have the next result and we shall omit the proof.
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COROLLARY 5. Let T be a log-hyponormal operator. Then the following inequal-
ities hold, and are equivalent to each other:

(1) |(Tx, y)| �‖ |T|αx ‖ ((|T∗||T|2q|T∗|) 1−α
q+1 y, y)1/2

for all x, y ∈ H, q � 0 and α ∈ [0, 1];

(2) |(|T|2αz, x)(Tx, y)| �‖ |T|αx ‖2‖ |T|αz ‖ ((|T∗||T|2q|T∗|) 1−α
q+1 y, y)1/2

for all x, y, z ∈ H, q � 0 and α ∈ [0, 1].

4. Further characterizations

In this section we shall present further characterizations of results obtained from
the previous section. We require Lemma 4 below which is known in [10, Lemma] and
the proof should be omitted. First recall that the Selberg inequality is

n∑
i=1

|(x, xi)|2
n∑

j=1
|(xi, xj)|

�‖ x ‖2

for x ∈ H and nonzero vectors {xi}n
i=1 ⊆ H, which is a generalization of the Bessel’s

inequality:
n∑

i=1
|(x, xi)|2 �‖ x ‖2 for x ∈ H with an orthonormal set {xi}n

i=1 ⊆ H.

Notice that (4) in Lemma 4 below is known as a refined form of the Selberg inequality
[8, Lemma 1]. Nevertheless, we shall give a different type of generalized Selberg
inequality in the last section. Remark that the original definition of the set {ui}n

i=1 in
(3) of Lemma 4 below can be found in [9].

LEMMA 4. For any x, y, z ∈ H the following are equivalent:
(1) |(x, y)| �‖ x ‖‖ y ‖ (Cauchy-Schwarz inequality);
(2) If (z, y) = 0, then

‖ z ‖2 |(x, y)|2 �‖ y ‖2 [‖ z ‖2‖ x ‖2 −|(x, z)|2];

(3) Let {ei}n
i=1 be a set of unit vectors and let the set {ui}n

i=1 ⊆ H be defined as
follows: u0 = x, and ui = ui−1 − (ui−1, ei)ei, i = 1, 2, . . . , n. If (ei, y) = 0 for all i,
then

|(x, y)|2+ ‖ y ‖2
n∑

i=1

|(ui−1, ei)|2 �‖ x ‖2‖ y ‖2;

(4) Given nonzero vectors {xi}n
i=1, if (xi, y) = 0 for all i, then

|(x, y)|2 +
n∑

i=1

|(x, xi)|2 ‖ y ‖2

n∑
j=1

|(xi, xj)|
�‖ x ‖2‖ y ‖2 .



708 C.-S. LIN

COROLLARY 6. For any T, the following are equivalent and each statement holds
true:

(1) |(T|T|αr+βs−1x, y)| �‖ |T|αrx ‖‖ |T∗|βsy ‖
for all x, y ∈ H, r, s > 0, and α, β ∈ [0, 1] with αr + βs � 1.

(2) |(T|T|αr+βs−1x, y)|2 + ‖|T∗|βsy‖2|(|T|2αrx,z)|2
‖|T|αrz‖2 �‖ |T|αrx ‖2‖ |T∗|βsy ‖2

for all x, y, z ∈ H, r, s > 0, and α, β ∈ [0, 1] with αr + βs � 1. Also for
(T|T|αr+βs−1z, y) = 0 and |T|αrz 	= 0;

(3) |(T|T|αr+βs−1x, y)|2 + ‖|T|αrx‖2|(T|T|αr+βs−1z,y)|2
‖|T|αrz‖2 �‖ |T|αrx ‖2‖ |T∗|βsy ‖2

for all x, y, z ∈ H, r, s > 0, and α, β ∈ [0, 1] with αr+βs � 1. Also for (|T|2αrz, x) =
0 and |T|αrz 	= 0;

(4) |(T|T|αr+βs−1x, y)|2+‖|T∗|βsy‖2
n∑

i=1
|(ui−1, U|T|αrxi)|2 � ‖|T|αrx‖2‖|T∗|βsy‖2

for all x, y ∈ H, r, s > 0, and α, β ∈ [0, 1] with αr+βs � 1. Also for nonzero vectors
{xi}n

i=1 such that (T|T|αr+βs−1xi, y) = 0 and ‖ |T|αrxi ‖= 1, i = 1, 2, . . . , n; and the
set {ui}n

i=1 is defined as follows: u0 = U|T|αrx, and ui = ui−1−(ui−1, U|T|αrxi)U|T|αrxi,
i = 1, 2, . . . , n;

(5) |(T|T|αr+βs−1x, y)|2+ ‖ |T∗|βsy ‖2
n∑

i=1

|(|T|2αrx,xi)|2
n∑

j=1

|(|T|2αrxi,xj)|
�‖ |T|αrx ‖2‖ |T∗|βsy ‖2

for all x, y ∈ H, r, s > 0, and α, β ∈ [0, 1] with αr+βs � 1. Also for nonzero vectors

{xi}n
i=1 such that

n∑
j=1

|(|T|2αrxi, xj) 	= 0 and (T|T|αr+βs−1xi, y) = 0, i = 1, 2, . . . , n.

Proof. In Lemma 4 replace x by U|T|αrx, y by |T∗|βsy, and z by U|T|αrz. Then
(1) and (2) are easily obtained from (1) and (2) in Lemma 4, and they are mutually
equivalent.

(3) Interchange of the vector x with y in (2) of Lemma 4, and use the same
replacements as above.

(4) Besides the replacements as in above, let ei be U|T|αrxi, i = 1, 2, . . . , n, in
(3) of Lemma 4 so that ‖ |T|αrxi ‖= 1 and (T|T|αr+βs−1xi, y) = 0, i = 1, 2, . . . , n.

(5) The same replacements as in above, and let xi be U|T|αrxi, i = 1, 2, . . . , n,

in (4) of Lemma 4 so that (T|T|αr+βs−1xi, y) = 0, i = 1, 2, . . . , n.

Now we are ready for further characterizations. The next result can be easily done
due to Corollary 6 and by similar arguments as in the proof of Theorem 1.

THEOREM 2. For A, B > O, the following are equivalent and each statement holds
true:

(1) If log A � log B, then

(Br/2ApBr/2)
αr
p+r � Bαr

for p � 0, r > 0 and α ∈ [0, 1];
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(2) For an invertible operator T such that log A2 � log |T|2 and log B2 �
log |T∗|2,

|(T|T|αr+βs−1x, y)|2 +
‖ |T∗|βsy ‖2 |(|T|2αrx, z)|2

‖ |T|αrz ‖2

� ((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y)

for all x, y, z ∈ H, p, q � 0, r, s > 0 and α, β ∈ [0, 1] with αr + βs � 1. Also for
|T|αrz 	= 0 and (T|T|αr+βs−1z, y) = 0;

(3) For an invertible operator T such that log A2 � log |T|2 and log B2 �
log |T∗|2,

|(T|T|αr+βs−1x, y)|2 +
‖ |T∗|βsx ‖2 |(T|T|αr+βs−1z, y)|2

‖ |T|αrz ‖2

� ((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y)

for all x, y, z ∈ H, p, q � 0, r, s > 0 and α, β ∈ [0, 1] with αr + βs � 1. Also for
|T|αrz 	= 0 and (|T|2αrz, x) = 0;

(4) For an invertible operator T such that log A2 � log |T|2 and log B2 �
log |T∗|2,

|(T|T|αr+βs−1x, y)|2+ ‖ |T∗|βsy ‖2
n∑

i=1

|(ui−1, U|T|αrxi)|2

� ((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y)

for all x, y ∈ H, p, q � 0, r, s > 0 and α, β ∈ [0, 1] with αr + βs � 1. Also
for nonzero vectors {xi}n

i=1 such that (T|T|αr+βs−1xi, y) = 0 and ‖ |T|αrxi ‖= 1,
i = 1, 2, . . . , n. And the set {ui}n

i=1 is defined as in (4) of Corollary 6;

(5) For an invertible operator T such that log A2 � log |T|2 and log B2 �
log |T∗|2,

|(T|T|αr+βs−1x, y)|2+ ‖ |T∗|βsy ‖2
n∑

i=1

|(|T|2αrx, xi)|2
n∑

j=1
|(|T|2αrxi, xj)|

� ((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y)

for all x, y ∈ H, p, q � 0, r, s > 0 and α, β ∈ [0, 1] with αr + βs � 1. Also for

nonzero vectors {xi}n
i=1 such that

n∑
j=1

|(T|T|2αrxi, xj)| 	= 0 and (T|T|αr+βs−1xi, y) = 0,

i = 1, 2, . . . , n.
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Proof. (1)⇒ (2). By (2) in Corollary 6, we have

|(T|T|αr+βs−1x, y)|2 +
‖ |T∗|βsy ‖2 |(|T|2αrx, z)|2

‖ |T|αrz ‖2
�‖ |T|αrx ‖2‖ |T∗|βsy ‖2

� ((|T|rA2p|T|r) αr
p+r x, x)((|T∗|sB2q|T∗|s) βs

q+s y, y).

The last inequality is due to (1).
Using (3), (4) and (5) of Corollary 6, a similar proof shows that (1) implies (3),

(4) and (5), respectively.
Now, clearly (2), (3), (4) or (5) implies (2) in Theorem 1, and hence (1) follows.

5. High-order Cauchy-Schwarz inequalities

Remark that the substitution of x by ∇ = 2(z, x)x− ‖ x ‖2 z in the proof of Lemma
2 is important and useful tool in generalization of the Cauchy-Schwarz inequality as
we are going to show in this last section. Let us call the usual Cauchy-Schwarz
inequality, i.e., (1) in Lemma 2, the order-two inequality, because it involves two
vectors (the order-one is, if we wish, the trivial expression: |(x, x)| = (x, x) =‖ x ‖2).
Accordingly, (2) in Lemma 2 is the order-three inequality. Moreover, if y is replaced
by ∇′ = 2(u, y)y− ‖ y ‖2 u in the order-three inequality, then we have the order-four
inequality, which is

4|(z, x)(x, y)(y, u)|
� 2 ‖ y ‖2 |(z, x)(x, u)|+ ‖ x ‖2 [‖ y ‖2‖ z ‖‖ u ‖ +|2(z, y)(y, u)− ‖ y ‖2 (z, u)|].

A similar further process can be used for the order-five inequality, etc. We may easily
show that high-order inequalities are all equivalent to the order-two inequality by keeping
x fixed and letting all other vectors equal to y, as we did in the proof of Lemma 2.

The so called Bessel’s inequality (in one variable x) is the relation

n∑
i=1

|(x, xi)|2 �‖ x ‖2

for any x ∈ H, and {xi}n
i=1 ⊆ H is an orthonormal set. the next result is a generalized

Bessel’s inequalitu (in two variables x and z) in terms of substitution by ∇.

PROPOSITION 1. Let x, z ∈ H and {xi}n
i=1 ⊆ H be an orthonormal set. Then

(1)
n∑

i=1
|2(z, x)(x, xi)− ‖ x ‖2 (z, xi)|2 �‖ x ‖4‖ z ‖2 .

Moreover, inequality (1) implies the following:
(2) Bessel’s inequality.
(3) The order-two inequality.
(4) The order-three inequality.

Proof. (1) All we have to do is in Bessel’s inequality let x be replaced as before
by 2(z, x)x− ‖ x ‖2 z.
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(2) Let z = x in (1).
(3) In (1) let n = 1, x1 = y

‖y‖ , 0 	= y ∈ H, and z = x.

(4) In (1) let n = 1 and x1 = y
‖y‖ , 0 	= y ∈ H.

For Bessel’s inequality, it is known that the equality holds if and only if the
orthonormal set {xi}n

i=1 is also a basis, and in this case it is called Parseval’s identity.
Likewise, we have a generalized Parseval’s identity as follows.

PROPOSITION 2. Let x, z ∈ H and {xi}n
i=1 ⊆ H be an orthonormal set. Then the

equality
n∑

i=1

|2(z, x)(x, xi)− ‖ x ‖2 (z, xi)|2 =‖ x ‖4‖ z ‖2

holds if and only if {xi}n
i=1 is also a basis.

Note that the equality in Proposition 2 implies Parseval’s identity if z = x. Next,
by the same proof as in Proposition 1 we have a generalized Selberg’s inequality (cf.
Section 4) in two variables x and z.

PROPOSITION 3. Let x, z ∈ H and {xi}n
i=1 ⊆ H. Then

n∑
i=1

|2(z, x)(x, xi)− ‖ x ‖2 (z, xi)|2
n∑

j=1
|(xi, xj)|

�‖ x ‖4‖ z ‖2 .

In conclusion we remark that in literature it is shown that the order-two inequality
is a simple consequence of Bessel’s inequality. More precisely, if y 	= 0, then the
set consisting of the vector y

‖y‖ alone is orthonormal, and so |(x, y
‖y‖)|2 �‖ x ‖2 by

Bessel’s inequality. Thus the order-two inequality follows. It is the author’s belief that
we have not seen the proof of the converse in literature, i.e., the order-two inequality
implies Bessel’s inequality. So we shall include a simple proof as follows.

Let the set {ui}n
i=1 be similar to (3) of Lemma 4, i.e., u0 = x, and ui = ui−1 −

(ui−1, xi)xi, i = 1, 2, . . . , n, where {xi}n
i=1 ⊆ H is an orthonormal set. Then we have

the following system:

u1 = x − (x, x1)x1

u2 = u1 − (u1, x2)x2

· · · · · · · · · · · · · · · · · ·
un−1 = un−2 − (un−2, xn−1)xn−1

un = un−1 − (un−1, xn)xn.

It follows that (ui−1, xi) = (x, xi), i = 1, 2, . . . , n. By adding n equalities above the
term un becomes independent of ui, i 	= n, which is essential in the proof. More
precisely we obtain the relation

un = x −
n∑

i=1

(ui−1, xi)xi = x −
n∑

i=1

(x, xi)xi.



712 C.-S. LIN

Therefore,

‖ un ‖2=
(
x −

n∑
i=1

(x, xi)xi, x −
n∑

i=1

(x, xi)xi

)
=‖ x ‖2 −

n∑
i=1

|(x, xi)|2.

Now, in particular if we use the order-two inequality |(un, e)|2 �‖ un ‖2 for any unit
vector e ∈ H, then we obtain

∣∣∣(x, e) −
n∑

i=1

(x, xi)(xi, e)
∣∣∣
2
+

n∑
i=1

|(x, xi)|2 �‖ x ‖2,

which is sharper than Bessel’s inequality.
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