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Abstract. A capital letter means a bounded linear and strictly positive operator on a Hilbert space
H . Here we shall give a simple proof of the result in [2] [3] that the relative operator entropy

S(A|B) = A
1
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1
2 is subadditive and jointly concave.

THEOREM A. The relative operator entropy is subadditive and jointly concave:
(i) S(A1 + A2|B1 + B2) � S(A1|B1) + S(A2|B2) .
(ii) S

(
αA1 +(1−α)A2|αB1 +(1−α)B2

)
� αS(A1|B1)+(1−α)S(A2|B2) for

0 � α � 1 .

The following result is well known by [Theorem 3.5, 5].

(A + B)σ(C + D) � AσC + BσD for every mean σ. (1)

Proof of Theorem A. We recall the following obvious formula:

lim
n→∞(T

1
n − I)n = logT for any T > 0. (2)

(i). As f (A|B) = A
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2 is a mean for natural number n , so that

f (A1 + A2|B1 + B2) � f (A1|B1) + f (A2|B2) by (1), namely,
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we have the following by slightly modification
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for natural number n , tending n → ∞ , we obtain the following by (2)
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whence the proof of (i) is complete.
(ii). (ii) follows by (i) since S(A|B) is homogeneous: S(tA|tB) = tS(A|B) for

any t � 0 .

This proof is along the simple one in [4] based on (2), in which there given a simple
proof of concavity of the usual operator entoropy A logA−1 in [1] and [6].
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