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Abstract. A capital letter means a bounded linear and strictly positive operator on a Hilbert space
H . Here we shall give a simple proof of the result in [2] [3] that the relative operator entropy

—1 —1
S(A|B) = Az log(A2 BA2 )A% is subadditive and jointly concave.

THEOREM A. The relative operator entropy is subadditive and jointly concave:

(1) S(A1 +Az|Bi + Ba) = S(A1[B1) + S(A2|Bz).

(ii) S(aA1 + (1= a)Az|aBy + (1 — t)By) > aS(A1|By) + (1 — )S(A2|By)  for
0<a<l.

The following result is well known by [Theorem 3.5, 5].

(A+B)o(C+ D) > AcC+ BoD forevery mean o©. (1)
Proof of Theorem A. We recall the following obvious formula:
lim (Tﬁ —I)n=1ogT forany T > 0. (2)

(i). As f(A|B) = A%(A%BA%I)%A% is a mean for natural number 7n, so that
J (A1 + A3|By + By) = f (A1|B1) +f (A2|B>) by (1), namely,

==

(A1 +Ay)? {(Al +A2)T (B1 + Bo) (A +A2)%l} (Al +Ay)?
L= 1 1 Lot 15 1
Z AL (A7 BIAP )7A] + AS (A7 BoAy )nAS
we have the following by slightly modification

—1

(A1 +Az)? |:{(A1 FA)T (B + Ba)(Ar +Ar) T —I}H(Al +A)?

—! i}
F)

1 ot § et § 1 1 il § 1
> A} {(Alz BIAT )7 —I}nAlz +AZ |:(A22 B,AT ) —I}nAZZ
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for natural number n, tending n — oo, we obtain the following by (2)
(A1 + A2)* [log{ (A1 + A2) T (B + B2)(A1 + A2) T} (41 + 42)
> Af [log( BiA T )|AT + 41 [log(A7 BaATT)| A7

whence the proof of (i) is complete.
(ii). (ii) follows by (i) since S(A|B) is homogeneous: S(tA[tB) = tS(A|B) for
any t > 0.

This proof is along the simple one in [4] based on (2), in which there given a simple
proof of concavity of the usual operator entoropy AlogA~! in [1] and [6)].
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