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PARTITIONED FUNCTIONAL INEQUALITIES IN BANACH

MODULES AND APPROXIMATE ALGEBRA HOMOMORPHISMS

KIL-WOUNG JUN, JAE-HYEONG BAE AND WON-GIL PARK

(communicated by Th. M. Rassias)

Abstract. We prove the generalized Hyers-Ulam-Rassias stability of partitioned functional equa-
tions in Banach modules over a unital C∗ -algebra. It is applied to show the stability of algebra
homomorphisms between Banach algebras associated with partitioned functional equations in
Banach algebras.

1. Partitioned functional equations

Let E1 and E2 be Banach spaces with norms || · || and ‖·‖ , respectively. Consider
f : E1 → E2 to be a mapping such that f (tx) is continuous in t ∈ R for each fixed
x ∈ E1 . Assume that there exist constants ε � 0 and p ∈ [0, 1) such that

‖f (x + y) − f (x) − f (y)‖ � ε(||x||p + ||y||p)
for all x, y ∈ E1 . Th. M. Rassias [9] showed that there exists a unique R -linear mapping
T : E1 → E2 such that

‖f (x) − T(x)‖ � 2ε

2 − 2p
||x||p

for all x ∈ E1 .
Recently, T. Trif [17, Theorem 2.1] proved that, for vector spaces V and W , a

mapping f : V → W with f (0) = 0 satisfies the functional equation

n n−2Ck−2f

(
x1 + . . . + xn

n

)
+ n−2Ck−1

n∑
i=1

f (xi)

= k
∑

1�i1<...<ik�n

f

(
xi1 + . . . + xik

k

)
for all x1, . . . , xn ∈ V if and only if the mapping f : V → W satisfies the additive
Cauchy equation f (x + y) = f (x) + f (y) for all x, y ∈ V .

Throughout this paper, let n and k be positive integers.
The following lemma is a special case of the conjecture in [8].
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LEMMA A. Let V and W be vector spaces. A mapping f : V → W with f (0) = 0
satisfies the functional equation

2nf

(
x1 + . . . + x2n

2n

)
+ 2(k − 1)

2n−1∑
i=1

f

(
x2i−1 + x2i

2

)
(A)

= k
2n∑
i=1

f

(
xi + . . . + xi+k−1

k

)
for all x1 = x2n+1, . . . , xk−1 = x2n+k−1, xk, . . . , x2n ∈ V if and only if the mapping
f : V → W satisfies the additive Cauchy equation f (x + y) = f (x) + f (y) for all
x, y ∈ V .

Proof. Assume that a mapping f : V → W satisfies (A). Put x1 = x , x2 = y and
x3 = . . . = x2n = 0 in (A). Then

2nf

(
x + y
2n

)
+ 2(k − 1)f

(
x + y

2

)
(1.1)

= k

[
(k − 1)f

(
x + y

k

)
+ f

(x
k

)
+ f

(y
k

)]
.

Putting y = 0 in (1.1),

2nf
( x

2n

)
+ 2(k − 1)f

( x
2

)
= k2f

(x
k

)
. (1.2)

Replacing x by kx and y by ky in (1.1),

2nf

(
kx + ky

2n

)
+ 2(k − 1)f

(
kx + ky

2

)
(1.3)

= k[(k − 1)f (x + y) + f (x) + f (y)].

Replacing x by kx + ky in (1.2),

2nf

(
kx + ky

2n

)
+ 2(k − 1)f

(
kx + ky

2

)
= k2f (x + y). (1.4)

From (1.3) and (1.4),

0 = −kf (x + y) + k[f (x) + f (y)].

Hence f is additive.
The converse is obvious. �
Throughout this paper, let A be a unital C∗ -algebra with norm | · | , U (A) the

unitary group of A , A1 = {a ∈ A | |a| = 1} , and A+
1 the set of positive elements in A1 .

Let AB and AC be left Banach A -modules with norms || · || and ‖ · ‖ , respectively.
Let d and r be positive integers.

The following lemma is useful to prove the stability of the functional equation (A).
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LEMMA B [7, Theorem 1]. Let a ∈ A and |a| < 1− 2
m for some integer m greater

than 2 . Then there are m elements u1, . . . , um ∈ U (A) such that ma = u1 + . . .+um .

The main purpose of this paper is to prove the generalized Hyers-Ulam-Rassias
stability of the functional equation (A) in Banachmodules over a unital C∗ -algebra, and
to prove the Hyers-Ulam-Rassias stability of algebra homomorphisms between Banach
algebras associated with the functional equation (A).

2. Stability of partitioned functional equations in Banach
modules over a C∗ -algebra associated with its unitary group

We are going to prove the generalized Hyers-Ulam-Rassias stability of the func-
tional equation (A) in Banach modules over a unital C∗ -algebra associated with its
unitary group.

From now on, let 2 � k < n . For a given mapping f : AB → AC and a given
a ∈ A , we set

Daf (x1, . . . , x2n) (B)

:= 2naf

(
x1 + . . . + x2n

2n

)
+ 2(2k − 1)a

2n−1∑
i=1

f

(
x2i−1 + x2i

2

)

− 2k
2n∑
i=1

f

(
axi + . . . + axi+2k−1

2k

)
for all x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ AB .

THEOREM 2.1. Let f : AB → AC be a mapping with f (0) = 0 for which there
exists a function ϕ : AB2n → [0,∞) such that

ϕ̃(x1, . . . , x2n) (2.i)

:=
∞∑
j=0

2jϕ
(
−x1

2j
,
x2

2j
,
x3

2j
,
x4

2j
, . . . ,−x2n−3

2j
,
x2n−2

2j
,
x2n−1

2j
,
x2n

2j

)
< ∞

and

‖Duf (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n) (2.ii)

for all u ∈ U (A) and all x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ AB . Then
there exists a unique A -linear mapping T : AB → AC such that

‖f (x) − T(x)‖ � 1
(2k − 1) · 2n−1

ϕ̃(x, . . . , x) (2.iii)

for all x ∈ AB .
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Proof. Put u = 1 ∈ U (A) . Let x1 = −x , x2 = x3 = x4 = x , . . . , x2n−3 = −x ,
x2n−2 = x2n−1 = x2n = x in (2.ii). Then we get∥∥∥∥2nf

( x
2

)
+ (2k − 1)2n−1f (x) − 2k · 2nf

( x
2

) ∥∥∥∥ (2.1)

� ϕ(−x, x, x, x, . . . ,−x, x, x, x)

for all x, y ∈ AB . So one can obtain∥∥∥f (x) − 2f
( x

2

)∥∥∥ � 1
(2k − 1) · 2n−1

ϕ (−x, x, x, x, . . . ,−x, x, x, x)

for all x ∈ AB . We prove by induction on j that∥∥∥∥2jf

(
1
2j

x

)
− 2j+1f

(
1

2j+1
x

) ∥∥∥∥
� 2j

(2k − 1) · 2n−1
ϕ

(
− x

2j
,

x
2j

,
x
2j

,
x
2j

, . . . ,− x
2j

,
x
2j

,
x
2j

,
x
2j

)
for all x ∈ AB . So we get∥∥∥∥f (x) − 2jf

(
1
2j

x

) ∥∥∥∥ (2.2)

� 1
(2k − 1) · 2n−1

j−1∑
m=0

2mϕ
(
− x

2m
,

x
2m

,
x
2m

,
x
2m

, . . . ,− x
2m

,
x
2m

,
x
2m

,
x
2m

)
for all x ∈ AB .

Let x be an element in AB . For positive integers l and m with l > m ,∥∥∥∥2lf

(
1
2l

x

)
− 2mf

(
1
2m

x

)∥∥∥∥
� 1

(2k − 1) · 2n−1

l−1∑
j=m

2jϕ
(
− x

2j
,

x
2j

,
x
2j

,
x
2j

, . . . ,− x
2j

,
x
2j

,
x
2j

,
x
2j

)
,

which tends to zero as m → ∞ by (2.i). So {2jf ( 1
2j x)} is a Cauchy sequence for all

x ∈ AB . Since AC is complete, the sequence {2jf ( 1
2j x)} converges for all x ∈ AB .

We can define a mapping T : AB → AC by

T(x) = lim
j→∞

2jf

(
1
2j

x

)
(2.3)

for all x ∈ AB .
By (2.i), (2.ii) and (2.3), we get

‖D1T(x1, . . . , x2n)‖ = lim
j→∞

2j

∥∥∥∥D1f

(
1
2j

x1, . . . ,
1
2j

x2n

)∥∥∥∥
� lim

j→∞
2jϕ

(
1
2j

x1, . . . ,
1
2j

x2n

)
= 0
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for all x1, . . . , x2n ∈ AB . Hence D1T(x1, . . . , x2n) = 0 for all x1, . . . , x2n ∈ AB . By
Lemma A, T is additive. Moreover, by passing to the limit in (2.2) as j → ∞ , we get
the inequality (2.iii).

Now let L : AB → AC be another additive mapping satisfying

‖f (x) − L(x)‖ � 1
(2k − 1) · 2n−1

ϕ̃(x, . . . , x)

for all x ∈ AB .

‖T(x) − L(x)‖ = 2j

∥∥∥∥T

(
1
2j

x

)
− L

(
1
2j

x

)∥∥∥∥
� 2j

∥∥∥∥T

(
1
2j

x

)
− f

(
1
2j

x

)∥∥∥∥ + 2j

∥∥∥∥f

(
1
2j

x

)
− L

(
1
2j

x

)∥∥∥∥
� 2

(2k − 1) · 2n−1
2jϕ̃

(
1
2j

x, . . . ,
1
2j

x

)
,

which tends to zero as j → ∞ by (2.i). Thus T(x) = L(x) for all x ∈ AB . This
proves the uniqueness of T .

By the assumption, for each u ∈ U (A) ,

2j

∥∥∥∥Duf

(
1
2j

x, . . . ,
1
2j

x

)∥∥∥∥ � 2jϕ
(

1
2j

x, . . . ,
1
2j

x

)
for all x ∈ AB , and

2j

∥∥∥∥Duf

(
1
2j

x, . . . ,
1
2j

x

)∥∥∥∥ → 0

as j → ∞ for all x ∈ AB . So

DuT(x, . . . , x) = lim
j→∞

2jDuf

(
1
2j

x, . . . ,
1
2j

x

)
= 0

for all u ∈ U (A) and all x ∈ AB . Hence

DuT(x, . . . , x) = 2nuT(x) + (2k − 1)2nuT(x) − 2k · 2nT(ux) = 0

for all u ∈ U (A) and all x ∈ AB . So

uT(x) = T(ux)

for all u ∈ U (A) and all x ∈ AB .
Now let a ∈ A (a �= 0) and M an integer greater than 4|a| . Then∣∣∣ a

M

∣∣∣ =
1
M
|a| <

|a|
4|a| =

1
4

< 1 − 2
3

=
1
3
.



720 K.-W. JUN, J.-H. BAE AND W.-G. PARK

ByLemmaB, there exist three elements u1, u2, u3 ∈ U (A) such that 3 a
M = u1+u2+u3 .

And T(x) = T(3 · 1
3x) = 3T( 1

3x) for all x ∈ AB . So T( 1
3x) = 1

3T(x) for all x ∈ AB .
Thus

T(ax) = T

(
M
3

· 3 a
M

x

)
= M · T

(
1
3
· 3 a

M
x

)
=

M
3

T

(
3

a
M

x

)
=

M
3

T(u1x + u2x + u3x) =
M
3

(
T(u1x) + T(u2x) + T(u3x)

)
=

M
3

(u1 + u2 + u3)T(x) =
M
3

· 3 a
M

T(x)

= aT(x)

for all x ∈ AB . Obviously, T(0x) = 0T(x) for all x ∈ AB . Hence

T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)

for all a, b ∈ A and all x, y ∈ AB . So the unique additive mapping T : AB → AC is
an A -linear mapping, as desired. �

Applying the unital C∗ -algebra C to Theorem 2.1, one can obtain the following.

COROLLARY 2.2. Let E1 and E2 be complex Banach spaces with norms || · || and
‖ · ‖ , respectively. Let f : E1 → E2 be a mapping with f (0) = 0 for which there exists
a function ϕ : E2n

1 → [0,∞) such that (2.i) and

‖Dλ f (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n)

for all λ ∈ T1 := {λ ∈ C | |λ | = 1} and all x1, . . . , x2n ∈ E1 . Then there exists a
unique C -linear mapping T : E1 → E2 such that

‖f (x) − T(x)‖ � 1
(2k − 1)2n−1

ϕ̃(x, . . . , x)

for all x ∈ E1 .

From now on, assume that ϕ : AB2n → [0,∞) is a function satisfying (2.i).

THEOREM 2.3. Let f : AB → AC be a continuous mapping with f (0) = 0
such that (2.i) and (2.ii) for all u ∈ U (A) and all x1, . . . , x2n ∈ AB . If the sequence
{2jf ( 1

2j x)} converges uniformly on AB , then there exists a unique continuous A -linear
mapping T : AB → AC satisfying (2.iii).

Proof. Put u = 1 ∈ U (A) . By Theorem 2.1, there exists a unique A -linear
mapping T : AB → AC satisfying (2.iii). By the continuity of f , the uniform conver-
gence and the definition of T , the A -linear mapping T : AB → AC is continuous, as
desired. �
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THEOREM 2.4. Let f : AB → AC be a mapping with f (0) = 0 such that (2.i)
and

‖D1f (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n)

for all x1, . . . , x2n ∈ AB . Then there exists a unique additive mapping T : AB → AC
satisfying (2.iii). Further, if f (λx) is continuous in λ ∈ R for each fixed x ∈ AB ,
then the additive mapping T : AB → AC is R -linear.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique
additive mapping T : AB → AC satisfying (2.iii).

Assume that f (λx) is continuous in λ ∈ R for each fixed x ∈ AB . The additive
mapping T given above is similar to the additive mapping T given in the proof of [9,
Theorem]. By the same reasoning as the proof of [9, Theorem], the additive mapping
T : AB → AC is R -linear. �

THEOREM 2.5. Let f : AB → AC be a continuous mapping with f (0) = 0 such
that (2.i) and

‖Daf (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n)

for all a ∈ A+
1 ∪ {i} and all x1, . . . , x2n ∈ AB . If the sequence {2jf ( 1

2j x)} converges
uniformly on AB , then there exists a unique continuous A -linear mapping T : AB →
AC satisfying (2.iii).

Proof. Put a = 1 ∈ A+
1 . By Theorem 2.4, there exists a unique R -linear mapping

T : AB → AC satisfying (2.iii). By the continuity of f and the uniform convergence,
the R -linear mapping T : AB → AC is continuous.

By the same reasoning as the proof of Theorem 2.1,

T(ax) = aT(x)

for all a ∈ A+
1 ∪ {i} .

For any element a ∈ A , a = a+a∗
2 + i a−a∗

2i and a+a∗
2 and a−a∗

2i are self-adjoint

elements. Furthermore, a = ( a+a∗
2 )+ − ( a+a∗

2 )− + i( a−a∗
2i )+ − i( a−a∗

2i )− , where

( a+a∗
2 )+ , ( a+a∗

2 )− , ( a−a∗
2i )+ , and ( a−a∗

2i )− are positive elements (see [2, Lemma
38.8]). So

T(ax) = T

[(
a + a∗

2

)+

x −
(

a + a∗

2

)−
x + i

(
a − a∗

2i

)+

x − i

(
a − a∗

2i

)−
x

]

=
(

a + a∗

2

)+

T(x) +
(

a + a∗

2

)−
T(−x) +

(
a − a∗

2i

)+

T(ix)

+
(

a − a∗

2i

)−
T(−ix)

=
(

a + a∗

2

)+

T(x) −
(

a + a∗

2

)−
T(x) + i

(
a − a∗

2i

)+

T(x)

− i

(
a − a∗

2i

)−
T(x)
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=

[(
a + a∗

2

)+

−
(

a + a∗

2

)−
+ i

(
a − a∗

2i

)+

− i

(
a − a∗

2i

)−]
T(x)

= aT(x)

for all a ∈ A and all x ∈ AB . Hence

T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)

for all a, b ∈ A and all x, y ∈ AB , as desired. �
THEOREM 2.6. Let f : AB → AC be a mapping with f (0) = 0 such that

‖Daf (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n)

for all a ∈ A+
1 ∪ {i} and all x1, . . . , x2n ∈ AB . If f (λx) is continuous in λ ∈ R

for each fixed x ∈ AB , then there exists a unique A -linear mapping T : AB → AC
satisfying (2.iii).

Proof. Put a = 1 ∈ A+
1 . By Theorem 2.4, there exists a unique R -linear mapping

T : AB → AC satisfying (2.iii).
The rest of the proof is similar to the proof of Theorem 2.5. �
For a given mapping f : AB → AC and a given a ∈ A , we set

Daf (x1, . . . , x2n)

:=
d
r
af

(
rx1 + . . . + rx2n

d

)
+ 2(2k − 1)

2n−1∑
i=1

af

(
x2i−1 + x2i

2

)

− 2k
2n∑
i=1

f

(
axi + . . . + axi+2k−1

2k

)
for all x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ AB .

THEOREM 2.7. Let f : AB → AC be a mapping with f (0) = 0 for which there
exists a function ϕ : AB2n → [0,∞) such that

ϕ̃(x1, . . . , x2n) :=
∞∑
j=0

(
d

2nr

)j

ϕ

[(
2nr
d

)j

x1, . . . ,

(
2nr
d

)j

x2n

]
< ∞ (2.i)

‖Duf (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n) (2.ii)

for all u ∈ U (A) and all x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ AB . Then
there exists a unique A -linear mapping T : AB → AC such that

‖f (x) − T(x)‖ � 1
2n
ϕ̃(x, . . . , x) (2.iii)

for all x ∈ AB .

Proof. The proof is similar to Theorem 2.1 in [8]. �
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THEOREM 2.8. Let f : AB → AC be a mapping with f (0) = 0 and

Duf (x1, . . . , x2n) := 2nuf

(
x1 + . . . + x2n

2n

)
+ 2(2k − 1)

2n−1∑
i=1

uf

(
x2i−1 + x2i

2

)

− d
r

2n∑
i=1

f

(
ruxi + . . . + ruxi+2k−1

d

)
for all u ∈ U (A) and all x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ AB .
Assume that there exists a function ϕ : AB2n → [0,∞) such that

ϕ̃(x1, . . . , x2n) :=
∞∑
j=0

(
d

2kr

)j

ϕ

[(
2kr
d

)j

x1, . . . ,

(
2kr
d

)j

x2n

]
< ∞ (2.iv)

and
‖Duf (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n) (2.v)

for all u ∈ U (A) and all x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ AB . Then
there exists a unique A -linear mapping T : AB → AC such that

‖f (x) − T(x)‖ � 1
2k · 2n

ϕ̃(x, . . . , x) (2.vi)

for all x ∈ AB .

Proof. The proof is similar to Theorem 2.7 in [8]. �

For the cases corresponding to Theorem 2.7 and Theorem 2.8, one can obtain
similar results to Theorem 2.3, Theorem 2.4, Theorem 2.5 and Theorem 2.6 with
2nr
d /∈ Z .

3. Stability of partitioned functional equations in Banach
algebras and approximate algebra homomorphisms

In this section, let A and B be Banach algebras with norms || · || and ‖ · ‖ ,
respectively.

D. G. Bourgin [3] proved the stability of ring homomorphisms between Banach
algebras. In [1], R. Badora generalized the Bourgin’s result.

We prove the generalizedHyers-Ulam-Rassias stability of algebra homomorphisms
between Banach algebras associated with the functional equation (A).

THEOREM 3.1. Let A and B be real Banach algebras, and f : A → B a
mapping with f (0) = 0 for which there exist functions ϕ : A 2n → [0,∞) and
ψ : A × A → [0,∞) such that (2.i),

‖D1f (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n), (3.i)
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ψ̃(x, y) :=
∞∑
j=0

2jψ
(

1
2j

x, y

)
< ∞ (3.ii)

and
‖f (x · y) − f (x)f (y)‖ � ψ(x, y) (3.iii)

for all x, y, x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ A , where D1 is in (B). If
f (λx) is continuous in λ ∈ R for each fixed x ∈ A , then there exists a unique algebra
homomorphism T : A → B satisfying (2.iii). Further, if A and B are unital, then
f itself is an algebra homomorphism.

Proof. By the same method as the proof of Theorem 2.4, one can show that there
exists a unique R -linear mapping T : A → B satisfying (2.iii). The R -linear
mapping T : A → B was given by

T(x) = lim
j→∞

2jf

(
1
2j

x

)
for all x ∈ A . Let

R(x, y) = f (x · y) − f (x)f (y)

for all x, y ∈ A . By (3.ii), we get

lim
j→∞

2jR

(
1
2j

x, y

)
= 0

for all x, y ∈ A . So

T(x · y) = lim
j→∞

2jf

(
1
2j

(x · y)
)

= lim
j→∞

2jf

[(
1
2j

x

)
y

]
= lim

j→∞
2j

[
f

(
1
2j

x

)
f (y) + R

(
1
2j

x, y

)]
= T(x)f (y) (3.1)

for all x, y ∈ A . Thus

T(x)f
(

1
2j

y

)
= T

[
x

(
1
2j

y

)]
= T

[(
1
2j

x

)
y

]
= T

(
1
2j

x

)
f (y)

=
1
2j

T(x)f (y)

for all x, y ∈ A . Hence

T(x)2jf

(
1
2j

y

)
= T(x)f (y) (3.2)

for all x, y ∈ A . Taking the limit in (3.2) as j → ∞ , we obtain

T(x)T(y) = T(x)f (y)

for all x, y ∈ A . Therefore,

T(x · y) = T(x)T(y)
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for all x, y ∈ A . So T : A → B is an algebra homomorphism.
Now assume that A and B are unital. By (3.1),

T(y) = T(1 · y) = T(1)f (y) = f (y)

for all y ∈ A . So f : A → B is an algebra homomorphism, as desired. �

THEOREM 3.2. Let A and B be complex Banach algebras. Let f : A → B
be a mapping with f (0) = 0 for which there exist functions ϕ : A 2n → [0,∞) and
ψ : A × A → [0,∞) such that (2.i), (3.ii), (3.iii) and

‖Dλ f (x1, . . . , x2n)‖ � ϕ(x1, . . . , x2n) (3.iv)

for all λ ∈ T1 and all x, y, x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ A , where
Dλ is in (B). Then there exists a unique algebra homomorphism T : A → B satisfying
(2.iii). Further, if A and B are unital, then f itself is an algebra homomorphism.

Proof. Under the assumption (2.i) and (3.iv), in Corollary 2.2, we showed that
there exists a unique C -linear mapping T : A → B satisfying (2.iii).

The rest of the proof is the same as the proof of Theorem 3.1. �

THEOREM 3.3. Let A and B be complex Banach ∗ -algebras. Let f : A → B
be a mapping with f (0) = 0 for which there exist functions ϕ : A 2n → [0,∞) and
ψ : A × A → [0,∞) such that (2.i), (3.ii), (3.iii), (3.iv) and

‖f (x∗) − f (x)∗‖ � ϕ(x, . . . , x) (3.v)

for all λ ∈ T1 and all x, y, x1 = x2n+1, . . . , x2k−1 = x2n+2k−1, x2k, . . . , x2n ∈ A . Then
there exists a unique ∗ -algebra homomorphism T : A → B satisfying (2.iii). Further,
if A and B are unital, then f itself is a ∗ -algebra homomorphism.

Proof. By the same reasoning as the proof of Theorem 3.2, there exists a unique
C -linear mapping T : A → B satisfying (2.iii).

Now

2j

∥∥∥∥f

(
1
2j

x∗
)
− f

(
1
2j

x

)∗∥∥∥∥ � 2jϕ
(

1
2j

x, . . . ,
1
2j

x

)
for all x ∈ A . Thus

2j

∥∥∥∥f

(
1
2j

x∗
)
− f

(
1
2j

x

)∗∥∥∥∥ → 0

as j → ∞ for all x ∈ A . Hence

T(x∗) = lim
j→∞

2jf

(
1
2j

x∗
)

= lim
j→∞

2jf

(
1
2j

x

)∗
= T(x)∗

for all x ∈ A .
The rest of the proof is the same as the proof of Theorem 3.1. �

Similarly, for the cases corresponding to Theorem 2.7 and Theorem 2.8, one can
obtain similar results to the theorems given above with 2nr

d /∈ Z .
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[14] TH. M. RASSIAS AND P. ŠEMRL, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl.

173 (1993), 325–338.
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