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PARTITIONED FUNCTIONAL INEQUALITIES IN BANACH
MODULES AND APPROXIMATE ALGEBRA HOMOMORPHISMS

KIL-WOUNG JUN, JAE-HYEONG BAE AND WON-GIL PARK

(communicated by Th. M. Rassias)

Abstract. We prove the generalized Hyers-Ulam-Rassias stability of partitioned functional equa-
tions in Banach modules over a unital C* -algebra. It is applied to show the stability of algebra
homomorphisms between Banach algebras associated with partitioned functional equations in
Banach algebras.

1. Partitioned functional equations

Let E; and E; be Banach spaces withnorms ||-|| and || -||, respectively. Consider
f : E; — E, to be a mapping such that f (zx) is continuous in ¢ € R for each fixed
x € E, . Assume that there exist constants € > 0 and p € [0, 1) such that

If (x+y) =f () = f O < el + 1IyII7)

forall x,y € E;. Th. M. Rassias [9] showed that there exists a unique R -linear mapping

T : E; — E5 such that
2e

IF () = Tl < 5=

[ ”

forall x € Ey .
Recently, T. Trif [17, Theorem 2.1] proved that, for vector spaces V and W, a
mapping f : V. — W with f(0) = 0O satisfies the functional equation

X1+ ...+ x, -
n n_zck_zf (%) +n—2Ck—l Zf(xz)

i=1

=k Z f(xil+'l'€'+xik>

1<i1<m<ik<n

for all xy,...,x, € V if and only if the mapping f : V — W satisfies the additive
Cauchy equation f (x +y) =f(x) +f () forall x,y € V.

Throughout this paper, let n and k be positive integers.

The following lemma is a special case of the conjecture in [8].
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LEMMA A. Let V and W be vector spaces. Amapping f : V. — W with f (0) =
satisfies the functional equation

2)1 1
X+ . X X2i—1 + X2i
2 —— 2(k—1) _ A
() ;f< )W
2)1 er
_sz( i+k— 1>
for all xy = xpny1,. .., Xk—1 = Xonyk—1,Xk, ..., X € V if and only if the mapping

f V. — W satisfies the additive Cauchy equation f(x +y) = f(x) + f(y) for all
x,yeV.

Proof. Assume that a mapping f : V — W satisfies (A). Put x; = x, x, =y and
X3 =...=xm =0 in (A). Then

2 (x;y) 2k - 1)f <’%> (1.1)

el (52) 0 ) )]

Putting y = 0 in (1.1),

2f (21) Yo%k — 1)f (’—;) — f (%) . (1.2)
Replacing x by kx and y by ky in (1.1),
2 (kx;ky) 2k - 1)f <w> (1.3)

= K[(k = Df (x+y) +f(x) +5 ).
Replacing x by kx + ky in (1.2),

2nf (kx;ky) L2k —1)f (@) = Kf (x + ). (1.4)

From (1.3) and (1.4),

0= —kf(x+y)+k[f(x) +£ ()]

Hence f is additive.
The converse is obvious. [

Throughout this paper, let A be a unital C* -algebra with norm |- |, % (A) the
unitary groupof A, A; = {a € A | |a| = 1},and A] the set of positive elements in A; .
Let 4% and 4,€ be left Banach A-modules with norms || - || and || - ||, respectively.
Let d and r be positive integers.

The following lemma is useful to prove the stability of the functional equation (A).
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LEMMA B [7, Theorem 1]. Let a € A and |a| < 1— 2 for some integer m greater
than 2. Then there are m elements uy, ... U, € % (A) suchthat ma = u;+ ...+ uy,.

The main purpose of this paper is to prove the generalized Hyers-Ulam-Rassias
stability of the functional equation (A) in Banach modules over a unital C* -algebra, and
to prove the Hyers-Ulam-Rassias stability of algebra homomorphisms between Banach
algebras associated with the functional equation (A).

2. Stability of partitioned functional equations in Banach
modules over a C* -algebra associated with its unitary group

We are going to prove the generalized Hyers-Ulam-Rassias stability of the func-
tional equation (A) in Banach modules over a unital C*-algebra associated with its
unitary group.

From now on, let 2 < k < n. For a given mapping f : 4% — 4% and a given
a €A, we set

Daf(xl,...,xzn) (B)
2n71
X1+ ...+ xm Xoi—1 + Xp;
=2" _ 22k — 1 S
af( o )+< )a;f( 5 )
z ax; + + ax;
ok it i+2k—1
(s
forall x| = xpnyp, ..., Xok—1 = Xon42k—1, X2k - - -, Xon € oA

THEOREM 2.1. Let f : \PB — A€ be a mapping with f (0) = 0 for which there
exists a function @ : %% — [0, 00) such that

Px1,. .y x0m) (2.0)
= . X1 X2 X3 X4 Xon_3 Xpn_p Xpn_| Xpn
= 2 (——.,—4,—.7—4,...,— —, —, - ,—4)<
; P\ ¥ Yy 2w
and
HDuf(xl,...,xzn)H g(p(xl,...,xzn) (211)
forall u € 7% (A) and all x; = Xpni1, ..., Xok—1 = Xon42k—1, X2k, - - - y Xon € A HB. Then

there exists a unique A -linear mapping T : % — o€ such that

I ) = T < gy gy o) (2ii)

forall x € ,AB.
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Proof. Putu=1€ Z(A). Let x; = =X, X = X3 = X4 = X, ..., Xpn_3 = —X,
Xon_p = Xpn_q = xpn = x in (2.ii). Then we get
n X n—1 n X
2nf (5) +(2k - 12" (x) — 2k 2°f (5) (2.1)
< (p(*X,X,X,X, AR —x,x,x,x)

forall x,y € 4% . So one can obtain

Hf ( )H S ﬁ)zn_l(p(—x,x,x,x,...,fx,x,x,x)

forall x € % . We prove by induction on j that

2f (%) — 2ty (%O

< v (7x X X
Sk-1n 21?220
forall x € »%. So we get

o 3

X X X X X X
2m (_ ) ) gty T ) ) ) )
(Zk _ 1 .on—1 Z 2m 2m om’ ym om’ gm’ ym’ ym

'%I*
g =
Sk
Sk
W2 =
SN——

forall x € 4 4.
Let x be an element in 4% . For positive integers [ and m with [ > m,

1
prle) il

which tends to zero as m — oo by (2.i). So {2/f ( x)} is a Cauchy sequence for all

X € % Since ,F is complete, the sequence {2Jf ( x)} converges for all x € 4 &
We can define a mapping 7 : 4 & — 4% by

T(x) = lim 2f (21, ) (2.3)

Jj—oo

forall x € 4&.
By (2.i), (2.ii) and (2.3), we get

||D1T(X1, . 7)Czn)H = l1m 2j
J—0o0

1 1
D]f (Exl, ey ExZn) H
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forall xi,...,x0m € 4%. Hence D\T(xy,...,xn) =0 forall xy,...,xm € 4%. By
Lemma A, T is additive. Moreover, by passing to the limit in (2.2) as j — oo, we get
the inequality (2.iii).

Now let L : 4% — 4% be another additive mapping satisfying

1 -
If (x) = L) < mfp(xa e X)

forall x € 4&.

IT(x) — L(x)|| =2 ||T (%x) —L (%x) H
A ()1l (2942
2 ~ (1 1
S@mon il (Ex’ "§x>’

which tends to zero as j — oo by (2.i). Thus T(x) = L(x) for all x € 4Z. This
proves the uniqueness of T .
By the assumption, for each u € % (A),

i 1 1 ; 1 1
2 HDuf <§x,-~-,g.x) ‘ g 2J(p <§x7...75)€)

forall x € 44, and
1 1
DL(f (EX,...7EX)

2J

-0

as j — oo forall x € 4%. So

; 1 1
D,T(x,...,x) = lim 2D,f (gx, e —.x> =0
j—oo
forall u € % (A) and all x € 4% . Hence
DyT(x,...,x) =2"uT(x) + (2k — 1)2"uT(x) — 2k - 2"T(ux) = 0
forall u € Z(A) andall x € 44. So
uT(x) = T(ux)

forall u € Z(A) andall x € 4 4.
Nowlet a € A (a # 0) and M an integer greater than 4|a|. Then
a | 1 2

1 1
31l = 31 < aa] 35 7373
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By Lemma B, there exist three elements uy, up, u3 € % (A) suchthat 337 = u;+ur+us.
And T(x) = T(3- 1x) = 3T(3x) forall x € 4%. So T(3x) = 1T(x) forall x € »%.

Thus
M _a 1 a M a

M M

= ?T(ulx + upx + usx) = 3 (T(urx) + T(uzx) + T(uzx))
M M _a

= ?(ul +up +u3)T(x) = 3 3A—4T(x)

=aT(x)
forall x € 4% . Obviously, T(0x) = 0T (x) forall x € 4% . Hence
T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)

forall a,b € A and all x,y € 44. So the unique additive mapping T : »Z& — A€ is
an A -linear mapping, as desired. [

Applying the unital C* -algebra C to Theorem 2.1, one can obtain the following.

COROLLARY 2.2. Let E; and E, be complex Banach spaces with norms || - || and
Il - ||, respectively. Let f : Ey — E, be a mapping with f (0) = 0 for which there exists
a function @ : E¥' — [0,00) such that (2.i) and

HDA«f(xlw'wa")H < (p(X17...7xZn)

forall A € T' :={A € C| |A| =1} and all x\,...,xan € Ei. Then there exists a
unique C-linear mapping T : E\ — E, such that

I ) = 701 < Pl

forall x € E.
From now on, assume that ¢ : 4% — [0, 00) is a function satisfying (2.i).

THEOREM 2.3. Let f : sB — A€ be a continuous mapping with f(0) = 0
such that (2.1) and (2.i) for all u € % (A) and all x,...,x; € aPB. If the sequence
{2F( %x)} converges uniformly on %, then there exists a unique continuous A -linear
mapping T : AP — A€ satisfying (2.iii).

Proof. Put u = 1 € % (A). By Theorem 2.1, there exists a unique A -linear
mapping T : % — 4% satisfying (2.iii). By the continuity of f , the uniform conver-
gence and the definition of T, the A -linear mapping T : 4& — 4% is continuous, as
desired. O
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THEOREM 2.4. Let f : B — o€ be a mapping with f(0) = 0 such that (2.1)
and

||D1f(x1, . ,xZn)” < (p(xl, . ,xzn)
forall xy,...,xon € s9%B. Then there exists a unique additive mapping T : sB — sC

satisfying (2.ii). Further, if f (Ax) is continuousin A € R for each fixed x € s A,
then the additive mapping T : s %8 — 4% is R-linear.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique
additive mapping T : 4B — 4% satisfying (2.iii).

Assume that f (Ax) is continuousin A € R for each fixed x € 4#. The additive
mapping T given above is similar to the additive mapping T given in the proof of [9,
Theorem]|. By the same reasoning as the proof of [9, Theorem], the additive mapping
T : 4B — 4,€ is R-linear. [

THEOREM 2.5. Let f : pB — A% be a continuous mapping with f(0) = 0 such
that (2.i) and

||Dllf(‘x17 e 7‘x2n)|| < (p('x17 e ,.in)
forall a € Af U{i} and all xy,...,x;n € ,B. If the sequence {2/f(%x)} converges
uniformly on %, then there exists a unique continuous A -linear mapping T : p B —
AC satisfying (2.iii).

Proof. Put a =1 € A} . By Theorem 2.4, there exists a unique R -linear mapping
T : s B — A€ satisfying (2.iii). By the continuity of f and the uniform convergence,
the R -linear mapping T : 4 — 4% is continuous.

By the same reasoning as the proof of Theorem 2.1,

T(ax) = aT(x)
forall a € A} U {i}.

* * * * . .
For any element a € A, a = “— + 5% and 5~ and ‘5% are self-adjoint

elements. Furthermore, a = (#)+ - (#)* + i(“_zl‘.fk N i(”_zl‘.‘*)’, where

(%)*, (%)* , (“Ef*ﬁ, and (“Ef*)’ are positive elements (see [2, Lemma
38.8]). So

() o () w5) )
_ ("*2“*>+T(x) + (“*f) T(—x) + (“ ;ia*)+T(ix)
+<“&f>nm
_ (“z“*ym) - (‘“;“*> T(x) +i<“ ;ia*)+T(x)
_i(“ ;ia*)T(x)

T(ax)=T
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a—+a a—+a [fa—a fa—a
(5) - (45) we(t5) (55 |

forall a € A and all x € 4% . Hence
T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)

forall a,b € A and all x,y € 4%, as desired. [
THEOREM 2.6. Let f : \PB — A€ be a mapping with f (0) = 0 such that
||Daf(.?617 e 7.)Czn)” < (P(.Xl, e ,.in)

forall a € AT U{i} and all xy,...,x;n € s%B. If f(Ax) is continuousin A € R
for each fixed x € 4B, then there exists a unique A-linear mapping T : 4B — A€
satisfying (2.iii).

Proof. Put a =1 € A| . By Theorem 2.4, there exists a unique R -linear mapping
T : 4P — A% satisfying (2.iii).

The rest of the proof is similar to the proof of Theorem 2.5. [

For a given mapping f : 4% — 4% and a given a € A, we set

Daf(xl, PN ,.in)

2)171
_d X1+ ... 4 rxon X2i—1 + X2i
= —af (f) +2(2k — 1) Zaf (f)

i=1
2}1
ax; + ...+ axXi2k—1
— 2k
S ()

for all x| = Xongly oo vy X2k—1 = X204 2k—1, X2k - - -y X0 € A%-

THEOREM 2.7. Let f : \PB — A€ be a mapping with f (0) = 0 for which there
exists a function @ : 8% — [0, 00) such that

Gt xm) = i <%>j(p l(%)jxl,..., (%)szn] coo  (24)

Jj=0
[Duf (x1, .-, x20) || < @x1, ., x00) (2.i)
forall u € 7% (A) and all x; = Xpni1, ..., Xok—1 = Xon42k—1, X2k, - - - y Xon € A HB. Then
there exists a unique A -linear mapping T : % — o€ such that
1 -~ “ee
Hf(x) - T(.X)H < F(P()@ e 7)C) (2.111)

forall x € ,AB.
Proof. The proof is similar to Theorem 2.1 in [8]. O
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THEOREM 2.8. Let [ : AP — A€ be a mapping with f (0) = 0 and

znfl
Duf(xl, . ,xZn) = 2nuf (M) + 2(2/( _ 1) Zuf <x211 +X21>

2n _ 2
i=1
d z FUxX; + ... + ruXiiop—1
iy
r 4 d
i=1
Jorall u € %(A) and all X1 = Xpni1, ..., Xok—1 = Xong2k—1,X0ks -« - s X1 € A B.

Assume that there exists a function @ : %> — [0,00) such that

N > /dy 2%\’ 2kr\’ ,
O(x1,. .. Xx;m) i= Z (%> 10) [(7> X1yeon, <7) xz»;| < 00 (2.iv)

=0
and
[Duf (x1, - x20) || < @(x1, .., x0n) (2.v)
Jorall u € % (A) and all x; = Xpni1, ..., Xok—1 = Xon42k—1, X2k, - - - y Xon € A HB. Then

there exists a unique A -linear mapping T : 4B — A% such that

| .
TRT o(x,...,x) (2.vi)

If (x) = Tl <
forall x € 4 A.

Proof. The proof is similar to Theorem 2.7 in [8]. O

For the cases corresponding to Theorem 2.7 and Theorem 2.8, one can obtain
similar results to Theorem 2.3, Theorem 2.4, Theorem 2.5 and Theorem 2.6 with
2"r ¢ 7
~ .

3. Stability of partitioned functional equations in Banach
algebras and approximate algebra homomorphisms

In this section, let &7 and % be Banach algebras with norms || - || and | - ||,
respectively.

D. G. Bourgin [3] proved the stability of ring homomorphisms between Banach
algebras. In [1], R. Badora generalized the Bourgin’s result.

We prove the generalized Hyers-Ulam-Rassias stability of algebra homomorphisms
between Banach algebras associated with the functional equation (A).

THEOREM 3.1. Let &/ and % be real Banach algebras, and f : &/ — B a
mapping with f(0) = O for which there exist functions @ : @* — [0,00) and
Vo x o — [0,00) such that (2.),

||D]f()€1,...,)€2n)|| < qo(xl,...,xzn), (31)
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sz ( )<oo (3.ii)

and

If (x-y) =f & DI < wix,y) (3.1ii)
SJorall x,y,x1 = Xony1, ..., Xop—1 = Xonyok—1, X0k, - - - , Xon € &/, where Dy isin (B). If
S (Ax) is continuousin A € R for each fixed x € <f , then there exists a unique algebra
homomorphism T : &/ — B satisfying (2.iii). Further, if o and P are unital, then
f itself is an algebra homomorphism.

Proof. By the same method as the proof of Theorem 2.4, one can show that there
exists a unique R-linear mapping T : &/ — % satisfying (2.iii). The R-linear
mapping T : o/ — % was given by

I

R(x,y) =f(x-y) =f (0)f (v)
forall x,y € &7 . By (3.ii), we get

; 1
lim 2R [ — =0
faued <2/x’ Y >

forall x € & . Let

forall x,y € &. So

e @]

:g&zj {f (%x)f( ( )] = (3.1)

forall x,y € o/ . Thus

forall x,y € &/ . Hence
T2 () =T 0) (32)
forall x,y € o . Taking the limit in (3.2) as j — oo, we obtain
T(x)T(y) =Tx)f (y)
for all x,y € o . Therefore,

T(x-y) =TM)T(y)
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forall x,y € &/.So T : &/ — 2 is an algebra homomorphism.
Now assume that <7 and % are unital. By (3.1),

T(y) =T(1-y) =TWf ) =)
forall y € o/. So f : o — 2 is an algebra homomorphism, as desired. [

THEOREM 3.2. Let o7 and B be complex Banach algebras. Let f : of — B
be a mapping with f (0) = 0 for which there exist functions ¢ : </ LA [0,00) and
Vo x of —[0,00) suchthat (2.), (3.ii), (3.iii) and

IDAf (x1, -, x00)|| < @(x1,- .-, x00) (3.iv)

forall A € T! and all X,y,%1 = Xony1, ..., Xok—1 = Xonyok—1, X2k, - - -, Xon € &7 , where
D, isin (B). Then there exists a unique algebra homomorphism T : of — B satisfying
(2.ii). Further, if & and % are unital, then f itself is an algebra homomorphism.

Proof. Under the assumption (2.i) and (3.iv), in Corollary 2.2, we showed that
there exists a unique C -linear mapping T : &/ — Z satisfying (2.iii).
The rest of the proof is the same as the proof of Theorem 3.1. [J

THEOREM 3.3. Let of and % be complex Banach * -algebras. Let f : of — B
be a mapping with f (0) = 0 for which there exist functions ¢ : o/ LA [0,00) and
v x of —[0,00) such that (2.), (3.ii), (3.iii), (3.iv) and

If ) =f )7 < olx, .., %) (3-v)

forall A € T' and all x,y,X1 = Xonp1, ..., Xok—1 = Xon2k—1, X2k, - - - s Xon € . Then
there exists a unique * -algebra homomorphism T : &f — P satisfying (2.iii). Further,
if o and P are unital, then f itself is a *-algebra homomorphism.

Proof. By the same reasoning as the proof of Theorem 3.2, there exists a unique
C-linear mapping T : &7 — £ satisfying (2.iii).

Now
1 I \* . 1 1
—x" | - = Sj =Xy, =
(57) -1 (3) | <2 (3= 3)
for all x € & . Thus
I 1 \"
r(5+) 7 (57)

as j — oo forall x € /. Hence

2J

2J

— 0

J— 00 J— 00

. 1 . 1 *
T(x*) = lim 2f <Zx*> = lim 2’f <Zx) = T(x)*
forall x € o .
The rest of the proof is the same as the proof of Theorem 3.1. [J

Similarly, for the cases corresponding to Theorem 2.7 and Theorem 2.8, one can
. .. . . n
obtain similar results to the theorems given above with % ¢ 7.
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