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HYPERMULTITREES AND SHARP BONFERRONI INEQUALITIES

JÓZSEF BUKSZÁR

(communicated by A. Prekopa)

Abstract. The concept of (h, m) -hypermultitree (which is a special hypergraph) is introduced
to present Bonferroni-type inequalities which are equalities for some families of sets. The main
theorem is a common generalization of the earlier results of Hunter, Worsley, Tomescu and recent
results of Prékopa and the author. The new bounds are based on significantly fewer probabilities
than the same order Bonferroni bounds. This and some other properties explain the very high
efficiency of the new bounds in many applications, e.g., estimate the values of multivariate normal
distribution functions, which is demonstrated in the end of the paper.

1. Introduction

Let A1, . . . , An be arbitrary probability events. Our purpose is to present lower
and upper bounds for the probability P(A1 ∪ . . . ∪ An) based on some of the terms
P(Ak1 ∩ . . .∩Aki) (1 � k1 < . . . < ki � n , i = 1, . . . , d), where d � 2 is a prescribed
integer. For a pair of integers h ,m with h + m + 1 = d we introduce a class of
hypergraphs on n vertices, called (h, m) -hipermultitrees, and assign a lower (upper)
bound to each hypergraph of the class for odd (even) h . We obtain the Tomescu bounds
[13] for m = 1 and the multitree bound [3] for h = 0 . The Hunter-Worsley bound
[8] and [14] is a special Tomescu and multitree bound at the same time. We recall the
concept of m -multitree and some related definitions and results.

DEFINITION 1. Let m be a positive integer. An m -multicherry is a hypergraph
of the form (V, E2, . . . , Em+1), where V = {v1, . . . , vm+1} is the set of vertices and
for each i = 2, . . . , m + 1 the family of hyperedges Ei is the set of all subsets of
{v1, . . . , vm+1} containing i vertices with vm+1 included, i.e., Ei = {H | vm+1 ∈ H ⊂
{v1, . . . , vm+1}, |H| = i} . The vertex vm+1 is called the dominating vertex of the m -
multicherry. The m -multicherry with dominating vertex vm+1 and with non-dominating
vertices v1, . . . , vm is denoted by ({v1, . . . , vm}, vm+1) .

Note that a 1 -multicherry is a single edge together with its incident vertices.

DEFINITION 2. Let m be a positive integer. An m -multitree is a hypergraph of the
form (V, E2, . . . , Em+1) , where V is the set of vertices and Ei ’s are sets of hyperedges
containing i vertices. An m -multitree is recursively defined by the following two rules.
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728 JÓZSEF BUKSZÁR

(i) The smallest m -multitree Δ = (V, E2, . . . , Em+1) has m vertices and Ei is the
family of all subsets of V containing i vertices (here Em+1 = ∅ ).

(ii) From an m -multitree Δ = (V, E2, . . . , Em+1) we can obtain a new m -multitree
Δ′ = (V ′, E ′

2, . . . , E ′
m+1) by adjoining an m -multicherry ({v1, . . . , vm}, vm+1) , where

v1, . . . , vm ∈ V and vm+1 is a new vertex (i.e., vm+1 /∈ V ). More precisely V ′ =
V ∪ {vm+1} , E ′

i = Ei ∪ {H | vm+1 ∈ H ⊂ {v1, . . . , vm+1}, |H| = i} .

A 3 -multitree Δ = (V, E2, E3, E4) is illustrated in Figure 1. Given 1 , 2 , 3
and the hyperedges {1, 2} , {1, 3} , {2, 3} , {1, 2, 3} , we subsequently adjoin the 3 -
multicherries ({1, 2, 3}, 4) , ({1, 3, 4}, 5) and ({2, 3, 5}, 6) as shown in the figure.
The edges of a 3 -multicherry are drawn with the same line-style. The vertices and hy-
peredges of Δ are V = {1, 2, 3, 4, 5, 6} , E2 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},
{2, 4}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {5, 6}} , E3 = {{1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4}, {1, 3, 5}, {1, 4, 5}, {3, 4, 5}, {2, 3, 6}, {2, 5, 6}, {3, 5, 6}} ,
E4 = {{1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 5, 6}} .

Figure 1

Note that a 1 -multitree is a usual tree.

REMARK 3. If Δ = (V, E2, . . . , Em+1) is an m -multitree with |V| = n , then
|Ei| =

(m
i

)
+
( m

i−1

)
(n − m) for all i = 2, . . . , m + 1 .

DEFINITION 4. Let A1, . . . , An be arbitrary events and let these events be assigned
to the vertices of an m -multitree Δ = (V, E2, . . . , Em+1) . Then the weight of the
m -multitree is defined as

w(Δ) =
∑

{l1,l2}∈E2

P(Al1 ∩ Al2) −
∑

{l1 ,l2,l3}∈E3

P(Al1 ∩ Al2 ∩ Al3) + . . .

. . . + (−1)m+1
∑

{l1,...,lm+1}∈Em+1

P(Al1 ∩ . . . ∩ Alm+1).

THEOREM 5. Let A1, . . . , An be arbitrary events and let Δ = (V, E2, . . . , Em+1)
be an arbitrary m -multitree with V = {1, . . . , n} . Then

P (A1 ∪ . . . ∪ An) � S1 − w(Δ), (1)

where S1 =
n∑

i=1
P(Ai) .
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Proof. Without loss of generalitywe can assume that Δ is obtained by the following
recursion. We start from the m -multitree Δ(m) = (V(m), E (m)

2 , . . . , E (m)
m+1) , where V(m) =

{1, . . . , m} , E (m)
i ( i = 2, . . . , m ) is the set of all subsets of V(m) containing i elements

and E (m)
m+1 = ∅ . Then, we construct the sequence of m -multitrees Δ(m+1) , Δ(m+2) , . . . ,

Δ(n) = Δ in the way that we obtain Δ(j) = (V(j), E (j)
2 , . . . , E (j)

m+1) from Δ(j−1) =
(V(j−1), E (j−1)

2 , . . . , E (j−1)
m+1 ) by adjoining the m -multicherry ({i(j)1 , . . . , i(j)m }, j) , where

1 � i(j)1 < . . . < i(j)m � j − 1 . The recursion gives that

Em+1 =
(
{i(j)1 , . . . , i(j)m , j} | j = m + 1, . . . , n

)
and

Ei =
n⋃

j=m+1

{
K | j ∈ K ⊆ {i(j)1 , . . . , i(j)m , j}, |K| = i

}
∪ {K | K ⊆ {1, . . . , m}, |K| = i} ,

for all i = 2, . . . , m .

P(A1 ∪ . . . ∪ An) = P(A1 ∪ . . . ∪ An−1) + P(An) − P((A1 ∪ . . . ∪ An−1) ∩ An)
= P(A1 ∪ . . . ∪ An−2) + P(An−1) − P((A1 ∪ . . . ∪ An−2) ∩ An−1) + P(An)

− P((A1 ∪ . . . ∪ An−1) ∩ An) = . . . = S1 −
n∑

j=2

P((A1 ∪ . . . ∪ Aj−1) ∩ Aj)

= S1 −
⎛⎝ m∑

j=2

P((A1 ∪ . . . ∪ Aj−1) ∩ Aj) +
n∑

j=m+1

P((A1 ∪ . . . ∪ Aj−1) ∩ Aj)

⎞⎠
� S1 −

⎛⎝ m∑
j=2

P((A1 ∪ . . . ∪ Aj−1) ∩ Aj) +
n∑

j=m+1

P((A
i(j)1

∪ . . . ∪ A
i(j)m

) ∩ Aj)

⎞⎠
= S1 −

⎛⎝ m∑
j=2

P ((A1 ∩ Aj) ∪ . . . ∪ (Aj−1 ∩ Aj)) +
n∑

j=m+1

P((A
i(j)1

∩ Aj) ∪ . . . ∪ (A
i(j)m

∩ Aj))

⎞⎠ .

Applying the inclusion-exclusion formula for P ((A1 ∩ Aj) ∪ . . . ∪ (Aj−1 ∩ Aj)) and
P((A

i(j)1
∩ Aj) ∪ . . . ∪ (A

i(j)m
∩ Aj)) we have

S1 −
⎛⎝ m∑

j=2

P ((A1 ∩ Aj) ∪ . . . ∪ (Aj−1 ∩ Aj)) +
n∑

j=m+1

P((A
i(j)1

∩ Aj) ∪ . . . ∪ (A
i(j)m

∩ Aj))

⎞⎠
= S1 −

m∑
j=2

⎡⎣ ∑
1�h1�j−1

P(Ah1 ∩ Aj) −
∑

1�h1<h2�j−1

P(Ah1 ∩ Ah2 ∩ Aj) + . . .

. . . + (−1)j−1
∑

1�h1<...<hj−2�j−1

(Ah1 ∩ . . . ∩ Ahj−2
∩ Aj) + (−1)jP(A1 ∩ . . . ∩ Aj−1 ∩ Aj)

⎤⎦
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−
n∑

j=m+1

⎛⎜⎝ ∑
{k1}⊆{i(j)1 ,...,i(j)m }

P(Ak1 ∩ Aj) −
∑

{k1,k2}⊆{i(j)1 ,...,i(j)m }
P(Ak1 ∩ Ak2 ∩ Aj) + . . .

. . . + (−1)m
∑

{k1,...,km−1}⊆{i(j)1 ,...,i(j)m }
P(Ak1 ∩ . . . ∩ Akm−1

∩ Aj) + (−1)m+1P(A
i(j)1

∩ . . . ∩ A
i(j)m

∩ Aj)

⎞⎟⎠
(∗)
= S1 −

∑
{l1,l2}∈E2

P(Al1 ∩ Al2) +
∑

{l1,l2,l3}∈E3

P(Al1 ∩ Al2 ∩ Al3) − . . .

. . . + (−1)m
∑

{l1,...,lm+1}∈Em+1

P(Al1 ∩ . . . ∩ Alm+1) = S1 − w(Δ).

(∗) The summation of the terms in the square brackets correspond to the starting
smallest m -multitree and the rest of the summands arise from the consecutive steps of
the recursion. �

2. (h, m) -hypermultitrees

DEFINITION 6. Let h � 0 and m � 1 be arbitrary integers. An (h, m) -
hypermultitree is a hypergraph of the form (V, hE2, . . . , hEm+1) , where V is the set
of vertices and hEi ’s are sets of hyperedges containing h + i vertices. An (h, m) -
hypermultitree is defined recursively by the following rules.

(i) The (0, m) -hypermultitrees are the same as the m -multitrees.
(ii) The smallest (h, m) -hypermultitree Δ = (V, hE2, . . . , hEm+1) has h + m

vertices and hEi consists of all subsets of V containing h+i vertices (here hEm+1 = ∅ ).
(iii) From an (h, m) -hypermultitree Δ = (V, hE2, . . . , hEm+1) we can obtain a new

(h, m) -hypermultitree in the following manner. Let Γ = (V, h−1E∗
2 , . . . , h−1E∗

m+1) be
an arbitrary (h − 1, m) -hypermultitree with the same set of vertices as in Δ . By
adjoining a new vertex v to Δ and the hyperedges of Γ extended by v , we obtain the
new (h, m) -hypermultitree Δ′ = (V ′, hE ′

2, . . . , hE ′
m+1) , i.e.,

V ′ = V ∪ {v} hE ′
i = hEi ∪ {E ∪ {v} |E ∈ h−1E∗

i } .

The (h, m) -hypermultitrees are generalizations of Tomescu’s hypertrees, which
are the (h, 1) -hypermultitrees in our definition.

EXAMPLES. Δ = (V, 1E2, 1E3) with 1E2 = {{1, 2, 3}} and 1E3 = ∅ is an (1, 2) -
hypermultitree by (ii). From Δ we can obtain the (1, 2) -hypermultitree Δ′ = (V ′, 1E ′

2,

1E ′
3) on the basis of (0, 2) -hypermultitree Γ1 = ({1, 2, 3}, {{1, 2}, {1, 3}, {2, 3}},

{{1, 2, 3}}) shown in Figure 2 by adjoining vertex 4 by (iii), where V ′ = {1, 2, 3, 4} ,
1E ′

2 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} , 1E ′
3 = {{1, 2, 3, 4}} . From Δ′ we

obtain Δ′′ = (V ′′, 1E ′′
2 , 1E ′′

3 ) on the basis of Γ2 , where V ′′ = {1, 2, 3, 4, 5} , 1E ′′
2 =

1E ′
2 ∪{{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}} , 1E ′′

3 = 1E ′
3 ∪{{1, 3, 4, 5},

{2, 3, 4, 5}} . Finally, from Δ′′ we obtain Δ′′′ = (V ′′′, 1E ′′′
2 , 1E ′′′

3 ) on the basis of Γ3 ,
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where V ′′′ = {1, 2, 3, 4, 5, 6} , 1E ′′′
2 = 1E ′′

2 ∪{{1, 3, 6}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6},
{2, 4, 6}, {3, 5, 6}, {4, 5, 6}} , 1E ′′′

3 = 1E ′′
3 ∪{{1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 6}} .

Figure 2

LEMMA 7. Let Δ = (V, hE2, . . . , hEm+1) be an arbitrary (h, m) -hypermultitree
with n vertices. Then

|hEi| =
h+1∑
k=0

(
m

i − 1 + k

)(
n − m

h + 1 − k

)
.

Proof. We prove by induction on h . If h = 0 , i.e., Δ is an m -multitree, then the
number of hyperedges containing i vertices is

( m
i−1

)
(n−m)+

(m
i

)
indeed, according to

Remark 3. Assume that the assertion holds if we replace h by h − 1 . In the recursion
producing Δ we start from the (h, m) -hypermultitree containing h + m vertices. In a
step of the recursion producing Δ we adjoin a new vertex to l ( l = m + h, . . . , n − 1 )
vertices and

h∑
k=0

(
m

i − 1 + k

)(
l − m
h − k

)
new hyperedges containing h+ i vertices because of the induction on h . Consequently,
the number of hyperedges containing h + i vertices in Δ is(

m + h
h + i

)
+

n−1∑
l=m+h

h∑
k=0

(
m

i − 1 + k

)(
l − m
h − k

)
. (2)

Applying the formula(
m + h
h + i

)
=
(

m
h + i

)
+

h∑
k=1

(
m

i − 1 + k

)(
h

h + 1 − k

)
and interchanging the sums give that(

m
h + i

)
+

h∑
k=1

(
m

i − 1 + k

)(
h

h + 1 − k

)
+

h∑
k=0

n−1∑
l=m+h

(
m

i − 1 + k

)(
l − m
h − k

)
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=
(

m
h + i

)
+

h∑
k=0

(
m

i − 1 + k

)((
h

h + 1 − k

)
+

n−1∑
l=m+h

(
l − m
h − k

))
.

Using the well-known identity(
h

h + 1 − k

)
=

m+h−1∑
l=m+h−k

(
l − m
h − k

)
,

we obtain that(
m

h + i

)
+

h∑
k=0

((
m

i − 1 + k

) n−1∑
l=m+h−k

(
l − m
h − k

))
=

h+1∑
k=0

(
m

i − 1 + k

)(
n − m

h + 1 − k

)
,

where the above identity was used again in the form

n−1∑
l=m+h−k

(
l − m
h − k

)
=
(

n − m
h + 1 − k

)
.

�

LEMMA 8. Let g , h , m and n be integers with 0 � g � h , 1 � m and g+m �
n . Let θ = (V, gE2, . . . , gEm+1) be a (g, m) -hypermultitree with V = {1, . . . , n} .
Assume that the vertices in θ are labeled in increasing order according to a recursion
producing θ . If

hEi =
⋃

{k1,...,kg+i}∈gEi

F{k1,...,kg+i},

where F{k1,...,kg+i} = {H∪{k1, . . . , kg+i} |H ⊂ {1+max{k1, . . . , kg+i}, . . . , n+h−g},
|H| = h − g} , then Δ = (V ′, hE2, . . . , hEm+1) is an (h, m) -hypermultitree with V ′ =
{1, . . . , n + h − g} .

Proof. Let 0 � g and 1 � m be fixed numbers. We use induction on both h and
n . If h = g , then the assertion of the lemma is trivial, because Δ and θ are the same.
Let h be an arbitrary integer with g + 1 � h , and assume that the assertion of the
lemma holds replacing h by h − 1 . Set n = g + m . Then θ = (V, gE2, . . . , gEm+1)
is the smallest (g, m) -hypermultitree, hence the hyperedges in gEi are all subsets of
{1, . . . , m + g} containing g + i vertices, where i = 2, . . . , m + 1 . From θ we obtain
the smallest (h, m) -hypermultitree Δ in the way described in the theorem.

Now fix n , and assume that the assertion of the lemma holds with the fixed h
replacing n by n − 1 . Let θ = (V, gE2, . . . , gEm+1) be a (g, m) -hypermultitree with
V = {1, . . . , n} and assume that the vertices in θ are labeled in increasing order
according to a recursion producing θ . Let Δ be the hypergraph constructed from θ in
the way described in the lemma. We have to prove that Δ is an (h, m) -hypermultitree.
Let θ∗ = (V∗, gE∗

2 , . . . , gE∗
m+1) be the (g, m) -hypermultitree obtained from θ by

deleting vertex n and the hyperedges incident to n . (Because of the fact that the
vertices in θ are labeled in increasing order according to a recursion producing θ , θ∗
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is a (g, m) -hypermultitree indeed.) By induction on n , we can construct an (h, m) -
hypermultitree Δ∗ = (V∗, hE∗

2 , . . . , hE∗
m+1) with V∗ = {1, . . . , n−1+h−g} from θ∗

in the way described in the lemma. By induction on h , we can construct an (h−1, m) -
hypermultitree Γ = (V̂ , h−1Ê2, . . . , h−1Êm+1) with V̂ = {1, . . . , n + h − 1 − g} from
θ in the way described in the lemma. Note that V∗ = V̂ . We state that we obtain Δ
from Δ∗ by adjoining vertex n+h−g and the hyperedges in Γ extended by n+h−g .
It follows directly from the following assertions.

(i) The hyperedges in Δ not containing vertex n + h − g are the hyperedges in
Δ∗ .

(ii) The hyperedges in Δ containing vertex n+h−g can be obtained by extending
the hyperedges in Γ by vertex n + h − g .

Assertion (i) follows from the fact that for a hyperedge {k1, . . . , kg+i−1, n} in
θ\θ∗ , there is a unique set H with H ⊂ {n + 1, . . . , n + h − g} and |H| = h − g ,
namely H = {n + 1, . . . , n + h − g} , which contains vertex n + h − g .

Assertion (ii) follows from the fact that the hyperedges in Γ
h−1Êi =

⋃
{f 1,...,f g+i}∈ gEi

{H∪{f 1, . . . , f g+i} |H ⊂ {1+max{f 1, . . . , f g+i}, . . . , n+h−1−
g}, |H| = h−1−g} extended by vertex n+h−g are the elements of

⋃
{f 1,...,f g+i}∈ gEi

{H∪
{f 1, . . . , f g+i} | n+h−g ∈ H ⊂ {1+max{f 1, . . . , f g+i}, . . . , n+h−g}, |H| = h−g} ,
which are the hyperedges in hEi (of Δ ) containing vertex n + h − g . Assertions (i)
and (ii) imply that Δ is really an (h, m) -hypermultitree. �

DEFINITION 9. Let Δ be a hypergraph of the form Δ = (V, hE2, . . . , hEm+1) ,
where V is the set of vertices and hEi ’s are sets of hyperedges containing h+ i vertices
for all i = 2, . . . , m + 1 . Δ is called an (h, m) -hypermultistar if V has a subset C
containing m vertices with

hEi = {I ∪ H | I ⊂ C, H ⊂ V\C, |H| � h + 1, |H| + |I| = h + i}
for all i = 2, . . . , m + 1 . The vertices in C are called central vertices.

PROPOSITION 10. (h, m) -hypermultistars are (h, m) -hypermultitrees.

Proof. A (0, m) -hypermultistar is a (0, m) -hypermultitree, i.e., an m -multitree.
In fact, a (0, m) -hypermultistar can be obtained by the following recursion. We start
from the m -multitree, where the vertex set is C and the i element hyperedges are
all the i element subsets of C (here i � 2 ). In all other steps a new vertex and an
m -multicherry is adjoined, where the non-dominatingvertices of the m -multicherry are
the central vertices and its dominating vertex (the new vertex) is a non-central vertex
not taken previously. Note that the sets of vertices containing at most one non-central
vertex are the hyperedges of a (0, m) -hypermultistar.

Let hΔn
m be an (h, m) -hypermultistarwith vertex set {1, . . . , n} the central vertices

of which are labeled by 1, . . . , m . Then hΔn
m can be obtained by extending the (0, m) -

hypermultistar 0Δn−h
m , as described in the previous lemma. In fact, let 2 � i � m + 1

and let {v1, . . . , vh+i} ( v1 < . . . < vh+i ) be a hyperedge in hΔn
m . Since there are at
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most h + 1 non-central vertices in a hyperedge in an (h, m) -hypermultistar, we obtain
that v1 < . . . < vi−1 � m are central vertices. On the other hand vi < . . . < vh+i � n ,
whence we obtain that vi � n− h , i.e., that vi is a vertex in 0Δn−h

m . Since {v1, . . . , vi}
has at most one non-central vertex, it is a hyperedge in 0Δn−h

m . Therefore, the hyperedge
{v1, . . . , vh+i} in hΔn

m can be obtained as the extension of {v1, . . . , vi} , as described in
the previous lemma.

Because of the fact that an (h, m) -hypermultistar can be obtained as an extension
of a (0, m) -hypermultistar, which is a (0, m) -hypermultitree, Lemma 8 yields that
(h, m) -hypermultistars are (h, m) -hypermultitrees. �

3. Hypermultitrees and Bonferroni type inequalities

In this section we present bounds on the probability of the union of finite number
of events by means of hypermultitrees.

DEFINITION 11. Let A1, . . . , An be arbitrary events and let these events be assigned
to the vertices of an (h, m) -hypermultitree Δ = (V, hE2, . . . , hEm+1) . Then the weight
of the (h, m) -hypermultitree is defined as

w(Δ) =
∑

{i1,...,ih+2}∈ hE2

P(Ai1 ∩ . . . ∩ Aih+2
) −

∑
{i1,...,ih+3}∈ hE3

P(Ai1 ∩ . . . ∩ Aih+3
) + . . .

. . . + (−1)m+1
∑

{i1,...,ih+m+1}∈ hEm+1

P(Ai1 ∩ . . . ∩ Aih+m+1
)

THEOREM 12. Let A1, . . . , An be arbitrary events and let Δ = (V, hE2, . . . ,

hEm+1) be an arbitrary (h, m) -hypermultitree. The following inequalities hold.
(i) If h is even, then

P

(
n⋃

i=1

Ai

)
�

h+1∑
k=1

(−1)k−1Sk − w(Δ), (3)

(ii) if h is odd, then

P

(
n⋃

i=1

Ai

)
�

h+1∑
k=1

(−1)k−1Sk + w(Δ), (4)

where Sk =
∑

1�i1<...<ik�n
P(Ai1 ∩ . . . ∩ Aik) .

Proof. We prove (i) and (ii) simultaneously by an induction on h . According to
Theorem 5, we obtain the m -multitree bound in the inequality in (3) with h = 0 . Let
h � 1 and assume that the inequalities in (3) and (4) hold whenever h is replaced with
a smaller number. Assume first that h is odd. Now we prove by induction on n that
(4) holds with this h . With n = h + m the inequality in (4) is the inclusion-exclusion
formula. Let n � h + m + 1 . Without loss of generality we can assume that vertex
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n was adjoined lastly to obtain Δ′ . Let Δ = (V, hE2, . . . , hEm+1) be the (h, m) -
hypermultitree and let Γ = (V, h−1E∗

2 , . . . , h−1E∗
m+1) be the (h−1, m) -hypermultitree

by which Δ′ = (V ′, hE ′
2, . . . , hE ′

m+1) was obtained in the last step of the recursion
producing Δ′ . By induction on n , the inequality in (4) holds with the events A1 , . . . ,
An−1 and Δ :

P

(
n−1⋃
i=1

Ai

)
�

h+1∑
k=1

(−1)k−1
∑

{i1 ,...,ik}⊂{1,...,n−1}
P(Ai1∩. . .∩Aik )+

∑
{i1,...,ih+2}∈ hE2

P(Ai1∩. . .∩Aih+2
)

−
∑

{i1,...,ih+3}∈ hE3

P(Ai1∩. . .∩Aih+3
)+. . .+(−1)m+1

∑
{i1,...,ih+m+1}∈ hEm+1

P(Ai1 ∩. . .∩Aih+m+1
)

(5)
By induction on h , the inequality in (3) holds with the events A1 ∩ An , A2 ∩ An , . . . ,
An−1 ∩ An and Γ :

P

(
n−1⋃
i=1

(Ai ∩ An)

)
�

h∑
k=1

(−1)k−1
∑

{i1,...,ik}⊂{1,...,n−1}
P(Ai1 ∩ . . . ∩ Aik ∩ An)

−
∑

{i1,...,ih+1}∈ h−1E∗
2

P(Ai1 ∩ . . .∩Aih+1
∩An)+

∑
{i1,...,ih+2}∈ h−1E∗

3

P(Ai1 ∩ . . .∩Aih+2
∩An)+ . . .

. . .+(−1)m
∑

{i1,...,ih+m}∈ h−1E∗
m+1

P(Ai1 ∩. . .∩Aih+m ∩An). (6)

We subtract the inequality in (6) from that in (5), add P(An) to both sides and obtain

P

(
n−1⋃
i=1

Ai

)
+P(An)−P

(
n−1⋃
i=1

(Ai ∩ An)

)
�

h+1∑
k=1

(−1)k−1Sk+
∑

{i1,...,ih+2}∈ hE′
2

P(Ai1∩. . .∩Aih+2
)

−
∑

{i1,...,ih+3}∈ hE′
3

P(Ai1∩. . .∩Aih+3
)+. . .+(−1)m+1

∑
{i1,...,ih+m+1}∈ hE′

m+1

P(Ai1∩. . .∩Aih+m+1
).

(7)

The term on the left-hand side is P

(
n⋃

i=1
Ai

)
. This completes the proof of the inequality

in (4).
The proof can be done analogously whenever h is even. �
The theorem has been proved for the special case of m = 1 by I. Tomescu [13]

and in the more special case of m = 1 , h = 0 by D. Hunter [8] and K. J. Worsley [14].
In the case of h = 0 , m = 2 some other results are detailed in [4].

If all the terms P(Ak1 ∩ . . .∩Aki) (1 � k1 < . . . < ki � n , i = 1, . . . , n) not used
in the sums Sk and w(Δ) on the right-hand side of the formula in (3) or (4) are zeros,
then the inequality in (3) or (4) becomes equality due to the inclusion-exclusion formula.
Such events can be constructed in the followingway. Let Δ be an (h, m) -hypermultistar
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with vertex set {1, . . . , n} . Let the number of the hyperedges in Δ be denoted by N and
let B1, . . . , BN be elementary probability events with P(Bj) = 1

N for all j = 1, . . . , N .
Label the hyperedges in Δ from 1 to N and let Ai = {∪Bj | the hyperedge with label
j is incident to vertex i} for all i = 1, . . . , n . If Ak1 ∩ . . . ∩ Aki 	= ∅ , then {k1, . . . , ki}
is a subset of a hyperedge in Δ with the following property. If i � h + 1 , then
P(Ak1 ∩ . . . ∩ Aki) is in Si on the right-hand side of the formula in (3) or (4). On the
other hand if i � h + 2 , then {k1, . . . , ki} is a hyperedge in Δ since a subset of a
hyperedge in an (h, m) -hypermultistar is also a hyperedge assuming it has at least h+2
vertices. Thus P(Ak1 ∩ . . . ∩ Aki) is again on the right-hand side of the formula in (3)
or (4), consequently, the inequality in (3) or (4) becomes equality.

REMARK 13. An (h, m) -hypermultitree with h + m or h + m + 1 vertices has a
unique structure: its hyperedges are all subsets of its vertex set containing at least h+ 2
vertices.

The right-hand side of the inequalities in (3) and in (4) are also referred as lower
and upper bounds for P (A1 ∪ . . . ∪ An) .

The following theorem has some practical importance.

THEOREM 14. Let Δ = (V, hE2, . . . , hEm+1) be an (h, m) -hypermultitree with at
least h+m+1 vertices. Then, an (h, m+1) -hypermultitree Δ′ = (V, hE ′

2, . . . , hE ′
m+2)

can be constructed with hEi ⊂ hE ′
i for all i = 2, . . . , m+1 ; moreover the bound based

on Δ′ is at least as good as the bound based on Δ .

Proof. The claim that the bound based on Δ′ is at least as good as the bound based
on Δ is equivalent to w(Δ) � w(Δ′) . We use induction on h . For h = 0 see the proof in
[3, pp. 446–447]. We may assume without loss of generality that a recursion producing
Δ is as follows: we start from (h, m) -hypermultitree with vertex set {1, . . . , h + m}
then adjoin subsequently vertex k with the hyperedges of Γk extended by vertex k in
icreasing order of k = h + m + 1, . . . , n . Here Γk = (Vk, h−1Ek

2 , . . . , h−1Ek
m+1) is an

(h − 1, m) -hypermultitree with Vk = {1, . . . , k − 1} for all k = h + m + 1, . . . , n .
Let wk(Γk) be the weight of Γk with measure Pk( · ) = P( · ∩ Ak) . It is easy to

see that w(Δ) = w(Δ̂) +
n∑

k=h+m+2
wk(Γk) , where Δ̂ was obtained by adjoining vertex

h + m + 1 with the hyperedges of Γh+m+1 extended by vertex h + m + 1 . Since Δ̂ has
h + m + 1 vertices, its hyperedges are all subsets of its vertex set containing at least
h + 2 vertices, by Remark (13). By induction on h , an (h − 1, m + 1) -hypermultitree
Γ′

k = (Vk, h−1E ′k
2 , . . . , h−1E ′k

m+2) can be constructed with

h−1Ek
i ⊂ h−1E ′k

i for all i = 2, . . . , m + 1 (8)

and
wk(Γk) � wk(Γ′

k). (9)

Now Δ′ can be constructed as follows. We start from (h, m + 1) -hypermultitree with
vertex set {1, . . . , h + m + 1} , that is Δ̂ by Remark (13), then adjoin subsequently
vertex k with the hyperedges of Γ′

k extended by vertex k in icreasing order of k =
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h+m+2, . . . , n . Since w(Δ′) = w(Δ̂)+
n∑

k=h+m+2
wk(Γ′

k) , w(Δ) � w(Δ′) follows from

(9) and hEi ⊂ hE ′
i ( i = 2, . . . , m + 1 ) follows from (8). �

Using also complement events, inequlities in (1) and in (4) in case of h = 1 can
be reformulated as described in the two theorems below. These new formulae have
significant practical benefit, some of them are detailed in the rest of the paper.

THEOREM 15. Let A1, . . . , An be arbitrary events and let Δ = (V, E2, . . . , Em+1)
be an arbitrary m -multitree with V = {1, . . . , n} . Let v1, . . . , vn be a permutation of
the vertices in V and assume that a recursion producing Δ is as follows: we start from
m-multitree with vertex set {v1, . . . , vm} then adjoin subsequently the m -multicherries
({ui

1, . . . , u
i
m}, vm+i) in icreasing order of i = 1, . . . , n − m. Then

P (A1 ∪ . . . ∪ An) � 1−P(Av1 ∩ . . .∩Avm+1)+
n−m∑
i=2

P
(
Avm+i ∩ Aui

1
∩ . . . ∩ Aui

m

)
. (10)

Proof. Since the vertices of m -multitree obtained by adjoining ({u1
1, . . . , u

1
m}, vm+1)

are v1, . . . , vm+1 , its hyperedges are all subsets of {v1, . . . , vm+1} with at least two el-
ements, by Remark 13. These hyperedges contribute to the weight of Δ with∑
1�j1<j2�m+1

P(Avj1
∩Avj2

)−
∑

1�j1<j2<j3�m+1

P(Avj1
∩Avj2

∩Avj3
)+. . .+(−1)m+1P(Av1∩. . .∩Avm+1)

=
m+1∑
j=1

P(Avj
) − P(Av1 ∪ . . . ∪ Avm+1) =

m+1∑
j=1

P(Avj
) − 1 + P(Av1 ∩ . . . ∩ Avm+1), (11)

which follows from the inclusion-exclusion formula.
An m -multicherry ({ui

1, . . . , u
i
m}, vm+i) contribute to the weight of Δ with∑

1�j1�m

P(Avm+i ∩ Aui
j1
) −

∑
1�j1<j2�m

P(Avm+i ∩ Aui
j1
∩ Aui

j2
) + . . .

. . . + (−1)m+1P(Avm+i ∩ Aui
1
∩ . . . ∩ Aui

m
)

= P
(
(Avm+i ∩ Aui

1
) ∪ . . . ∪ (Avm+i ∩ Aui

m
)
)

= P
(
Avm+i ∩ (Aui

1
∪ . . . ∪ Aui

m
)
)

= P (Avm+i) − P
(
Avm+i ∩ (Aui

1
∪ . . . ∪ Aui

m
)
)

= P (Avm+i) − P
(
Avm+i ∩ Aui

1
∩ . . . ∩ Aui

m

)
, (12)

where the first equality is the inclusion-exclusion formula. By summing up the right-
hand side of formula in (11) and (12) for all i = 2, . . . , n−m , we obtain that the weight
of Δ can be written in the form

w (Δ) =
m+1∑
j=1

P(Avj
)−1+P(Av1∩. . .∩Avm+1)+

n−m∑
i=2

[
P (Avm+i) − P

(
Avm+i ∩ Aui

1
∩ . . . ∩ Aui

m

)]
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=
n∑

j=1

P(Avj
)−1+P(Av1 ∩ . . .∩Avm+1)−

n−m∑
i=2

P
(
Avm+i ∩ Aui

1
∩ . . . ∩ Aui

m

)
. (13)

Since S1 =
n∑

j=1
P(Avj

) , the theorem follows from the inequality in (1). �

THEOREM 16. Let A1, . . . , An be arbitrary events and let Δ = (V, 1E2, . . . , 1Em+1)
be an arbitrary (1, m) -hypermultitree with V = {1, . . . , n} . Let w1, . . . , wn be a
permutation of the vertices in V and assume that a recursion producing Δ is as
follows: we start from (1, m) -hypermultitree with vertex set {w1, . . . , wm+1} then
adjoin subsequently the vertices wm+1+k with the hyperedges of Γk extended by vertex
wm+1+k in icreasing order of k = 1, . . . , n − m − 1 . Here Γk is an m -multitree on
the vertices w1, . . . , wm+k for all k = 1, . . . , n − m − 1 . Furthermore, assume that
a recursion producing Γk is as follows: we start from m-multitree with vertex set
{kv1, . . . ,k vm} then adjoin subsequently the m -multicherries ({kui

1, . . . ,k ui
m},i vm+i)

in icreasing order of i = 1, . . . , k . Then

P (A1 ∪ . . . ∪ An) � 1 − P(Aw1 ∩ . . . ∩ Awm+2)+

n−m−1∑
k=2

[
P(Awm+1+k

∩ Akv1 ∩ . . . ∩ Akvm+1) −
k∑

i=2

P
(
Awm+1+k

∩ Akvm+i ∩ A
ku

i
1
∩ . . . ∩ A

ku
i
m

)]
.

(14)

Proof. Since the vertices of (1, m) -hypermultitree obtained by adjoining wm+2

with the appropriate hyperedges are w1, . . . , wm+2 , its hyperedges are all subsets of
{w1, . . . , wm+2} with at least three elements, by Remark 13. These hyperedges con-
tribute to the weight of Δ with∑
1�j1<j2<j3�m+2

P(Awj1
∩ Awj2

∩ Awj3
) −

∑
1�j1<j2<j3<j4�m+2

P(Awj1
∩ Awj2

∩ Awj3
∩ Awj4

)+

. . . + (−1)m+1P(Aw1 ∩ . . . ∩ Awm+2)

= −
∑

1�j�m+2

P(Awj
) +

∑
1�j<k�m+2

P(Awj
∩ Awk

) + P(Aw1 ∪ . . . ∪ Awm+2)

= −
∑

1�j�m+2

P(Awj
) +

∑
1�j<k�m+2

P(Awj
∩Awk

) + 1− P(Aw1 ∩ . . .∩Awm+2), (15)

which follows from the inclusion-exclusion formula.
Similarly to the equality in (13), it can be seen that the hyperedges of Γk ( k =

2, . . . , n − m − 1 ) extended by wm+1+k contribute to the weight of Δ with

m+k∑
j=1

P(Awm+1+k
∩ Awj

) − P(Awm+1+k
) + P(Awm+1+k

∩ Akv1 ∩ . . . ∩ Akvm+1)

−
k∑

i=2

P
(
Awm+1+k

∩ Akvm+i ∩ A
ku

i
1
∩ . . . ∩ A

ku
i
m

)
. (16)
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By summing up the right-hand side of formula in (15) and (16) for all k =
2, . . . , n − m − 1 , we obtain that the weight of (1, m) -hipermultitree can be written in
the form

w (Δ) = −
∑

1�j�n

P(Awj
) +

∑
1�j<k�n

P(Awj
∩ Awk

) + 1 − P(Aw1 ∩ . . . ∩ Awm+2)

+
n−m−1∑

k=2

[
P(Awm+1+k

∩ Akv1 ∩ . . . ∩ Akvm+1) −
k∑

i=2

P
(
Awm+1+k

∩ Akvm+i ∩ A
ku

i
1
∩ . . . ∩ A

kui
m

)]
.

Since S1 =
∑

1�j�n
P(Awj

) and S2 =
∑

1�j<k�n
P(Awj

∩Awk
) , the theorem follows from

the inequality in (4) with h = 1 . �

REMARK 17. Similarly, inequlities in (3) and in (4) can be reformulated for any
h . Their practical benefit is based on the fact that they supply lower and upper bounds
for P (A1 ∪ . . . ∪ An) based on as few as

(n−m
h+1

)
probabilities of the intersection of

events.

4. Algorithms

In some applications, e.g., in computing bounds for the values of multivariate
distribution functions or network-reliability, evaluation of intersection probabilities
P(Ak1 ∩ . . . ∩ Aki) is usually quite expensive. Therefore, it is crucial that already a
relatively few of them should be enough to provide us with a good bound. In the
view of Remark 17, an upper (lower) bound for P(A1 ∪ . . . ∪ An) can be obtained
based on as few as n−m (

(n−m
2

)
) intersection probabilities by means of m -multitrees

( (1, m) -hypermultitrees).
There are a huge number of m -multitrees and (1, m) -hypermultitrees on n vertices

and each of them provide us with a bound for P(A1 ∪ . . .∪An) . In the view of Theorem
12, our aim is to find heavy hypermultitrees. We have seen in Theorem 14 that an
(h, m) -hypermultitree bound can be improved by increasing m . We gave an algorithm
in [3] to obtain a heavy m -multitree. The algorithm starts from the Hunter-Worsley
bound, i.e. the bound based on the heaviest 1 -multitree, then r -multitree is extended
to (r + 1) -multitree recursively ( r = 1, . . . , m ) to obtain better bounds.

Our algorithm that finds a heavy (1, m) -hypermultitree consists of two phases.
In the first phase a heavy (1, 1) -hypermultitree is constructed and in the second
phase (1, r) -hypermultitree is extended to (1, r + 1) -hypermultitree recursively ( r =
1, . . . , m ) to obtain better bounds.

The first phase (constructing heavy (1, 1) -hypermultitree):
Step 1: Construct (1, 1) -hypermultitree ({k1, k2, k3} , {{k1, k2, k3}}) , where

P(Ak1 ∩Ak2 ∩Ak3) is a maximum of the probabilities of the intersection of three events.
Let L = {1, . . . , n} \ {k1, k2, k3} , i.e., the list of still not taken vertices. Set the

first three elements of array AR to k1 , k2 and k3 in any order.
Step 2: Let k be an element of list L . Introduce a weight function on the edges of

the complete graph whose vertices are the vertices of the (1, 1) -hypermultitree already
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constructed: let the weight of edge {i, j} be P(Ai ∩ Aj ∩ Ak) . Assign the maximum
weight spanning tree to vertex k . Do so with all elements of list L .

Step 3: Let k be an element of the list.the weight of the spanning tree assigned to
is maximal. Adjoin vertex k and the edges of the assigned tree extended by k to the
(1, 1) -hypermultitree already constructed. Remove k from list L and put k into array
AR .

Step 4: If the list is not empty, then go to Step 2, else STOP.
Notice that a tree is assigned to each AR(i) with i � 4 . In general, when an

(1, r) -hypermultitree is already constructed, an r -multitree is assigned to each AR(i)
with i � r + 3 .

The second phase (extending (1, r) -hypermultitree to (1, r + 1) -hypermultitree):
Step 1: Construct (1, r + 1) -hypermultitree whose vertices are the first r + 3

elements of array AR . By Remark 13, this hypermultitree has a unique structure. Set
counter = r + 4 .

Step 2: Let k = AR (counter) . Introduce a weight function on the edges of the
complete graph whose vertices are the vertices of the (1, r + 1) -hypermultitree already
constructed: let the weight of edge {i, j} be P(Ai ∩ Aj ∩ Ak) .

Step 3: Extend the r -multitree assigned to k to (r + 1) -multitree as described in
[3, section Algorithms]. Adjoin the hyperedges of (r + 1) -multitree not in r -multitree
extended by k . Set counter to counter + 1 .

Step 4: If counter � n , then go to Step 2, else STOP.
Note that the algorithm requires the knowledge of all probabilities in the sum S3 .

5. Comparison with other inequalities. Lower and upper bounds for the values
of the multivariate normal probability distribution function.

In this section we compare our bounds based on m -multitrees and (1, m) -hyper-
multitrees with Grable’s bounds [6]. We generalized Tomescu’s bounds [13], which are
(h, 1) -hypermultitreebounds in our terminology. (h, 1) -hypermultitreesare k -uniform
hypergraphs, where k = h + 2 . They are generalized by Grable to k -matroid trees,
which are also k -uniform hypergraphs. Grable’s bound is obtained by replacing the
weight of (h, 1) -hypermultitree in Tomescu’s bound with the weight of k -matroid tree.
The fact that all k -matroid trees on a given vertex set constitute a matroid enables us to
obtain the best bound based on k -matroid trees by a greedy algorithm. Thus, Grable’s
bound is at least as good as the same order Tomescu’s bound ( k th order bounds are
those which are based on probabilities of intersections of at most k events).

To compute Grable’s k -matroid tree bounds we used the algorithm that Grable
recommends in his paper [7]. To compute a bound based on a k -matroid tree we need to
compute all probabilities in the sums S1, . . . , Sk−1 and

(n−1
k−1

)
probabilities in the sum

Sk . To execute Grable’s algorithm we need to compute all probabilities in the sum Sk .
However, to compute (k − 1) -multitree bounds or (1, k − 2) -hypermultitree bounds,
which are of the same order as the k -matroid tree bound, we need only n − k + 1 ,(n−k+2

2

)
probabilities in Sk resp. (see Remark 17), and to execute our algorithm that

finds a heavy (k − 1) -multitree ( (1, k − 2) -hypermultitree) we need to compute only
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the probabilities in the sum S2 (S3 ) (see the previous section). This explains why the
computation of m -multitree and (1, m) -hypermultitree bounds require significantly
less time.

Another advantage of (h, m) -hypermultitree bounds is that they can be improved
by increasing m (see previous section and Theorem 14 ). In other words, higher order
bounds are better than lower order ones when using our algorithm. As our numerical
examples show, the same is not true for k -matroid tree bounds.

Below we present four numerical examples and list the bounds obtained by different
methods. We take the event Ai as {ξi < xi} , i = 1, . . . , n , for given x1, . . . , xn ,
where the random vector (ξ1, . . . , ξn) has an n -variate standard normal probability
distribution. We give lower and upper bounds for the probability P(A1 ∪ . . . ∪ An) to
obtain upper and lower bounds, respectively for F(x1, . . . , xn) = P(ξ1 < x1, . . . , ξn <
xn) , by the use of the equation P(ξ1 < x1, . . . , ξn < xn) = 1 − P(A1 ∪ . . . ∪ An) .
The algorithms were implemented in FORTRAN, the required probabilities P(Ai) ,
P(Ai ∩ Aj) (1 � i < j � n) were computed by the IMSL subroutines MDNOR and
MDBNOR, P(Ak1 ∩ . . . ∩ Aki) (1 � k1 < . . . < ki � n , i � 3) were computed by
Genz’s FORTRAN code, SADMVN [5] with accuracy 10−6 . All computations have
been carried out by a CELERON II 850MHz computer.

EXAMPLE 1. et x1 = x2 = . . . = x20 = 2.5 , and the correlations: ri,j =
√

i
j for

all 1 � i < j � 20 .

Dimension 20
Lower bound Upper bound Time (seconds)

4 -matroid tree 0.922785 19.44
Hunter-Worsley 0.948492 0.01
2 -multitree 0.954413 0.01
3 -multitree 0.956893 0.01
4 -multitree 0.958254 0.05
5 -multitree 0.959109 0.11
6 -multitree 0.959727 0.28
7 -multitree 0.960121 0.48
8 -multitree 0.960435 2.14
3 -matroid tree 0.983400 2.47
5 -matroid tree 1.021199 196.86
(1, 1) -hypermultitree 0.983406 0.40
(1, 2) -hypermultitree 0.967585 0.40
(1, 3) -hypermultitree 0.963973 0.40
(1, 4) -hypermultitree 0.962691 0.56
(1, 5) -hypermultitree 0.962107 0.62
(1, 6) -hypermultitree 0.961798 1.00
(1, 7) -hypermultitree 0.961601 1.94
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EXAMPLE 2. Let x1 = 0.1 , x2 = 0.2 , x3 = 0.3 , . . . , x19 = 1.9 , x20 = 2.0 , and
ri,j = 0.8 for all 1 � i < j � 20 .

Dimension 20
Lower bound Upper bound Time (seconds)

4 -matroid tree 0.111152 33.29
Hunter-Worsley 0.199069 0.01
2 -multitree 0.341837 0.01
3 -multitree 0.370904 0.01
4 -multitree 0.379209 0.05
5 -multitree 0.381928 0.06
6 -multitree 0.382864 0.16
7 -multitree 0.383196 0.27
8 -multitree 0.383310 0.71
3 -matroid tree 0.614862 2.52
5 -matroid tree 0.668914 530.80
(1, 1) -hypermultitree 0.614862 0.34
(1, 2) -hypermultitree 0.396591 0.45
(1, 3) -hypermultitree 0.387411 0.45
(1, 4) -hypermultitree 0.384342 0.56
(1, 5) -hypermultitree 0.383590 0.62
(1, 6) -hypermultitree 0.383422 0.89
(1, 7) -hypermultitree 0.383380 1.50

EXAMPLE 3. Let x1 = 3.0 , x2 = 2.9 , x3 = 2.8 , . . . , x29 = 0.2 , x30 = 0.1 , and
r1,2 = 0.990 , r1,3 = 0.988 , r2,3 = 0.986 , r1,4 = 0.984 , r2,4 = 0.982 , r3,4 = 0.980 ,
r1,5 = 0.978 , . . . , r27,30 = 0.126 , r28,30 = 0.124 , r29,30 = 0.122 .

Dimension 30
Lower bound Upper bound Time (seconds)

4 -matroid tree -5.191175 408.15
Hunter-Worsley -0.973654 0.01
2 -multitree -0.341882 0.05
3 -multitree -0.094775 0.07
4 -multitree 0.007970 0.11
5 -multitree 0.054646 0.50
6 -multitree 0.076328 1.10
7 -multitree 0.087042 2.63
8 -multitree 0.092530 4.62
3 -matroid tree 2.517407 11.54
(1, 1) -hypermultitree 2.517407 2.31
(1, 2) -hypermultitree 0.161507 2.35
(1, 3) -hypermultitree 0.134832 2.51
(1, 4) -hypermultitree 0.120210 2.96
(1, 5) -hypermultitree 0.111012 4.23
(1, 6) -hypermultitree 0.105752 6.69
(1, 7) -hypermultitree 0.102767 9.82
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EXAMPLE 4. Let x1 = 1.84 , x2 = 1.88 , x3 = 1.92 , . . . , x29 = 2.96 , x30 = 3.0 ,
and the correlations: ri,j =

√
i
j for all 1 � i < j � 30 .

Dimension 30
Lower bound Upper bound Time (seconds)

4 -matroid tree 0.719174 428.86
Hunter-Worsley 0.861747 0.01
2 -multitree 0.877985 0.05
3 -multitree 0.884730 0.07
4 -multitree 0.888459 0.08
5 -multitree 0.890727 0.20
6 -multitree 0.892263 0.77
7 -multitree 0.893355 2.04
8 -multitree 0.894148 8.63
3 -matroid tree 0.972666 13.40
(1, 1) -hypermultitree 0.972666 1.14
(1, 2) -hypermultitree 0.909455 1.27
(1, 3) -hypermultitree 0.903721 1.43
(1, 4) -hypermultitree 0.900948 1.65
(1, 5) -hypermultitree 0.899480 2.46
(1, 6) -hypermultitree 0.898524 3.08
(1, 7) -hypermultitree 0.897911 5.43
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