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OPTIMIZERS FOR SUB–SUMS SUBJECT TO A SUM–

AND A SCHUR–CONVEX CONSTRAINT WITH

APPLICATIONS TO ESTIMATION OF EIGENVALUES

A. KOVAČEC, J. K. MERIKOSKI, O. PIKHURKO, A. VIRTANEN

(communicated by G. P. H. Styan)

Abstract. A complete solution is presented for the problem of determining the sets of points at
which the functions (x1, . . . , xn) �→ xk + . . . + xl, subject to the constraints M � x1 � . . . �
xn � m, x1 + x2 + . . . + xn = a, and g(x1) + g(x2) + . . . + g(xn) = b, with g strictly convex
continuous, assume their maxima and minima. Applications are given.

0. Introduction

Let m, M ∈ R = R ∪ {−∞, +∞} = [−∞, +∞], a, b ∈ R, and n ∈ Z�1.
For an extended function g : R → ] − ∞, +∞] and integers 1 � k � l � n, define

Skl
g (x) =

l∑
i=k

g(xi). We also use the abbreviations Sg = S1n
g , Skl = Skl

id, and S = S1n.

For convex continuous g : R → ] −∞, +∞], define the spaces

X = X(m, M, a, b; n; g) = {x ∈ R
n : M�x1�x2� . . . �xn�m, S(x) = a, Sg(x) = b}.

The main objective of this paper is the determination of the subsets of X where the
functions Skl assume their maxima and minima (called also maximum sets or maxi-
mizers, and minimum sets or minimizers) via an elementary technique; i.e. avoiding
Karush-Kuhn-Tucker theory, see e.g. [3]. The calculation of upper and lower bounds
for the functions Skl, of necessity always the best possible, is then a simple matter of
evaluation of the functions at points in their maximizers and minimizers.

This article puts many of the results estimating various functions of eigenvalues
and singular values in terms of the trace and/or determinant etc. (e.g. [5], [9], [10], [11],
[12], [13], [14], [17], [18]), in particular those in the last four papers mentioned, under a
general umbrella; many bounds obtained by Wolkowicz and Styan [17], [18] are implied
by our results.

Section 1 recalls some basics of the modern theory of convex functions; facts
yielding information about the spaces X(m, M, ∗), in particular also for n = 3 via
generalized barycentric coordinates in the plane, are also proved. In section 2, after
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presenting in lemma 6 the heart of our technique and theorem 7 that implicitly contains
an algorithm to test when the spaces X are nonempty, we show that for all integers
1 � k � l � n and m, M ∈ R the sets minimizer(Skl) = {x ∈ X : Skl(x) = inf{Skl(u) :
u ∈ X}} and maximizer(Skl) = {x ∈ X : Skl(x) = sup{Skl(u) : u ∈ X}} consist of
elements having a simple structure. Indeed theorems 8 and 9 show that the minimization
or maximization of the functions Skl can be reduced to that of solving equations in two
unknowns or to that of finding the intersections of a plane convex curve with a straight
line. The extent to which these equations can be explicitly solved depends of course on
the convex function g. The brief section 3 indicates that our theorems allow to calculate
explicitly the infimum and supremum of certain subsets of X in the lattice induced by
majorization order on X. In section 4 we show how our results can be used to estimate
partial sums of the eigenvalues of matrices having real spectra, given on the matrix
additional information like trA and trA2 ; trA and trA3; trA and det A; etc. This way
we gain deeper understanding of results found earlier by the second and fourth authors
on this subject.

Concerning presentation, we make differentiability assumptions on the convex
function g. These are made for simplicity, since they do not impose restrictions on our
applications, since they broaden accessibility of the paper, and since at spots they lead
to further illuminating observations. As far as we see, the main theorems 8 and 9 can be
stated and proved without differentiability assumptions following the indications in the
concluding section 5. Though the basic idea of our method is simple, we apologize for
that there are sometimes many cases to consider, the number and implications of which
are at times best controlled by applying a modest amount of the symbology of logic.
Our objects frequently depend on many parameters. To lighten notation, we usually
suppress a fair amount of these; the context provides the remaining ones. Finally, for
precision we indicate references sometimes in ways like ‘[2], p12c-5’ meaning ‘see [2]
page 12, approximately 5 centimeters from the last text row’.

1. Basic Notations, Definitions, and Lemmas

a. Some of the symbols and conventions we use are these:

|S| the number of elements of a set S.
R>0 the set of positive real numbers; R�0 and Z�1 are defined

analogously.
R

n the n -dimensional affine space; also the space of real n -tuples.
Sometimes replaced by a copy considered as an abstract Eu-
clidean space E.

1n the n -tuple (1, 1, . . . , 1).
x the n -tuple (x1, x2, . . . , xn).
x(k : l) the subtuple (xk, xk+1, . . . , xl), empty if k > l. (This notation

is MATLAB-inspired.)
x↓ decreasing rearrangement of x; e.g. (1, 3, 4, 2)↓ = (4, 3, 2, 1).
[p, q] the segment connecting points p, q in an affine space.
∨,∧, ∃ logical symbols for non-exclusive ‘or’, ‘and’, ‘exists’.
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P(m, M, a; n) the set {x ∈ R
n : M � x1 . . . � xn � m,

n∑
i=1

xi = a}.
D(n; a) the set of all decreasing n -tuples of sum a; same as

P(−∞, +∞, a; n).
∗ sometimes used for arguments we do not wish to specify. For

example, ‘consider a space X(m, M, ∗) ’ is ‘ consider some space
X(m, M, a, b; n; g) ’. The notation can mean also a union: ‘for
any x, y ∈ D(n, ∗) ’ can mean ‘for any x, y ∈ R

n that are
decreasing’. Context will avoid confusion.

∂S , intS the topological boundary and interior of a set S .
B(p, ρ) the p -centered ball of Euclidean radius ρ.
�> , �< the beginning and end of a smaller piece of reasoning; e.g. of a

proof of a claim.
x � y, x > y, etc. comparability of n -tuples in componentwise order.
x w y, x  y weak, strong majorization orders. For x, y ∈ D(n, ∗), x w y

means that S1l(y − x) � 0 for l = 1, . . . , n, and x  y means
that x w y∧ S1n(y−x) = 0. Definitive treatise on majorization
is [8].

0 · ±∞, a + ∞ by conventions 0 · ±∞ = 0, a + ∞ = ∞.
p ∼ q proportionality, saying ∃λ �= 0, p = λq.
w.r.t., lhs(·), rhs(·) with respect to, left-hand side of (·) , right hand side of (·).

b. Concerning convex functions it simplifies matters if we adopt definitions used
in modern texts on convex analysis or optimization; foremost we mention Rockafellar’s
definitive treatise [16] and the recent book of Borwein and Lewis [3]. Let E be an
Euclidean space and g : E → [−∞, +∞] be a real valued function on E . The domain
of g is dom g = {x ∈ E : g(x) < ∞}; g is called proper if dom g �= ∅ and for
no x ∈ E, g(x) = −∞, see [3], p44c2; [16], p23c4. The function g is convex if its
epigraph epi g = {(x, r) ∈ E × R : g(x) � r} is a convex set, see [3], p43c-2; [16],
p23; strictly convex if its epigraph is strictly convex, see [7], p98c-2. Proper convex
functions in this sense have convex domains and satisfy for x, y ∈ E the usual inequality
g(λx + (1− λ )y) � λg(x) + (1− λ )g(y), see [3], p46c6; strictly convex functions the
strict inequality. As we see, every convex/strictly convex function g : I → R ( I is
an interval) in the traditional sense (satisfying the inequality/strict inequality) can be
trivially extended to R putting its values outside I equal to +∞ and thus viewed as a
convex function in the sense here defined, see [16], p23c-3.

PROPOSITION 1. Let k ∈ Z�1, α1, . . . ,αk ∈ R>0, a, b ∈ R. Assume the function
g : R → [−∞, +∞] satisfies the following: g is proper and strictly convex, dom g is
open, and g is differentiable and unbounded on dom g. Let μ = a

k∑
i=1

αi

, m = μ1k , and

let S = S ((α1, . . . ,αk), a, b) be the set of solutions of the system of two equations

i. S(x) =
k∑

i=1

αixi = a, ii. G(x) =
k∑

i=1

αig(xi) = b.

Then H = {x : x solves (i)} is a hyperplane and S is either empty/the point {m}
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/homeomorphic to a sphere in H according to if G(m) > b /G(m) = b /G(m) < b.

Proof. It is clear that H is a hyperplane containing m. We can write H = {m+tr :

t ∈ R, r = (r1, . . . , rk) ∈ R
k,

k∑
i=1

αiri = 0, ||r|| = 1}. Every x ∈ H \ {m} has a unique

representation x = m + t(x)r(x) with t(x) > 0, and thus we can view G henceforth

as defined by G(m + tr) =
k∑

i=1
αig(μ + tri) as a function on the Euclidean space H.

Claim 0. G is strictly convex on H. �> Let x, y be two points in dom G and
λ ∈ ]0, 1[. Then

G(λx + (1 − λ )y) =
k∑

i=1

αig(λxi + (1 − λ )yi)

�
k∑

i=1

αi(λg(xi) + (1 − λ )g(yi))

= λG(x) + (1 − λ )G(y).

Since we are supposing x �= y, there exists i such that xi �= yi; hence the strict
convexity of g implies the strictness of the inequality. �<

Claim 1. dom G �= ∅ ⇔ m ∈ dom G ⇔ μ ∈ dom g. �> The implications ⇐
are clear. Now let t ∈ R be such that m + tr ∈ dom G. There are i, j such that
ri � 0 � rj, and so we get g(μ + tri) < +∞ and g(μ + trj) < +∞. If t � 0, we
have μ + tri � μ � μ + trj, and the reverse inequalities in case t � 0. In any case the
convexity of dom g insures μ ∈ g, as we wished to show. �<

Claim 2. dom G is open. �> If dom G is empty, there is nothing to prove. Suppose
now dom G �= ∅ and let x ∈ H. Clearly x ∈ dom G iff, for all i, xi ∈ dom g. Since
dom g is open, there is ε > 0 such that xi+ ] − ε, +ε[⊆ dom g for all i. But then the
open set (x+ ] − ε, +ε[n) ∩ H in H is an open neighborhood of x in H, contained in
dom G. �<

Claim 3. If dom G �= ∅, then minimizer(G) = {m}. �> By claims 1 and 2, m
and μ are interior points of dom G and dom g respectively. Hence the calculation
d
dt G̃(m + tr)|t=0 =

∑
i
αirig′(μ) = 0 is well defined and shows that m is a critical

point. Since G is a strictly convex function, m is the unique minimizer of G, see [3],
p16c-7, 19c-5. �<

Claim 4. For any r ∈ R, the level sets Lr = {x ∈ H : G(x) � r} are convex
compact subsets of dom G. If r > G(m), then m ∈ int(Lr) = {x : G(x) < r}. �> We
can assume Lr �= ∅. By claims 2 and 3, there exists ρ > 0 such that the sphere ∂B,
B = B(m, ρ) ⊂ H, pertains to dom G. Let d(r) = G(m + ρr) − G(m) > 0. The
function d assumes on ∂B its minimum, say at point r0. From an application of the
formulae in [15], p98c1 or [16], p242c2 we get

G(m + tr) � G(m + ρr) + (t − ρ)
dG
dt

∣∣∣
t=ρ

� G(m) + d(r) + (t − ρ)
d(r)
ρ
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= G(m) +
t
ρ

d(r)

� G(m) +
t
ρ

d(r0).

Choose t0 such that G(m) + t0
ρ d(r0) = r. We see: for all x ∈ H with x �∈ B(m, t0),

there holds G(x) > r. Hence the set Lr is bounded. The remaining claims follow from
combining [16], p28c-2, 51c-3, 52c-8, 59c2 or can otherwise be left to the reader. �<

We can now conclude the proof. Case: G(m) > b . If m ∈ dom G, then by claim
3, for all x ∈ H, G(x) � G(m) > b. If m �∈ dom G, then claim 1 says G(x) = +∞
for all x ∈ H, and we come to the same conclusion. In any case we see S = ∅.

Case: G(m) = b. Then claim 3 gives S = {m}. Case: G(m) < b. Then, using
S = {x : G(x) � b} \ {x : G(x) < b}, we have by ([16], p59c1) that S = ∂Lb. Now
[2], corollary 11.3.4 completes the proof. �

LEMMA 2. Assume the hypotheses of proposition 1 specialized to the case k = 3
and G(m) < b. Then S = S ((α, β , γ ), a, b) is a convex, rectifiable, smooth curve
in H. If s �→ (x(s), y(s), z(s)) is a regular parametric representation (e.g. w.r.t. curve
length), then with a dot denoting differentiation w.r.t. s :

a. ẋ = 0 ⇔ z = y , ẏ = 0 ⇔ x = z, ż = 0 ⇔ x = y;
b. for each s with ẋ · ẏ · ż �= 0 there holds sgn(ẋ, ẏ, ż) ∈ {(+,−, +), (−, +,−)}.
Proof. a. It is known that the boundary of a compact convex plane region is

rectifiable. Thus we obtain from the previous lemma that we can parametrize S in the
form s �→ (x(s), y(s), z(s)), where s is the arc length measured from a certain point
onwards. (In a cartesian interpretation of coordinates, ẋ2 + ẏ2 + ż2 ≡ 1. ) Since the
curve S satisfies (i) and (ii) of proposition 1, we find upon differentiation the relations

0 = α ẋ + β ẏ + γ ż, (1)
0 = αg′(x)ẋ + βg′(y)ẏ + γ g′(z)ż

= (α ẋ + β ẏ + γ ż)g′(z) + α ẋ(g′(x) − g′(z)) + β ẏ(g′(y) − g′(z))
= α ẋ(g′(x) − g′(z)) + β ẏ(g′(y) − g′(z)). (2)

Note that the nonvanishing of the tangent vector and (1) imply that for each s at most
one of the quantities ẋ(s), ẏ(s), ż(s) vanishes. Thus if ẋ = 0, we find g′(y)−g′(z) = 0;
hence, by monotonicity of g′ ([15], p10c-1), y = z follows. Conversely, and using that
x = y = z is impossible, we get that y = z implies ẋ = 0. Proceeding analogously for
the pairs x, z and x, y proves (a).

b. Assume x > y > z. Then g′(x) > g′(y) > g′(z). Thus we see that
sgn(ẋ)sgn(ẏ) = −1. Interchanging in the calculation leading to (2) the roles of αg′(x)ẋ
and γ g′(z)ż, we get similarly that sgn(ẋ)sgn(ż) = −1. Similar considerations can ob-
viously be made in all cases where x �= y �= z �= x. �

It is instructive and for our later applications indeed useful to interpret the formulae
of lemma 2 geometrically. Select three noncollinear points X, Y, Z in a plane. We
coordinatize its points by triples (x, y, z) satisfying αx + βy + γ z = a via the better
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known barycentric coordinates (x̂, ŷ, ẑ) w.r.t. X, Y, Z (see [2], p81) via the formulae
x̂ = α

a x, ŷ = β
a y, ẑ = γ

a z. We call (x, y, z) generalized barycentric coordinates w.r.t.
X, Y, Z and parameters α, β , γ , a.

LEMMA 3. In a generalized barycentric system with parameters α, β , γ , a, an
equation cx + dy + ez = f with (0, 0, 0) �∼ (c, d, e) �∼ (α, β , γ ) represents a line
through points Z′ ∈ {z = 0} and Y ′ ∈ {y = 0} (see the rhs-figure) located so that

−→
XZ′ =

β
a
· ac − αf
βc − αd

−→
XY,

−→
XY ′ =

γ
a
· ac− αf
γ c − αe

−→
XZ.

Proof. Expressed in barycentric coordinates, cx + dy + ez = f turns into ac
α x̂ +

ad
β ŷ + ae

γ ẑ = f . Given our hypotheses, this represents a line for it is interpretable
as the intersection of two planes. Since x̂ + ŷ + ẑ = 1, one calculates that this
line intersects {z = 0} = {ẑ = 0} at a point Z′ whose barycentric coordinates are
given by x̂(Z′) = αβ f −αad

βac−αad , ŷ(Z′) = βac−αβ f
βac−αad . We see (e.g. applying [2], p295c and

elementary triangle geometry, or otherwise) that if P is any point on the line ẑ = 0,

then
−→
XP = ŷ(P) · −→XY. From this follows the first assertion; the second is similar. �

EXAMPLE 4. Consider the lhs-figure where we have chosen points X, Y, Z to

define a triangle of unit side length. In such a system the coefficients of
−→
XY,

−→
XZ are

interpretable as signed distances from X to Z′ and X to Y ′ respectively.

����
����
����

X > Y> Z�

z = 0�

x =
 y�

3x + y = 0.5�

y 
= 

0�

x = z�

x = 0�

z = y�

Z�

X� Y�

f�

- - +�

- + +�

+ + +�

+ - -� + + -� - + -�

+ - +�

z�

x� y�
z'�

The rest of the figure is to be interpreted with (α, β , γ , a) = (2, 5, 3, 1). The
straight lines drawn are: prolonged segments XY ⊆ {z = 0}, ZY ⊆ {x = 0}, ZX ⊆
{y = 0} that define the triangle; the cevians x = y through Z, x = z through Y, z = y
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through X, and the line 3x + y = 0.5. The figure shows further a convex curve which
we assume to be the solution of some equation 2g(x)+ 5g(y)+ 3g(z) = b for a certain
convex g. According to lemma 2, at the point of intersection with x = y, y = z, z = x
the tangents to S are parallel to segments XY , YZ , and ZX respectively. We further
find a shadowed open region in which the coordinates of any point satisfy x > y > z.
There are six such regions defined solely by the lines through the point x = y = z. The
arrows indicate increase or decrease of coordinates x, y, z of a point moving along S
in that region counterclockwise. The lines x = 0, y = 0, z = 0 define seven disjoint
regions. The function P �→ sgn(x, y, z) is constant in each of these regions. We have
indicated the values of this function for each of the regions by − + +, etc. in the
rhs-figure.

LEMMA 5. Assume the hypotheses and notation of lemma 2. Define for m, M ∈
[−∞, +∞] the set S ′ = S ′(m, M) = {(x, y, z) ∈ S ((α, β , γ ), a, b) : M � x � y �
z � m}. Let (ξ ′,η′) ∈ S ((α, β + γ ), a, b) with ξ ′ � η′ and (ξ ,η) ∈ S ((α +
β , γ ), a, b) with ξ � η. Let

(xL, yL, zL) =
{

(ξ ′,η′,η′) if ξ ′ � M,
(M, y, z) ∈ S ′ if ξ ′ > M,

(xR, yR, zR) =
{

(ξ , ξ ,η) if η � m,
(x, y, m) ∈ S ′ if η < m.

These points are all uniquely defined. Assume c , d , e ∈ R�0 satisfy, in addition to

the hypothesis of lemma 3, the inequality c
α > max{ d

β , e
γ }. Put ε = sgn

(
γ
β
βc−αd
γ c−αe +

α
β

xL−xR
yR−yL

− 1
)
. Then

minimizer(cx + dy + ez|S ′(m, M)) =

⎧⎨
⎩

{(xR, yR, zR)} if ε = +1,
{(xL, yL, zL), (xR, yR, zR)} if ε = 0,
{(xL, yL, zL)} if ε = −1.

Proof. We reason along the lines of the figures. If M is sufficiently large or m
sufficiently small, then S ′(m, M) is just the part of S lying in the shadowed region
x � y � z of the lhs-figure and thus limited at the left by a point (x, y, z) with y = z,
coinciding evidently with the point (ξ ′,η′,η′) formed from the solution (ξ ′,η′) with
ξ ′ � η′ in S ((α, β + γ ), a, b); and on the right by a point with x = y formed
similarly from the decreasing solution (ξ ,η) in S ((α + β , γ ), a, b). If M is smaller
than the x -coordinate of the point in S satisfying x � y = z and/or m larger than the
z -coordinate of the point in S satisfying x = y � z, then upon watching the changes
of x - and z -coordinates of a point moving in the shadowed region, we see that the arc is
defined on the left by a point of the form (M, ∗, ∗) and/or on the the right by a point of
the form (∗, ∗, m), and the claim follows again – the rhs-figure tries to illustrate these
possibilities.

Let us now define the ‘steepness’ of a line through two points Y ′ ∈ {y = 0},
Z′ ∈ {z = 0} as the ratio of the signed distances that Y ′ and X′ have from X. So if
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cx+dy+ez = f is any line, then lemma 3 yields the formula steepness(lf ) = γ (βc−αd)
β(γ c−αe) .

Of course the steepness does not depend on f .
We now assume c, d, e to have the meaning and satisfy the hypotheses reserved

for them. Define for real f the line lf = {cx + dy + ez = f }. The hypotheses ensure

that the denominators figuring in the expressions given in lemma 3 for
−→
XZ′ and

−→
XY ′,

Z′ = Z′(f ), Y ′ = Y ′(f ) – these being the points of intersections of the line lf with
z = 0 and y = 0 respectively – are all positive. If f = 0 , the fractions are indeed
> 1. We see that as f increases, Y ′ and Z′ wander toward X. Let l̄ be the line
through points (xL, yL, zL) and (xR, yR, zR). It is a consequence of lemma 2a and the
convexity of arc S ′ that we always shall have 0 < steepness(l̄) < 1. The minimizer
of the function (x, y, z) �→ cx + dy + ez restricted to S ′ is the subset of S ′ that
line lf hits first as f increases. This set consists of the point (xR, yR, zR) only if
steepness(lf ) > steepness(l̄), of both points (xL, yL, zL), (xR, yR, zR) if the steepnesses
are equal, and of point (xR, yR, zR) only if steepness(lf ) < steepness(l̄) . The line l̄
obeys the equation (yR − yL)x + (xL − xR)y + 0z + (xRyL − xLyR) = 0. Calculating its
steepness, the claim follows. �

2. Maximizers and Minimizers

This section presents the main results; unfortunately many of these results are
technical at first reading. However, just as is the case with lemma 5 of the previous
section, large chunks of the technicalities evaporate for spaces in which m = −∞, M =
+∞; so the reader is invited to always reflect first what happens in this case.

Fix a space X = X(m, M, a, b; n; g) with g as in proposition 1. It will be sometimes
convenient to think of x = (x1, . . . , xn) ∈ X as augmented by x0 = M, xn+1 = m
and to say that x has a descent in X at i ∈ {0, 1, . . . , n} if xi > xi+1. Sometimes we

indicate the position of a descent at i in a form like (. . .
i
> . . .), and write descents(x)

for the set of descents of x (in X). We extend this definition in a natural manner to
subtuples x(k : l). For example, if x = (3, 3, 1, 1,−2) ∈ X(−5, 3, 6, ∗; 5; g), then
descents(x) = {2, 4, 5}, and descents(x(3 : 4)) is {0, 2} in terms of relative positions
and {2, 4} in terms of absolute ones. No confusion will arise.

Let x ∈ X(m, M, ∗). If there exists i = (i0, . . . , i5) ∈ Z
6 satisfying 0 � i0 < i1 �

i2 < i3 � i4 < i5 � n, and r, s, t ∈ Z>0 and x, y, z ∈ R such that x can be thought of
as having the form

• x = x(x, y, z) = (. . .
i0
> x1r

i1
� . . .

i2
� y1s

i3
> . . .

i4
> z1t

i5
� . . .), then x is

amenable to an ↑↓↑ − i -motion; i.e. to a replacement x �→ x′ = x(x′, y′, z′) with
x′ > x, y′ < y, z′ > z such that x′ ∈ X;

• x = x(x, y, z) = (. . .
i0
� x1r

i1
> . . .

i2
> y1s

i3
� . . .

i4
� z1t

i5
> . . .), then x is

amenable to an ↓↑↓ − i -motion; i.e. to a replacement x �→ x′ = x(x′, y′, z′) with
x′ < x, y′ > y, z′ < z such that x′ ∈ X.

Note that ↑↓↑ − i -movability of x for some i is implied by (and implies) the
existence of i0, i3 ∈ descents(x) such that 0 � i0 < i0 + 2 � i3 � n − 1. In this case
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we can find x, y, z, r, s, t, i1, i2, i4, i5 (usually in many ways) such that x is ↑↓↑ − i -
movable with i = (i0, . . . , i5). Similarly there exist i1, i5 ∈ descents(x) with 1 � i2 <
i2 + 2 � i5 � n if and only if these can be completed to an i = (i0, . . . , i5) (usually
in various ways) such that x is ↓↑↓ − i -movable. A complete specification of a motion
would make necessary also the indication of one of the amounts x′ − x, y′ − y, z′ − z ,
but these quantities are irrelevant for us. Of course i and r, s, t depend on each other;
namely we have i1 − i0 = r, i3 − i2 = s, i5 − i4 = t. As with descents, movability
depends via the values of m and M on the space X to which we refer. Context will
avoid confusions.

LEMMA 6. For integers k, l with 1 � k � l � n − 1, consider a space X =
X(m, M, a, b; n; g) and let x ∈ X.

a. If there exist i0, i3 ∈ descents(x) with 0 � i0 � k− 1, l + 1 � i3 � n− 1, then
x �∈ maximizer(Skl).

b. If there exist i0, i3 ∈ descents(x) with 0 � i0 � k − 2, k � i3 � n − 1, then
x �∈ minimizer(Skl).

b’. If there exist i0, i3 ∈ descents(x) with 0 � i0 < i0 + 2 � i3 � l, then
x �∈ minimizer(S1l).

c. If there exist i2, i5 ∈ descents(x) with 1 � i2 � l − 1, l + 1 � i5 � n, then
x �∈ maximizer(Skl).

d. If there exist i2, i5 ∈ descents(x) with 1 � i2 � k − 2, l � i5 � n, then
x �∈ minimizer(Skl).

d’. If there exist i2, i5 ∈ descents(x) with l � i2 < i2 + 2 � i5 � n, then
x �∈ minimizer(S1l).

Proof. a. Choose i0 = max{i ∈ descents(x) : i � k − 1}. Then (check that it is
possible to) complete i0, i3 to i = (i0, . . . , i5) via choices i1 = k, s = 1, i4 = i3, t = 1,
such that x is ↑↓↑ − i -movable. Indeed, we can now think of x as having the form

x = x(x, y, z) = (. . .
i0
> x1r

k
� . . . � y

i3
> z � . . .). We subject x to an associated

↑↓↑− i -motion x �→ x′ ∈ X. Since y and z are to the right of the l′ th entry, the motion
increases exactly the k′ th component of x by the amount x′ − x, while leaving the
other components of x(k : l) unaltered. Hence Skl(x′) > Skl(x), proving the claim.

In the remainder of this proof we will be more succinct and specify i usually only
to some necessary amount.

b. Choose i3 � k minimal; i1 = i2 = k − 1, i4 = i3. Then we can think of x

as having the form x = (. . .
i0
> x1r

k−1
� y1s

i3
> z1t

i5
� . . .). Consider an ↑↓↑ − i -motion

x �→ x′. If i3 � l , then all entries at positions in {k, . . . , l} decrease; if i3 < l , then
all entries changed at positions outside {k, . . . , l} increase. These positions define a
nonempty set. Either way, the conservation of the sum of the entries of x by the motion
(i.e. S(x) = S(x′) ) guarantees Skl(x′) < Skl(x), proving the claim.

b’. Choose i3 � l maximal, put i4 = i3 and t maximal. An ↑↓↑ − i -motion
x �→ x′ replaces some entries of x outside positions {1, . . . , l} by larger values, while
no such entry is replaced by a smaller value. So from sum conservation the claim
follows.
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c. Choose i4 = i3 = l, i1 = i2 � l − 1 maximal (i.e. s maximal), r = 1, i5 > l

minimal (i.e. t maximal). Then we can think of x as x = (. . .
i0
� x

i1
> y1s

l
� z1t

i5
> . . .).

Subjecting x to a ↓↑↓− i -motion to obtain x′ ∈ X will in case i1 � k− 1 : increase all
entries in x(k : l) = y1s′ (for some s′ � s ), and in case k−1 < i1 : decrease all entries
moved outside of positions {k, . . . , l}. Thus sum conservation implies Skl(x′) > Skl(x).

d. Choose i5 � l minimal, i1 = i2 � k − 2 maximal, s = 1, i3 = i4, t

maximal. We can think of x as x = (. . .
i0
� x1r

i1
> y

i3
� z1t

i5
> . . .). An associated

↓↑↓ -motion x �→ x′ decreases all the entries in positions in {k, . . . , l} that are moved;
hence Skl(x) > Skl(x′).

d’. Choose i2 � l minimal. Put i1 = i2 and r maximal. We can now apply an
↓↑↓ − i -motion x �→ x′ . All entries changed in positions {1, . . . , l} are diminished, so
the claim follows. �

The following theorem answers completely which spaces X are nonempty and,
for certain types of points, whether they exist in a space X or not. Such criteria can
be useful in non-interactive software implementations of our method. A simple idea
and results from [6] are used: the complicated formulae in (iv) arise from explicit
enumeration of all vertices of a certain polytope given there; note that the third line of
(iv) will be true only in a few exceptional cases. The paper [6] works with ascending
chains m � x1 � . . . � xn � M instead of the descending M � x1 � . . . � m used
here; to ease comparison, the notation follows that paper as closely as possible.

THEOREM 7. a. Let X = X(m, M, a, b; n; g). If m, M ∈ R, define f (l) = (l −
1)m + (n + 1 − l)M. Then X �= ∅ if and only if ng( a

n ) � b, m � M, and one of the
following conditions is satisfied, where quantifications are meant over integers:

i. m = −∞, M = +∞.

ii. M ∈ R and (m = −∞∨ a ∈ [f (2), f (1)]) and ∃n̄, 1 � n̄ � n, (n− n̄)g(M)+
n̄g( a−(n−n̄)M

n̄ ) � b.

iii. m ∈ R and (M = +∞ ∨ a ∈ [f (n + 1), f (n)]) and ∃n̄, 1 � n̄ �
n, n̄g( a−(n−n̄)m

n̄ ) + (n − n̄)g(m) � b.

iv. (m, M ∈ R and a ∈ ]f (n), f (2)[) ∧ ((∃n1, n2, 0 � n1 < a−mn
M−m , 0 � n2 <

Mn−a
M−m , n2g(M) + (n− n1 − n2)g( a−mn1−Mn2

n−n1−n2
) + n1g(m) � b)∨ (∃n1, n2 ∈ Z�1, n1m +

n2M = a, n1 + n2 = n, and n2g(M) + n1g(m) � b)).
b. Given integers n1, n2 ∈ Z�0, let ã = a−Mn1−mn2, b̃ = b−n1g(M)−n2g(m).

Then (M1n1 , x, m1n2) ↔ x furnishes a 1-1 correspondence between the points of the
form of the lhs(↔) in X(m, M, a, b; n; g) and the points in x ∈ X(m, M, ã, b̃; n − n1 −
n2; g). In particular this allows via (a) to decide whether X(m, M, a, b; n; g) has points
of the form (M1n1 , x, m1n2).

Proof. a. We apply proposition 1 with k = n,α1 = . . . = αn = 1. Define G(x) =∑
i

g(xi), H = {x ∈ R
n :

∑
xi = a}, P = P(m, M, a; n) = {x ∈ H : M � x1 . . . �

xn � m}, S = S (1n, a, b) = {x ∈ H : G(x) = b}, and X = X(m, M, a, b; n; g).
Clearly X = S ∩ P and P is convex. Let ext P be the set of extreme points of P.

Claim 1. X �= ∅ ⇔ (G(m) � b) ∧ (P is unbounded ∨ ∃p ∈ ext P, b � G(p)).
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�> ⇐ : The hypotheses imply of course that P �= ∅; hence, as is easily seen,
m = a

n1n ∈ P. Now, there always exists p ∈ P such that b � G(p) : if P is bounded,
this is part of the hypothesis; if P is unbounded, this follows by proposition 1 (or most
directly by claim 4 in its proof). By convexity of P and continuity of G, there exists
p′ ∈ P, p′ ∈ [m, p] ⊆ H with G(p′) = b. So p′ ∈ S ∩ P = X.

⇒ : The hypothesis implies of course S �= ∅ �= P, and so m ∈ P and, by
proposition 1, G(m) � b. If P is unbounded, then rhs(⇔ ) is trivially true. If P is
bounded, then P is a convex polytope and hence the convex hull of its extreme points,
called vertices. If we had G(p) < b for all p ∈ ext P, then Jensen’s inequality ([15],
p212c7) implies G(x) < b for all x ∈ P, hence S ∩ P = ∅, a contradiction. �<

Note that G(m) = ng( a
n ), and that P is unbounded iff m = −∞, M = +∞. It

suffices, thus, to show the following claim.
Claim 2. (ii) ∨ (iii) ∨ (iv) ⇔ (P is bounded ∧ ∃p, p ∈ ext P, b � G(p)).
�> ⇒: First, let P satisfy (ii). Since M ∈ R, then P is bounded. If a ∈

[f (2), f (1)], then P(m, M) = P(−∞, M), see [6], lemma 2f. By ([6], theorem 5),
ext (P(−∞, M)) consists of the points p = p(n1, n2) = (M1n2 , ξ1n1) where n1 ∈ Z�1,
n1 � n, n1 + n2 = n, ξ = ξ(n1, n2) = a−n2M

n1
. Hence G(p(n1, n2)) � b is equivalent

to n2g(M)+n1g( a−n2M
n1

) � b for some n1 and n2. Thus rhs(⇔) follows after a simple
renotation. If P satisfies (iii), then one can infer rhs(⇔) by using reasoning similar
to that just given for (ii), using [6], lemma 2f, theorem 6; if P satisfies (iv), one uses
[6], theorem 4d.

⇐: The hypothesis implies that P is a nonempty polytope of one of the types
P(−∞, M) , P(m, M) or P(m, +∞) with m, M ∈ R. The polytopes P(−∞, M) and
P(m, +∞) have known extreme points. Using them and the hypothesis yields (ii) and
(iii). Finally suppose that P(m, M) satisfies the hypothesis. Since P(m, M) �= ∅, it
follows that a ∈ [f (n + 1), f (1)] = [f (n + 1), f (n)]∪]f (n), f (2)[∪[f (2), f (1)] and
these cases are precisely covered by (ii,iii,iv), and we are done. �<

b. The easy considerations are left to the reader. �
In theorems 8 an 9 below the structures of the sets maximizer(Skl|X) and minimizer

(Skl|X), 1 � k � l � n, are determined. Note that theorem 8e relegates the calculation
of the sets maximizer(Skn), 2 � k � n, to the calculation of the sets minimizer(S1,k−1).
These latter are determined in theorem 9f. Theorem 9e relegates the calculation of the
sets minimizer(Skn) for 2 � k � n to the calculation of the sets maximizer(S1,k−1).
Note that the determination of the latter fall under the domain of theorem 8bcd and
the answers are more explicit than those for the minimizers of the S1,k−1. Interestingly
the optimizers of Skl depend usually only on one of the parameters k, l; hence by
determining one of these optimizers we frequently have many others.

THEOREM 8. (maximizers) Given integers k, l with 1 � k � l � n − 1 and a
space X = X(m, M, a, b; n; g) �= ∅, define the sets U = {x ∈ X : x(1 : l) = M1l},
V = {(ξ1l,η1n−l) ∈ X : ξ ,η ∈ R}, W = {x ∈ X : x(l + 1 : n) = m1n−l}. Then:

o. maximizer(S1n) = X.
a. ∅ �= maximizer(Skl) ⊆ U ∪ V ∪ W; if two of the sets U, V, W are nonempty,

they are equal singletons.
b. If U �= ∅, then maximizer(Skl) = U.
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c. If V �= ∅, then there exist ξ ,η, with M � ξ � η � m, such that
maximizer(Skl) = V = {(ξ1l,η1n−l)}.

d. If W �= ∅, then, letting ã = a − (n − l)m, b̃ = b − (n − l)g(m), and
X̃ = X(m, M, ã, b̃; l; g), there holds maximizer(Skl) = {x ∈ X : x(1 : k − 1) ∈
minimizer(S1,k−1|X̃), x(l + 1 : n) = m1n−l}.

e. For 2 � k � n, maximizer(Skn) = minimizer(S1,k−1).

Proof. o. Obvious.
a. Consider, to the extent existing, u ∈ U, v ∈ V, w ∈ W. These n -tuples have

the following forms: u = (M, . . . , M, ul+1, . . . , un), v = (ξ , . . . , ξ ,η, . . . ,η), w =
(w1, . . . , wl, m, . . . , m). From the facts that S1n(u) = S1n(v) = S1n(w) = a and that
u, v, w are decreasing with entries in [m, M], it is easy to see that u � v, w � v, u � w.
Hence, if u �= v, we have by [8], p64c-4, p54c8 the contradiction b =

∑
g(ui) >∑

g(vi) = b. Hypothesizing u �= w and v �= w leads to similar contradictions. Since
X is compact and the functions Skl continuous, we know that maximizer(Skl) �= ∅.
Now lemma 6ac tells us that if x ∈ maximizer(Skl), then the following logical formula
holds true: ((descents(x)∩ {0, . . . , k− 1} = ∅)∨ (descents(x)∩ {l + 1, . . . , n− 1} =
∅)) ∧ ((descents(x) ∩ {1, . . . , l − 1} = ∅) ∨ (descents(x) ∩ {l + 1, . . . , n} = ∅)).
Rewriting this formula as a disjunction of four conjunctions using the distributive law,
the set of all x satisfying this formula is seen to be precisely U ∪ V ∪ W, yielding (a).

b. The claim is obvious, since for any x ∈ X \ U and u ∈ U we have of course
Skl(x) < (l − k + 1)M = Skl(u).

c. For any real ξ ,η we have obviously (ξ1l,η1n−l) ∈ X iff (ξ ,η) ∈ S ((l, n −
l), a, b) and M � ξ � η � m. Now S ((l, n − l), a, b) is by proposition 1 a point or
a ‘sphere’ in the one-dimensional space H1 = {(x, y) : lx + (n − l)y = a}; hence it
consists of at most two points, (ξ ,η) and (ξ ′,η′) say, which define a closed (possibly
degenerated) interval containing a

n12. Hence one of the points, (ξ ,η) say, satisfies
ξ � η.

d. Under the hypothesis we infer from (a) that maximizer(Skl) ⊆ W, and hence
x(l + 1 : n) = m1n−l for any x ∈ maximizer(Skl). Fix such x. Then Skl(x) � Skl(x′)
for all x′ ∈ X, hence S1,k−1(x) + Sl+1,n(x) � S1,k−1(x′) + Sl+1,n(x′) for all x′ ∈ X, in
particular for those in W, for which latter we get S1,k−1(x) � S1,k−1(x′). But x′ ∈ W
iff it is of the form x′ = (x̃, m1n−l) with x̃ ∈ X̃, and (d) follows.

e. This is a consequence of S1,k−1(x) + Skn(x) = a. �

THEOREM 9. (minimizers) Given integers k, l with 2 � k � l � n − 1 and a
space X = X(m, M, a, b; n; g) �= ∅, define U = {x ∈ X : x(1 : k − 1) = M1k−1},
V = {(ξ1k−1,η1n−k+1) ∈ X : ξ ,η ∈ R}, W = {x ∈ X : x(k : n) = m1n−k+1}. Then:

o. minimizer(S1n) = X.
a. ∅ �= minimizer(Skl) ⊆ U ∪ V ∪ W; if two of the sets U, V, W are nonempty,

they are equal singletons.
b. If U �= ∅, then letting ã = a − (k − 1)M, b̃ = b − (k − 1)g(M), and

X̃ = X(m, M, ã, b̃; n− k + 1; g), there holds minimizer(Skl) = {x ∈ X : x(1 : k− 1) =
M, x(k : n) ∈ maximizer(Sl−k+2,n−k+1|X̃)}.

c. If V �= ∅, then there exist M � ξ � η � m such that minimizer(Skl) = V =
{(ξ1k−1,η1n−k+1)}.
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d. If W �= ∅, then minimizer(Skl) = W.

e. For 2 � k � n, minimizer(Skn) = maximizer(S1,k−1).
f. The set minimizer(S1l) can be obtained by an algorithm given below; it has

only finitely many points, each of which has the form (M1r, x, y1s, z, m1t); if (m, M) =
(−∞, +∞), find the unique (ξ ,η) ∈ S ((n − 1, 1), a, b) with ξ � η, and the unique

(ξ ′,η′) ∈ S ((1, n − 1), a, b) with ξ ′ � η′, and calculate ε = sgn(1 − l + ξ ′−ξ
ξ−η′ ).

Then

minimizer(S1l) =

⎧⎨
⎩

{(ξ1n−1,η)} if ε = +1,
{(ξ1n−1,η), (ξ ′,η′1n−1)} if ε = 0,
{(ξ ′,η′1n−1)} if ε = −1.

Proof. o. Clear.
a. The proof follows by consistently substituting in the proof of theorem 7a, l by

k − 1, using that compactness of X and continuity of Skl yields minimizer(Skl) �= ∅,
and using lemma 6bd in a way similar to the usage of lemma 6ac in the proof of theorem
7a.

b,c,d,e. These parts are proved in complete analogy with the parts (d,c,b,e) respec-
tively of theorem 7. The somewhat complicated indices appearing in S... in (b) express
in disguise the fact that one seeks to maximize the sum of the components xl+1, . . . , xn.

f. By lemma 6b’d’, if x ∈ minimizer(S1l), then there do not exist i0, i3 ∈
descents(x) with 0 � i0 < i0 + 2 � i3 � l and there do not exist i2, i5 ∈ descents(x)
with l � i2 < i2 + 2 � i5 � n. In particular it follows that |descents(x(1 : l))| � 2 and
|descents(x(l + 1 : n))| � 2; where these descent sets have to be treated with x(1 : l)
considered as extended to (x0, x(1 : l), xl+1) and x(l + 1 : n) to (xl, x(l + 1 : n), xn+1).
Furthermore if the number of descents in one of these extended truncations of x is 2,
then the descents are adjacent. It follows that the extended x(1 : l) has one of the forms
(x0 � x1 � x2 = . . . = xl = xl+1), (x0 = x1 � x2 � x3 = . . . = xl = xl+1), . . . (x0 =
x1 = x2 = x3 = . . . � xl � xl+1), where always one or both of the � can be strict
inequality signs. We can think of (xl, x(l + 1 : n), xn+1) in a similar manner. It follows
that every such x lies in one of the sets Urst = Ur,s,t = {(M1r, x, y1s, z, m1t) ∈ X},
r, s, t ∈ Z�0, r + s + t = n − 2. This gives us for the determination of minimizer(S1l)
the following algorithm:
• Determine the family R = {(r, s, t) : Urst �= ∅} .
• For each r = (r, s, t) ∈ R determine ur ∈ minimizer(S1l|Ur) as follows:

Using in lemma 5 (L5) the definitions α = 1, β = s, γ = 1, c = 1, d = l − r −
1, e = 0, a(L5) = a − rM − tm, b(L5) = b − rg(M) − tg(m), and consequently

ε = sgn
(
−l + r + 1 + xL−xR

yR−yL

)
, determine {(x̄, ȳ, z̄)} = minimizer(1x + (l− r−

1)y|S ′). Put urst = (M1r, x̄, ȳ1s, z̄, m1t).
• Calculate mr = S1l(ur) and m = min{mr : r ∈ R}, and determine R′ = {r ∈ R :
mr = m}.
• Then minimizer(S1l|X) =

⋃
r∈R′ minimizer(S1l|Ur).

Finally, it is an easy task to see that in case (m, M) = (−∞, +∞) the algorithm
reduces to the process given in (f). �
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3. Infimum and Supremum of Spaces X(∗, a, ∗; n; ∗) in the Lattice (D(n, a),)

Bapat ([1], p62, 63) and others have observed that for r = 0 the set D(n, ∗)∩{x :
x � r}, endowed with weak majorization order w , has lattice theoretic properties.
From this the corresponding properties follow at once for any fixed r. Note that a
subset of D(n, a) is bounded w.r.t.  iff it is bounded above w.r.t.  , and also iff it
is bounded in the sense of Euclidean metric. Furthermore, every subset of D(n, a) is
bounded below w.r.t.  by a

n1n.
We can now use part of Bapat’s discussion to obtain part of the following (using

partially his notations).

COROLLARY 10. a. Let X = X(m, M, a, b; n; g) be nonempty. For l = 1, 2, . . . , n,
let αl = inf

x∈X
S1l(x) and α′

l = sup
x∈X

S1l(x). Define δ = δ(X) = (α1,α2 − α1, . . . ,αn −
αn−1) and η = η(X) = (α′

1,α′
2 −α′

1, . . . ,α′
n −α′

n−1). Then δ and η are the infimum
and supremum of X in the partial order (D(n, a),) ; in other words δ and η satisfy:

o. δ,η ∈ D(n, a).
i. For all x ∈ X, there holds δ  x  η.
ii. If δ ′,η′ are any two elements for which the (corresponding) (o,i) hold, then

δ ′  δ  η  η′.
b. (D(n, a),) is a conditionally complete lattice.

Proof. a. We noted that for all x ∈ X we have x � a
n1n . So with obvious

modifications we can reason with our X as Bapat ([1], lemma 3 and its proof) does with
(his) S , to obtain from

∑
i
δi = αn = a, the facts concerning δ claimed in (o), (i),

and (ii). As for η, fix any l ∈ {2, . . . , n − 1}. Choose v ∈ maximizer(S1,l−1), v′ ∈
maximizer(S1l), v′′ ∈ maximizer(S1,l+1). By theorem 8a, v′ is in one of the sets
U, V, W constructed for the pair (k, l) = (1, l) and it follows that (v′, v′)↓ ∈ X̃ =
X(m, M, 2a, 2b; 2n; g) is in the corresponding Ũ, Ṽ or W̃ defined in the space X̃
for the pair (1, 2l) . From this it follows that (v′, v′)↓ ∈ maximizer(S1,2l|X̃) and so
2α′

l = S1,2l((v′, v′)↓) � S1,2l((v, v′′)↓) � α′
l−1 + α′

l+1. This inequality is also seen to
hold for l = 1 if we put α′

0 := 0. Thus η is decreasing. Since S1l(η) = α′
l , it follows

that x  η for all x ∈ X; the remaining thing to show for η is also an immediate
consequence of its construction.

b. We have to show that every nonempty subset S of D(n, a), bounded be-
low/above w.r.t.  , has an infimum/supremum (in D(n, a) ). We have observed in (a)
that for showing the existence of the infimum one can proceed precisely as in Bapat [1]
adding the fact that the elements of S all have sum a, so as to permit expressing his
claims with  instead of with w . Bapat’s corollary 4 can be used in a similar fashion
to show the existence of the supremum of a set S bounded above. �

It is interesting to note that while Bapat’s non-constructive supremum definition
ηBap is applicable to our spaces X and we have by his uniqueness proofs ηBap(X) =
η(X), the two η ’s are not always the same. For example, if we apply our construction
to the set S = {(12, 2, 2, 2), (6, 6, 6, 0)}, then we obtain the non-decreasing element
η = (12, 2, 4, 0); the trade-off for our constructiveness is, hence, less general validity.
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4. Applications to Eigenvalue Estimation

In this section we show how our results can be applied to estimate eigenvalues,
given the traces of certain powers and/or the determinant of a matrix having only real
eigenvalues. The functions R � x �→ x2k, R�0 � x �→ x2k+1, and R>0 � x �→ − ln x
are strictly convex. The idea is to use that for an n× n -matrix A and any k ∈ Z>0, we

have trAk =
n∑

i=1
λ k

i , and, if A has positive eigenvalues, − ln det A = −∑
ln λi.

To gauge our estimates, which are throughout best possible (apart of rounding
which was done at the second decimal mostly) against an explicit example the reader
may wish to use the real symmetric matrix

A =

⎡
⎢⎢⎣

4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

⎤
⎥⎥⎦ that has

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ = (9.376, 6.423, 4.775, 1.426),
trA = 22,

trA2 = 154,
trA3 = 1201,
trA4 = 9954,

det A = 410.

This matrix appeared in [17].
As follows from the remarks preceding theorem 8, once determined the optimizers

of the Sll, we actually know most of the optimizers of the Skl, and therefore the best
possible estimates for sums of eigenvalues of the type λk + . . . + λl. So we limit
ourselves to just indicate the bounds for the eigenvalues themselves.

PROBLEM 1. Let A be the class of all 4 × 4 matrices A of real eigenvalues with
trace 22 (i.e. trA = 22 ) and the trace of whose square is 154 (i.e. trA2 = 154 ). Give
bounds for the eigenvalues.

Solution: The 4 -tuple of eigenvalues λ (A) = (λ1 � . . . � λ4) of A ∈ A lies in
the space X = X(−∞, +∞, 22, 154; 4; x2). We know beforehand that λ (A) ∈ X but
could use theorem 7a to infer from 4( 22

4 )2 = 121 < 154 that X �= ∅. For each A ∈ A

we have Sll(minimizer(Sll)) � λl(A) � Sll(maximizer(Sll)). Since m = −∞, M =
+∞, the sets U and W of theorems 8 and 9 are empty for all l ∈ {1, 2, 3} for
which they are defined; the sets V are consequently nonempty and obtainable from
the decreasing solutions (ξ ,η) to the systems S ((l, 4 − l), 22, 154). For l = 1, 2, 3
we obtain the solutions v1 = (10.48 ·11, 3.84·13), v2 = (8.37·12, 2.63·12), v3 =
(7.16·13, 0.53·11), respectively. Using theorems 9c and 8c for k = l = 2, we obtain
S22(v1) = 3.84 � λ2(A) � S22(v2) = 8.37, similarly for k = l = 3 we obtain
S33(v2) = 2.63 � λ3(A) � S33(v3) = 7.16. Using theorem 9e for k = n = 4, and
then theorem 8c, we have S44(minimizer(S44)) = S44(maximizer(S13)) = S44(v3) =
0.53 � λ4(A), while λ4(A) � S44(maximizer(S44)) = S44(minimizer(S13)). Now
minimizer(S13) is determined via the algorithm given in the proof of theorem 9f with
l = 3. In that algorithm of course r = t = 0, s = n−2 = 2. We find minimizer(S13) =
v3, and hence the upper bound λ4(A) � 3.84.

PROBLEM 2. Let A be the class of all 4×4 matrices A of real positive eigenvalues
with trA = 22 and det A = 410. Give bounds for the eigenvalues.
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Solution: We have ln det A = 6.02. Similarly as in Problem 1, we have to search for
minimizer(Sll) and maximizer(Sll); this time in space X(−∞, +∞, 22,−6.02; 4; g)

defined by the proper strictly convex function g(x) =
{ − ln x for x > 0,

+∞ for x � 0.
The

union of the spaces V is given this time by the 4-tuples v1 = (12.36·11, 3.21·13), v2 =
(8.66·12, 2.34·12), v3 = (6.92·13, 1.24·11), from where we read off the bounds λ1(A) �
12.36, S22(v1) = 3.21 � λ2(A) � S22(v2) = 8.66, S33(v2) = 2.34 � λ3(A) �
S33(v3) = 6.92, 1.24 � λ4(A). Invoking theorem 9f, we also find minimizer(S11) =
{v3} and maximizer(S44) = {v1}; thus we have the bounds 6.92 � λ1(A) and
λ4(A) � 3.21.

Note that a matrix with real eigenvalues λ1 = λ2 = 12.606, λ3 = λ4 = −1.606
has the specified trace and determinant, but does not satisfy the bounds given. Reason:
the negative eigenvalues impede rewriting the information on the determinant as a sum
of logarithms of eigenvalues equality.

Another reason for requiring nonnegative eigenvalues happens when admission of
negativity leads us out of the convexity region of the function g as is the case with
g(x) = x3.

PROBLEM 3. Let A be the class of all 4 × 4 matrices A of real nonnegative
eigenvalues with trA = 22 and trA3 = 1201. Give bounds for the eigenvalues.

Solution: We apply our theorems to the space X = X(0, +∞, 22, 1201; 4; x3). It
happens that there exist 4-tuples (ξ1l,η14−l) ∈ X for l = 1, 2. Indeed minimizer(S22)
= {(10.04·11, 3.99·13)} = maximizer(S11) and minimizer(S33) = {(8.35·12, 2.65·12)}
= maximizer(S22). So the estimates easiest to obtain are λ1(A) � 10.04, 3.99 �
λ2(A) � 8.35, 2.65 � λ3(A). Furthermore, minimizer(S44) = maximizer(S13) =
{x ∈ X : x4 = 0} by theorems 9e and 8ad, for it happens so that the (only) point of form
(ξ ·13,η·11) in X(−∞, +∞), namely (7.37,−.11), does not lie in X(0, +∞). So we
find 0 � λ4. To find a lower bound for λ1(A) we invoke theorem 9f with l = 1. The
algorithm yields r = 0, s = 1, t = 1; hence minimizer(S11) = {(7.71·12, 6.59·11, 0)},
and so 7.71 � λ1(A). Finally we find an upper bound for λ4(A). By theorem 8e,
maximizer(S44) = minimizer(S13). To find this minimizer, theorem 9f tells us to put
l = 3, r = 0. With t = 0, s = 2, we find minimizer(S13) = {(10.04·11, 3.99·13)},
and so λ4(A) � 3.99.

PROBLEM 4. Let A be the class of all 4 × 4 matrices A of real eigenvalues with
trA = 22 and trA4 = 9954. Give bounds for the eigenvalues.

Solution: We can use the space X(−∞, +∞, 22, 9954; 4; x4). We then find by the
techniques of the previous problems without difficulties that minimizer(S22)=maximizer
(S11) = maximizer(S44) = minimizer(S13) = {(9.77·11, 4.08·13)}, minimizer(S33) =
{(8.38·12, 2.62·12)} = maximizer(S22), and minimizer(S11) = minimizer(S44) =
{(7.59·13,−.77·11)} = maximizer(S33). Thus we have 7.59 � λ1(A) � 9.77, 4.08 �
λ2(A) � 8.38, 2.62 � λ3(A) � 7.59, −0.77 � λ4(A) � 4.08.
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5. Notes and Concluding Remarks

a. There should be no difficulties in extending our theorems to the case of continu-
ous not necessarily differentiable convex functions by using the theory of subgradients
and subdifferentials (see e.g. [16], p214c-2, 215c2). In particular a combination of [16],
p223c5 and the fact [16], p264c2 should permit to establish proposition 1, claim 3. The
essence of lemma 2 is that if we move via s �→ (x(s), y(s), z(s)) along the curve S ,
then (x, y, z) change according to ↑↓↑ or ↓↑↓. This can be established via the theory of
majorization. Indeed on the plane x + y + z = a such changes to (x′, y′, z′) are the
only possible that allow escaping majorization-comparability (and hence by [8], p92c8,
inequalities of the type g(x) + g(y) + g(z) < g(x′) + g(y′) + g(z′) or its reverse).

b. To what degree could one of the defining conditions of our spaces X , namely (∗)∑
i

g(xi) = b with a strictly convex function g , be substituted by a more general one?

Few of the more conventional generalizations seem to be possible without at least some
technical troubles. Do our theorems remain essentially valid if one substitutes g by an
unbounded quasiconvex function, i.e. a function with convex level-sets? If not before,
we expect major troubles in lemma 2b. While an unbounded convex function, even after
‘tilting’ it with respect to its defining domain yields convex levelsets, a quasiconvex
function does not have this property. We also expect troubles with the validity of lemma
2b if we generalize (∗) to

∑
i

gi(xi) = b with gi convex. The reason is that results of

the type x  y ⇒ ∑
i
αigi(xi) �

∑
i
αigi(yi), do not hold in general (but are valid and

were used if all gi are equal to a certain convex g , see [8], p92c-3).
c. Could we generalize, on the spaces defined in this paper, and with its methods,

the functions Skl to be optimized? Again not much seems to be possible in this direction.
We run into troubles in lemma 6. Let Ṡkl : R

n → R be a function dependent only of
variables xk, . . . , xl. At the bottom, in lemma 6 we invariably use the reasoning that a

positive or negative change of the value
l∑

i=k
xi, that is of Skl(x), be reflected in a positive

or negative change of the value Ṡkl(x). This means that we have Skl(x) = Skl(y) iff
Ṡkl(x) = Ṡkl(y). Hence the function Ṡkl(x) = g(Skl(x)) for some monotone realvalued
function g. So the generalizations possible in the sense intended are trivial.

d. The observation (c) is deplorable, for it means for example that we cannot deduce
from our results that, given a space X = X(0, +∞, a, b; n; x2), one has for certain
ξ ,η, ξ ′,η′ that minimizer(

∏n
i=1 xi) = {(ξ11,η1n−1)} and maximizer(

∏n
i=1 xi) =

{(ξ1n−1,η11)}; a fact equivalent to one proved in [4].
e. Given a decreasing n -tuple a, put X̃ = X(−∞, +∞, a, b; n; x2) ∩ {x :

a � x}. Using Karush-Kuhn-Tucker theory ([5], p308) find that the structure of
maximizer(S11|X̃) is of the form (ξ11,η1t, a(t + 1 : n)). Can problems of this type
solved by our method?

f. Summing up, in a sense we now understand better why we so often find a simple
structure for the optimizers. And yet, as the results mentioned in (d) and (e) painfully
remind us, our understanding is still incomplete.
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[7] K. LEICHTWEISS, Konvexe Mengen, Springer, 1980.
[8] A. W. MARSHALL AND I. OLKIN, Inequalities: Theory of Majorization and its Applications, Academic

Press, 1979.
[9] J. K. MERIKOSKI, H. SARRIA AND P. TARAZAGA, Bounds for singular values using traces, Linear Algebra

Appl. 210: 227–254 (1994).
[10] J. K. MERIKOSKI, G. P. H. STYAN AND H. WOLKOWICZ, Bounds for ratios of eigenvalues using traces,

Linear Algebra Appl. 55: 105–124 (1983).
[11] J. K. MERIKOSKI, U. URPALA AND A. VIRTANEN, Upper bounds for the ratios of the largest and smallest

eigenvalues, Department of Mathematical Sciences, University of Tampere, Report A 307, 1996.
[12] J. K. MERIKOSKI, U. URPALA, A. VIRTANEN, T. Y. TAM AND F. UHLIG, A best upper bound for the

2-condition number of a matrix, Linear Algebra Appl. 254: 355–365 (1997).
[13] J. K. MERIKOSKI AND A. VIRTANEN, Bounds for eigenvalues using the trace and determinant, Linear

Algebra Appl. 264: 101–108 (1997).
[14] J. K. MERIKOSKI AND H. WOLKOWICZ, Improving eigenvalue bounds using extra bounds, Linear Algebra

Appl. 68: 93–113 (1985).
[15] A. W. ROBERTS AND D. E. VARBERG, Convex Functions, Academic Press, 1973.
[16] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1970.
[17] H. WOLKOWICZ AND G. P. H. STYAN, Bounds for eigenvalues using traces, Linear Algebra Appl. 29:

471–506 (1980).
[18] H. WOLKOWICZ AND G. P. H. STYAN, More bounds for eigenvalues using traces, Linear Algebra Appl.

31: 1–17 (1980).



OPTIMIZERS FOR SUB-SUMS AND EIGENVALUE ESTIMATION 763

(Received September 9, 2002) Alexander Kovačec
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