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ON EULER–BOOLE FORMULAE

J. PEČARIĆ, I. PERIĆ AND A. VUKELIĆ

(communicated by D. Hinton)

Abstract. A number of inequalities, for functions whose derivatives are either functions of
bounded variation or Lipschitzian functions or R -integrable functions, is proved by applying
the Euler-Boole formulae. The results are applied to obtain some error estimates for the Boole
quadrature rules.

1. Introduction

One of the quadrature rules of closed type is Boole’s rule based on Boole’s formula
[3, p. 63]∫ 1

0
f (t)dt =

1
90

[
7f (0) + 32f

(
1
4

)
+ 12f

(
1
2

)
+ 32f

(
3
4

)
+ 7f (1)

]
(1.1)

− 1
1935360

f (6)(ξ),

where 0 � ξ � 1. Formula (1.1) is valid for any function f with continuous sixth
derivative f (6) on [0, 1] . In the recent paper [4] the following two identities, named
the extended Euler formulae, have been proved. For n � 1

f (x) =
∫ 1

0
f (t)dt + Tn(x) + R1

n(x) (1.2)

and

f (x) =
∫ 1

0
f (t)dt + Tn−1(x) + R2

n(x), (1.3)

where T0(x) = 0 and

Tm(x) =
m∑

k=1

Bk (x)
k!

[
f (k−1)(1) − f (k−1)(0)

]
, (1.4)
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for 1 � m � n , while

R1
n(x) = − 1

n!

∫ 1

0
B∗

n (x − t) df (n−1)(t)

and

R2
n(x) = − 1

n!

∫ 1

0
[B∗

n (x − t) − Bn (x)] df (n−1)(t).

Here, as in the rest of the paper, we write
∫ 1

0 g(t) dϕ(t) to denote the Riemann-Stieltjes

integral with respect to a function ϕ : [0, 1] → R of bounded variation, and
∫ 1

0 g(t) dt
for the Riemann integral. The identities (1.2) and (1.3) extend the well known formula
for the expansion of an arbitrary function in Bernoulli polynomials [6, p. 17] . They
hold for every function f : [0, 1] → R such that f (n−1) is a continuous function of
bounded variation on [0, 1], for some n � 1, and for every x ∈ [0, 1] . The functions
Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are the Bernoulli numbers, and B∗

k (t),
k � 0, are periodic functions of period 1 , related to the Bernoulli polynomials as

B∗
k (t) = Bk(t), 0 � t < 1, and B∗

k (t + 1) = B∗
k (t), t ∈ R.

The Bernoulli polynomials Bk(t), k � 0 are uniquely determined by the following
identities

B′
k(t) = kBk−1(t), k � 1; B0(t) = 1 (1.5)

and
Bk(t + 1) − Bk(t) = ktk−1, k � 0. (1.6)

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2] . We have

B0(t) = 1, B1(t) = t − 1
2
, B2(t) = t2 − t +

1
6
, B3(t) = t3 − 3

2
t2 +

1
2
t

B4(t) = t4 − 2t3 + t2 − 1
30

, B5(t) = t5 − 5
2
t4 +

5
3
t3 − 1

6
t, (1.7)

so that B∗
0(t) = 1 and B∗

1(t) is a discontinuous function with a jump of −1 at each
integer. From (1.6) it follows that Bk(1) = Bk(0) = Bk for k � 2 , so that B∗

k (t) are
continuous functions for k � 2. Moreover, using (1.5) we get

B∗′
k (t) = kB∗

k−1(t), (1.8)

for every t ∈ R when k � 3 , and for every t ∈ R \ Z when k = 1, 2.
The aim of this paper is to establish generalizations of the Boole formula (1.1) and

give various error estimates for the quadrature rules based on such generalizations.
In Section 2 we use the extended Euler formulae (1.2) and (1.3) to obtain two new

integral identities. We call them the Euler-Boole formulae, since they generalize the
Boole formula (1.1).

In Section 3 we prove a number of inequalities related to the Euler-Boole formulae,
for functions whose derivatives are either functions of bounded variation or Lipschitzian
functions or R -integrable functions.
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2. Euler-Boole formulae

For k � 1 define the functions Gk(t) and Fk(t) as

Gk(t) = 14B∗
k (1 − t) + 32B∗

k

(
1
4
− t

)
+ 12B∗

k

(
1
2
− t

)
+ 32B∗

k

(
3
4
− t

)
, t ∈ R

and
Fk(t) = Gk(t) − B̃k, t ∈ R, k � 1,

where

B̃k = 7Bk(0) + 32Bk

(
1
4

)
+ 12Bk

(
1
2

)
+ 32Bk

(
3
4

)
+ 7Bk(1), k � 1.

Especially, using (1.7) we get

B̃1 = B̃2 = B̃3 = B̃4 = B̃5 = 0.

Also, for k � 2 we have B̃k = Gk(0) , that is

Fk(t) = Gk(t) − Gk(0), k � 2, and F1(t) = G1(t), t ∈ R.

Obviously, Gk(t) and Fk(t) are periodic functions of period 1 and continuous for
k � 2 .

Let f : [0, 1] → R be such that f (n−1) exists on [0, 1] for some n � 1. We
introduce the following notation

D(0, 1) =
1
90

[
7f (0) + 32f

(
1
4

)
+ 12f

(
1
2

)
+ 32f

(
3
4

)
+ 7f (1)

]
.

Further, we define T̃0(0, 1) = 0 and, for 1 � m � n,

T̃m(0, 1) =
1
90

[
7Tm(0) + 32Tm

(
1
4

)
+ 12Tm

(
1
2

)
+ 32Tm

(
3
4

)
+ 7Tm(1)

]
,

where Tm(x) is given by (1.4). It is easy to see that T̃1(0, 1) = T̃2(0, 1) = T̃3(0, 1) =
T̃4(0, 1) = T̃5(0, 1) = 0 and for m � 6

T̃m(0, 1) =
1
90

m∑
k=6

B̃k

k!

[
f (k−1)(1) − f (k−1)(0)

]
. (2.1)

In the next theorem we establish two formulae which play the key role in this paper.
We call them the Euler-Boole formulae.

THEOREM 1. Let f : [0, 1] → R be such that f (n−1) is a continuous function of
bounded variation on [0, 1], for some n � 1. Then∫ 1

0
f (t)dt = D(0, 1) − T̃n(0, 1) + R̃1

n(f ), (2.2)
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and ∫ 1

0
f (t)dt = D(0, 1) − T̃n−1(0, 1) + R̃2

n(f ), (2.3)

where

R̃1
n(f ) =

1
90(n!)

∫ 1

0
Gn (t) df (n−1)(t),

and

R̃2
n(f ) =

1
90(n!)

∫ 1

0
Fn (t) df (n−1)(t).

Proof. Put

x = 0,
1
4
,

1
2
,

3
4
, 1

in formula (1.2) to get five new formulae. Then multiply these new formulae by

7
90

,
32
90

,
12
90

,
32
90

,
7
90

respectively, and add. The result is formula (2.2). Formula (2.3) is obtained from (1.3)
by the same procedure. �

REMARK 1. The interval [0, 1] is used for simplicity and involves no loss in
generality. In what follows this theorem and others will be applied, without comment,
to any interval that is convenient.

So, it is simply to prove that if f : [a, b] → R be such that f (n−1) is a continuous
function of bounded variation on [a, b], for some n � 1,∫ b

a
f (t)dt = D(a, b) − T̃n(a, b) +

(b − a)n

90(n!)

∫ b

a
Gn

(
t − a
b − a

)
df (n−1)(t) (2.4)

and∫ b

a
f (t)dt = D(a, b) − T̃n−1(a, b) +

(b − a)n

90(n!)

∫ b

a
Fn

(
t − a
b − a

)
df (n−1)(t), (2.5)

where

D(a, b) :=
b − a
90

[
7f (a) + 32

(
3a + b

4

)
+ 12

(
2a + 2b

4

)
+ 32

(
a + 3b

4

)
+ 7f (b)

]
,

and

T̃m(a, b) =
1
90

m∑
k=1

(b − a)k

k!
B̃k

[
f (k−1)(b) − f (k−1)(a)

]
.

REMARK 2. Suppose that f : [0, 1] → R is such that f (n) exists and is integrable
on [0, 1], for some n � 1. In this case (2.2) holds with

R̃1
n(f ) =

1
90(n!)

∫ 1

0
Gn (t) f (n)(t)dt,
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while (2.3) holds with

R̃2
n(f ) =

1
90(n!)

∫ 1

0
Fn (t) f (n)(t)dt.

By direct calculations we get

F1(t) = G1(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−7, t = 0
−90t + 7, 0 < t � 1/4
−90t + 39, 1/4 < t � 1/2
−90t + 51, 1/2 < t � 3/4
−90t + 83, 3/4 < t � 1

, (2.6)

F2(t) = G2(t) =

⎧⎪⎪⎨⎪⎪⎩
90t2 − 14t, 0 � t � 1/4
90t2 − 78t + 16, 1/4 < t � 1/2
90t2 − 102t + 28, 1/2 < t � 3/4
90t2 − 166t + 76, 3/4 < t � 1

, (2.7)

F3(t) = G3(t) =

⎧⎪⎪⎨⎪⎪⎩
−90t3 + 21t2, 0 � t � 1/4
−90t3 + 117t2 − 48t + 6, 1/4 < t � 1/2
−90t3 + 153t2 − 84t + 15, 1/2 < t � 3/4
−90t3 + 249t2 − 228t + 69, 3/4 < t � 1

, (2.8)

F4(t) = G4(t) =

⎧⎪⎪⎨⎪⎪⎩
90t4 − 28t3, 0 � t � 1/4
90t4 − 156t3 + 96t2 − 24t + 2, 1/4 < t � 1/2
90t4 − 204t3 + 168t2 − 60t + 8, 1/2 < t � 3/4
90t4 − 332t3 + 456t2 − 276t + 62, 3/4 < t � 1

(2.9)

and

F5(t) = G5(t) =

⎧⎪⎪⎨⎪⎪⎩
−90t5 + 35t4, 0 � t � 1/4
−90t5 + 195t4 − 160t3 + 60t2 − 10t + 5/8, 1/4 < t � 1/2
−90t5 + 255t4 − 280t3 + 150t2 − 40t + 35/8, 1/2 < t � 3/4
−90t5 + 415t4 − 760t3 + 690t2 − 310t + 55, 3/4 < t � 1

.

(2.10)
Applying (2.2) with n = 1, 2, 3, 4, 5 we get the identities∫ 1

0
f (t)dt − D(0, 1) =

1
90

∫ 1

0
G1 (t) df (t)

=
1

180

∫ 1

0
G2 (t) df (1)(t)

=
1

540

∫ 1

0
G3 (t) df (2)(t)

=
1

2160

∫ 1

0
G4 (t) df (3)(t)

=
1

10800

∫ 1

0
G5 (t) df (4)(t).
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The same identities are obtained from (2.3) with n = 1, 2, 3, 4, 5 since T̃0(0, 1) =
T̃1(0, 1) = T̃2(0, 1) = T̃3(0, 1) = T̃4(0, 1) = 0 and Fk(t) = Gk(t) for k = 1, 2, 3, 4, 5
while (2.3) with n = 6 yields the identity∫ 1

0
f (t)dt − D(0, 1) =

1
64800

∫ 1

0
F5 (t) df (5)(t).

3. Some inequalities related to Euler-Boole formulae

In this section we use the Euler-Boole formulae established in Theorem 1 to prove
a number of inequalities for various classes of functions. First, we need some properties
of the functions Gk(t) and Fk(t) defined in the previous section.

The Bernoulli polynomials are symmetric with respect to 1
2 , that is [1, 23.1.8]

Bk(1 − t) = (−1)kBk(t), ∀t ∈ R, k � 1. (3.1)

Setting t = 1
4 in (3.1) we get

Bk

(
3
4

)
= (−1)kBk

(
1
4

)
, k � 1.

Also, we have

Bk(1) = Bk(0) = Bk, k � 2, B1(1) = −B1(0) =
1
2

and
B2j−1 = 0, j � 2.

Therefore, using [1, 23.121] and [1, 23.122]

B2j

(
1
2

)
= − (

1 − 21−2j
)
B2j, j � 1,

and

B2j

(
1
4

)
= B2j

(
3
4

)
= −2−2j

(
1 − 21−2j

)
B2j, j � 1,

we get
B̃2j−1 = 0, j � 1 (3.2)

and

B̃2j = 14B2j + 64B2j

(
1
4

)
+ 12B2j

(
1
2

)
=

(
2 − 5 · 23−2j + 27−4j

)
B2j, j � 1.

Now, by (3.2) we have
F2j−1(t) = G2j−1(t), j � 1, (3.3)

and, by (3.3),

F2j(t) = G2j(t) − B̃2j = G2j(t) −
(
2 − 5 · 23−2j + 27−4j

)
B2j, j � 1. (3.4)
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Further, the points 0 and 1 are the zeros of Fk(t) = Gk(t) − Gk(0), k � 2, that is

Fk(0) = Fk(1) = 0, k � 2.

As we shall see below, 0 and 1 are the only zeros of F2j(t) for j � 3 . Next, setting
t = 1

2 in (3.1) we get

Bk

(
1
2

)
= (−1)kBk

(
1
2

)
, k � 1.

which implies that

B2j−1

(
1
2

)
= 0, j � 1.

Using the above formulae, we get

F2j−1

(
1
2

)
= G2j−1

(
1
2

)
= 0, j � 1.

We shall see that 0 , 1
2 and 1 are the only zeros of F2j−1(t) = G2j−1(t), for j � 3.

Also, note that

G2j

(
1
2

)
= 14B2j

(
1
2

)
+ 64B2j

(
1
4

)
+ 12B2j =

(−2 − 9 · 22−2j + 27−4j
)
B2j, j � 1

and

F2j

(
1
2

)
= G2j

(
1
2

)
− B̃2j = −4

(
1 − 2−2j

)
B2j, j � 1. (3.5)

LEMMA 1. For k � 2 we have

Gk(1 − t) = (−1)kGk(t), 0 � t � 1,

and
Fk(1 − t) = (−1)kFk(t), 0 � t � 1.

Proof. As we noted in introduction, the functions B∗
k (t) are periodic with period

1 and continuous for k � 2 . Therefore, for k � 2 and 0 � t � 1 we have

Gk(1 − t) = 14B∗
k (t) + 32B∗

k

(
−3

4
+ t

)
+ 12B∗

k

(
−1

2
+ t

)
+ 32B∗

k

(
−1

4
+ t

)

=

⎧⎪⎪⎨⎪⎪⎩
14Bk (t) + 32Bk

(
1
4 + t

)
+ 12Bk

(
1
2 + t

)
+ 32Bk

(
3
4 + t

)
, 0 � t � 1

4 ,
14Bk (t) + 32Bk

(
1
4 + t

)
+ 12Bk

(
1
2 + t

)
+ 32Bk

(− 1
4 + t

)
, 1

4 < t � 1
2 ,

14Bk (t) + 32Bk
(

1
4 + t

)
+ 12Bk

(− 1
2 + t

)
+ 32Bk

(− 1
4 + t

)
, 1

2 < t � 3
4 ,

14Bk (t) + 32Bk
(− 3

4 + t
)

+ 12Bk
(− 1

2 + t
)

+ 32Bk
(− 1

4 + t
)
, 3

4 < t � 1,

= (−1)k ×⎧⎪⎪⎨⎪⎪⎩
14Bk (1 − t) + 32Bk

(
3
4 − t

)
+ 12Bk

(
1
2 − t

)
+ 32Bk

(
1
4 − t

)
, 0 � t � 1

4 ,

14Bk (1 − t) + 32Bk

(
3
4 − t

)
+ 12Bk

(
1
2 − t

)
+ 32Bk

(
5
4 − t

)
, 1

4 < t � 1
2 ,

14Bk (1 − t) + 32Bk
(

3
4 − t

)
+ 12Bk

(
3
2 − t

)
+ 32Bk

(
5
4 − t

)
, 1

2 < t � 3
4 ,

14Bk (1 − t) + 32Bk
(

7
4 − t

)
+ 12Bk

(
3
2 − t

)
+ 32Bk

(
5
4 − t

)
, 3

4 < t � 1,

= (−1)kGk(t),
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which proves the first identity. Further, we have Fk(t) = Gk(t)−Gk(0) and (−1)kGk(0)
= Gk(0), since G2j+1(0) = 0 , so that we have

Fk (1 − t) = Gk (1 − t) − Gk(0) = (−1)k [Gk(t) − Gk(0)] = (−1)kFk (t) ,

which proves the second identity. �
Note that the identities established in Lemma 1 are valid for k = 1 , too, except at

the points 0 , 1/4, 1/2, 3/4 and 1 of discontinuity of F1(t) = G1(t) .

LEMMA 2. For k � 3 the function G2k−1(t) has no zeros in the interval
(
0, 1

2

)
.

The sign of this function is determined by

(−1)k−1G2k−1(t) > 0, 0 < t <
1
2
.

Proof. For k = 3, G5(t) is given by (2.10) and using the Sturm theorem it is easy
to see that

G5(t) > 0, 0 < t <
1
2
.

Thus, our assertion is true for k = 3 . Now, assume that k � 4 . Then 2k − 1 � 7 and
G2k−1(t) is continuous and at least twice differentiable function. Using (1.8) we get

G′
2k−1(t) = −(2k − 1)G2k−2(t)

and
G′′

2k−1(t) = (2k − 1)(2k − 2)G2k−3(t).

Let us suppose that G2k−3 has no zeros in the interval
(
0, 1

2

)
. We know that 0 and 1

2
are the zeros of G2k−1(t) . Let us suppose that some α, 0 < α < 1

2 , is also a zero of
G2k−1(t) . Then inside each of the intervals (0,α) and

(
α, 1

2

)
the derivative G′

2k−1(t)
must have at least one zero, say β1, 0 < β1 < α and β2, α < β2 < 1

2 . Therefore,
the second derivative G′′

2k−1(t) must have at least one zero inside the interval (β1, β2) .

Thus, from the assumption that G2k−1(t) has a zero inside the interval
(
0, 1

2

)
, it follows

that (2k − 1)(2k − 2)G2k−3(t) also has a zero inside this interval. Thus, G2k−1(t) can
not have a zero inside the interval

(
0, 1

2

)
. To determine the sign of G2k−1(t), note that

G2k−1

(
1
4

)
= −2B2k−1

(
1
4

)
.

We have [1, 23.1.14]

(−1)kB2k−1(t) > 0, 0 < t <
1
2
,

which implies

(−1)k−1G2k−1

(
1
4

)
= 2 · (−1)kB2k−1

(
1
4

)
> 0.

Consequently, we have

(−1)k−1G2k−1(t) > 0, 0 < t <
1
2
. �
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COROLLARY 1. For k � 3 the functions (−1)kF2k(t) and (−1)kG2k(t) are
strictly increasing on the interval

(
0, 1

2

)
, and strictly decreasing on the interval

(
1
2 , 1

)
.

Further, for k � 3, we have

max
t∈[0,1]

|F2k(t)| = 4
(
1 − 2−2k

) |B2k| ,

and
max
t∈[0,1]

|G2k(t)| =
(
2 + 9 · 22−2k − 27−4k

) |B2k| .

Proof. Using (1.8) we get[
(−1)kF2k(t)

]′
=

[
(−1)kG2k(t)

]′
= 2k(−1)k−1G2k−1(t)

and (−1)k−1G2k−1(t) > 0 for 0 < t < 1
2 , by Lemma 2. Thus, (−1)kF2k(t) and

(−1)kG2k(t) are strictly increasing on the interval
(
0, 1

2

)
. Also, by Lemma 1, we have

F2k(1−t) = F2k(t), 0 � t � 1 and G2k(1−t) = G2k(t), 0 � t � 1, which implies that
(−1)kF2k(t) and (−1)kG2k(t) are strictly decreasing on the interval

(
1
2 , 1

)
. Further,

F2k(0) = F2k(1) = 0 , which implies that |F2k(t)| achieves its maximum at t = 1
2 , that

is

max
t∈[0,1]

|F2k(t)| =
∣∣∣∣F2k

(
1
2

)∣∣∣∣ = 4
(
1 − 2−2k

) |B2k| .

Also

max
t∈[0,1]

|G2k(t)| = max

{
|G2k (0)| ,

∣∣∣∣G2k

(
1
2

)∣∣∣∣}
=

∣∣∣∣G2k

(
1
2

)∣∣∣∣ =
(
2 + 9 · 22−2k − 27−4k

) |B2k| ,

which completes the proof. �

COROLLARY 2. For k � 3, we have∫ 1

0
|F2k−1(t)| dt =

∫ 1

0
|G2k−1(t)| dt =

4
k

(
1 − 2−2k

) |B2k| .

Also, we have ∫ 1

0
|F2k(t)| dt =

∣∣∣B̃2k

∣∣∣ =
(
2 − 5 · 23−2k + 27−4k

) |B2k|

and ∫ 1

0
|G2k(t)| dt � 2

∣∣∣B̃2k

∣∣∣ =
(
4 − 5 · 24−2k + 28−4k

) |B2k| .

Proof. Using (1.8) it is easy to see that

G′
m(t) = −mGm−1(t), m � 3. (3.6)
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Now, using Lemma 1, Lemma 2 and (3.6) we get∫ 1

0
|G2k−1(t)| dt = 2

∣∣∣∣∣
∫ 1

2

0
G2k−1(t)dt

∣∣∣∣∣ = 2

∣∣∣∣− 1
2k

G2k(t)|
1
2
0

∣∣∣∣
=

1
k

∣∣∣∣G2k

(
1
2

)
− G2k (0)

∣∣∣∣ =
4
k

(
1 − 2−2k

) |B2k| ,

which proves the first assertion. By Corollary 1 and because F2k(0) = F2k(1) = 0 ,
F2k(t) does not change its sign on the interval (0, 1) . Therefore, using (3.4) and (3.6),
we get ∫ 1

0
|F2k(t)| dt =

∣∣∣∣∣
∫ 1

0
F2k(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

[
G2k(t) − B̃2k

]
dt

∣∣∣∣∣
=

∣∣∣∣− 1
2k + 1

G2k+1(t)|10 − B̃2k

∣∣∣∣ =
∣∣∣B̃2k

∣∣∣ ,

which proves the second assertion. Finally, we use (3.4) again and the triangle inequality
to obtain∫ 1

0
|G2k(t)| dt =

∫ 1

0

∣∣∣F2k(t) + B̃2k

∣∣∣ dt �
∫ 1

0
|F2k(t)| dt +

∣∣∣B̃2k

∣∣∣ = 2
∣∣∣B̃2k

∣∣∣ ,
which proves the third assertion. �

THEOREM 2. Let f : [0, 1] → R be such that f (n−1) is an L -Lipschitzian function
on [0, 1] for some n � 1. Then∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1) + T̃n−1(0, 1)

∣∣∣∣∣ � 1
90(n!)

∫ 1

0
|Fn(t)| dt · L (3.7)

and ∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T̃n(0, 1)

∣∣∣∣∣ � 1
90(n!)

∫ 1

0
|Gn(t)| dt · L. (3.8)

Proof. For any integrable function Φ : [0, 1] → R we have∣∣∣∣∣
∫ 1

0
Φ(t)df (n−1)(t)

∣∣∣∣∣ �
∫ 1

0
|Φ(t)| dt · L, (3.9)

since f (n−1) is L -Lipschitzian function. Applying (3.9) with Φ(t) = Fn (t) , we get∣∣∣∣∣ 1
90(n!)

∫ 1

0
Fn (t) df (n−1)(t)

∣∣∣∣∣ � 1
90(n!)

∫ 1

0
|Fn (t)| dt · L.

Applying the above inequality, we get inequality (3.7) from identity (2.3). Similarly,
we can apply inequality (3.9) with Φ(t) = Gn (t) , and then use identity (2.2), to obtain
inequality (3.8). �
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COROLLARY 3. Let f : [0, 1] → R be given function.
If f is L -Lipschitzian on [0, 1], then∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1)

∣∣∣∣∣ � 239
3240

· L .

If f ′ is L -Lipschitzian on [0, 1], then∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1)

∣∣∣∣∣ � 1018
273375

· L .

Proof. Using (2.6) and (2.7) we get∫ 1

0
|F1(t)| dt =

239
36

and
∫ 1

0
|F2(t)| dt =

4072
6075

.

Therefore, applying (3.7) with n = 1, 2, we get the above inequalities. �
As we have already noted in Section 2, we have

T̃0(0, 1) = T̃1(0, 1) = T̃2(0, 1) = T̃3(0, 1) = T̃4(0, 1) = T̃5(0, 1) = 0. (3.10)

Moreover, since B̃2k−1 = 0 and B̃2k = (2 − 5 · 23−2k + 27−4k)B2k, k � 1, we have

T̃m(0, 1) =
1
90

[m
2 ]∑

k=3

1
(2k)!

(2− 5 · 23−2k + 27−4k)B2k

[
f (2k−1)(1) − f (2k−1)(0)

]
, m � 6,

(3.11)
where

[
m
2

]
is the greatest integer less than or equal to m

2 .

COROLLARY 4. Let f : [0, 1] → R be such that f (n−1) is an L -Lipschitzian
function on [0, 1] for some n � 5. Set D1(f ) = D2(f ) := 0 and for any integer r
such that 3 � r � n

2 define

Dr(f ) :=
1
90

r∑
i=3

1
(2i)!

(2 − 5 · 23−2i + 27−4i)B2i

[
f (2i−1)(1) − f (2i−1)(0)

]
. (3.12)

If n = 2k − 1, k � 3, then∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + Dk−1(f )

∣∣∣∣∣ � 4
45 [(2k)!]

(
1 − 2−2k

) |B2k| · L .

If n = 2k, k � 3, then∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + Dk−1(f )

∣∣∣∣∣ � 1
45 [(2k)!]

(1 − 5 · 22−2k + 26−4k) |B2k| · L

and ∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + Dk(f )

∣∣∣∣∣ � 1
45 [(2k)!]

(2 − 5 · 23−2k + 27−4k) |B2k| · L .
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Proof. For n = 2k − 1, by (3.11) we have that T̃n−1(0, 1) = Dk−1(f ). Thus, the
first inequality follows from Corollary 2 and (3.7). For n = 2k, by (3.11) we have
that T̃n−1(0, 1) = Dk−1(f ) and T̃n(0, 1) = Dk(f ). Now, the second inequality follows
from Corollary 2 and (3.7), while the third one follows from Corollary 2 and (3.8). �

REMARK 3. Suppose that f : [0, 1] → R is such that f (n) exists and is bounded
on [0, 1], for some n � 1 . Therefore, the inequalities established in Theorem 2 hold
with L = ‖f (n)‖∞.

THEOREM 3. Let f : [0, 1] → R be such that f (n−1) is a continuous function of
bounded variation on [0, 1] for some n � 1. Then∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1) + T̃n−1(0, 1)

∣∣∣∣∣ � 1
90(n!)

max
t∈[0,1]

|Fn(t)| · V1
0 (f (n−1)) (3.13)

and ∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T̃n(0, 1)

∣∣∣∣∣ � 1
90(n!)

max
t∈[0,1]

|Gn(t)| · V1
0 (f

(n−1)), (3.14)

where V1
0 (f

(n−1)) is the total variation of f (n−1) on [0, 1].

Proof. If Φ : [0, 1] → R is bounded on [0, 1] and the Riemann-Stieltjes integral∫ 1
0 Φ(t) d f (n−1)(t) exists, then∣∣∣∣∣

∫ 1

0
Φ(t)df (n−1)(t)

∣∣∣∣∣ � max
t∈[0,1]

|Φ(t)| · V1
0 (f

(n−1)). (3.15)

We apply estimate (3.15) to Φ(t) = Fn (t) to obtain∣∣∣∣∣ 1
90(n!)

∫ 1

0
Fn (t) df (n−1)(t)

∣∣∣∣∣ � 1
90(n!)

max
t∈[0,1]

|Fn (t)| · V1
0 (f

(n−1)).

Now, we use the above inequality and identity (2.3) to obtain (3.13). In the same
manner, we apply estimate (3.15) to Φ(t) = Gn (t) , and then use identity (2.2), to
obtain inequality (3.14). �

COROLLARY 5. Let f : [0, 1] → R be given function.
If f is a continuous function of bounded variation on [0, 1], then∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1)

∣∣∣∣∣ � 11
60

· V1
0 (f ).

If f ′ is a continuous function of bounded variation on [0, 1], then∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1)

∣∣∣∣∣ � 17
1440

· V1
0 (f

′).
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Proof. From explicit expressions (2.6) and (2.7), we get

max
t∈[0,1]

|F1(t)| = −F1

(
3
4

)
=

33
2

and

max
t∈[0,1]

|F2(t)| = F2

(
1
4

)
=

17
8

.

Therefore, applying (3.13) with n = 1, 2 we get the above inequalities. �

COROLLARY 6. Let f : [0, 1] → R be such that f (n−1) is a continuous function
of bounded variation on [0, 1] for some n � 5. Define Dr(f ), r � 3 as in Corollary 4.
If n = 2k − 1, k � 3, then∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1) + Dk−1(f )

∣∣∣∣∣ � 1
90 [(2k − 1)!]

max
t∈[0,1]

|F2k−1(t)| · V1
0 (f

(2k−2)).

If n = 2k, k � 3, then∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + Dk−1(f )

∣∣∣∣∣ � 2
45 [(2k)!]

(
1 − 2−2k

) |B2k| · V1
0 (f (2k−1))

and∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + Dk(f )

∣∣∣∣∣ � 1
45 [(2k)!]

(
1 + 9 · 21−2k − 26−4k

) |B2k|·V1
0 (f

(2k−1)).

Proof. The argument is similar to that used in the proof of Corollary 4. We apply
Theorem 3 and use the formulae established in Corollary 1. �

REMARK 4. Suppose that f (n) : [0, 1] → R is R -integrable function for some
n � 1 In this case f (n−1) is a continuous function of bounded variation on [0, 1] and
we have

V1
0 (f

(n−1)) =
∫ 1

0

∣∣∣f (n)(t)
∣∣∣ dt = ‖f (n)‖1.

Therefore, the inequalities established in Theorem 3 hold with ‖f (n)‖1 in place of
V1

0 (f
(n−1)) . However, a similar observation can be made for the results of Corollaries 5

and 6.

THEOREM 4. Assume (p, q) is a pair of conjugate exponents, that is 1 < p, q <

∞, 1
p + 1

q = 1 or p = ∞, q = 1. Let
∣∣f (n)

∣∣p : [0, 1] → R is R -integrable function
for some n � 1. Then we have∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1) + T̃n−1(0, 1)

∣∣∣∣∣ � K(n, p) · ‖f (n)‖p, (3.16)
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and ∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T̃n(0, 1)

∣∣∣∣∣ � K∗(n, p) · ‖f (n)‖p, (3.17)

where

K(n, p) =
1

90(n!)

[∫ 1

0
|Fn(t)|q dt

] 1
q

,

and

K∗(n, p) =
1

90(n!)

[∫ 1

0
|Gn(t)|q dt

] 1
q

.

Proof. Applying the Hölder inequality we have∣∣∣∣∣ 1
90(n!)

∫ 1

0
Fn (t) f (n)(t)dt

∣∣∣∣∣ � 1
90(n!)

[∫ 1

0
|Fn (t)|q dt

] 1
q

·
∥∥∥f (n)

∥∥∥
p

= K(n, p) · ‖f (n)‖p.

Using the above inequality, by Remark 2, from (2.3) we get estimate (3.16). In the
same manner, from (2.2) we get estimate (3.17). �

REMARK 5. For p = ∞ we have

K(n,∞) =
1

90(n!)

∫ 1

0
|Fn(t)| dt and K∗(n,∞) =

1
90(n!)

∫ 1

0
|Gn(t)| dt.

The results established in Theorem 4 for p = ∞ coincide with the results of Theorem 2
with L = ‖f (n)‖∞. Moreover, by Remark 3 and Corollary 3, we have∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1)

∣∣∣∣∣ � K(n,∞) · ‖f (n)‖∞, n = 1, 2,

where

K(1,∞) =
239
3240

, K(2,∞) =
1018

273375
.

REMARK 6. Let us define for p = 1

K(n, 1) =
1

90(n!)
max
t∈[0,1]

|Fn(t)| and K∗(n, 1) =
1

90(n!)
max
t∈[0,1]

|Gn(t)| .

Then, usingRemark 4 andTheorem3,we can extend the results established in Theorem4
to the pair p = 1, q = ∞. Also, by Remark 4 and Corollary 5, we have∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1)

∣∣∣∣∣ � K(n, 1) · ‖f (n)‖1, n = 1, 2,

where

K(1, 1) =
11
60

, K(2, 1) =
17

1440
.
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REMARK 7. Note that K∗(1, p) = K(1, p), for 1 < p � ∞, since G1(t) = F1(t).
Also, for 1 < p � ∞ we can easily calculate K(1, p). We get

K(1, p) =
1
90

[
12q+1 + 14q+1 + 31q+1 + 33q+1

45(q + 1)2q+1

] 1
q

, 1 < p � ∞.

In the limit case when p → 1, that is when q → ∞, we have

lim
q→∞

1
90

[
12q+1 + 14q+1 + 31q+1 + 33q+1

45(q + 1)2q+1

] 1
q

=
11
60

= K(1, 1).

Now we use the formula (2.2) to obtain Grüss type inequality related to that Euler-
Boole formula. To do this we need the following two technical lemmas. The first one is
proved in [5, Lemma 2] and the second one is the key result from the recent paper [7]:

LEMMA 3. Let k � 1 and γ ∈ R . Then∫ 1

0
B∗

k (γ − t)dt = 0.

LEMMA 4. Let F, G : [0, 1] → R be two integrable functions. If

m � F(t) � M, 0 � t � 1

and ∫ 1

0
G(t)dt = 0,

then ∣∣∣∣∣
∫ 1

0
F(t)G(t)dt

∣∣∣∣∣ � M − m
2

·
∫ 1

0
|G(t)|dt. (3.18)

THEOREM 5. Suppose that f : [0, 1] → R is such that f (n) exists and is integrable
on [0, 1] , for some n � 1 . Assume that

mn � f (n)(t) � Mn, 0 � t � 1,

for some constants mn and Mn. Then∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T̃n(0, 1)

∣∣∣∣∣ (3.19)

�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

239
6480 (M1 − m1) for n = 1,

509
273375 (M2 − m2) for n = 2,
2(1−2−2k)

45[(2k)!] (M2k−1 − m2k−1)|B2k| for n = 2k − 1, k � 3
(1−5·22−2k+26−4k)

45[(2k)!] (M2k − m2k)|B2k| for n = 2k, k � 3

.
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Proof. By Remark 2 we can rewrite R̃1
n(f ) as

R̃1
n(f ) =

1
90(n!)

·
∫ 1

0
F(t)G(t)dt,

where

F(t) = f (n)(t), G(t) = Gn (t) , 0 � t � 1.

Using Lemma 3 we get ∫ 1

0
G(t)dt = 0.

Also, using Corollary 2 for n � 5 we get∫ 1

0
|G(t)|dt =

∫ 1

0
|Gn(s)|ds

{
= 4

k

(
1 − 2−2k

) |B2k| for n = 2k − 1,
�

(
4 − 5 · 24−2k + 28−4k

) |B2k| for n = 2k
.

For n = 1 and n = 2 we have∫ 1

0
|G(t)|dt =

239
36

and
∫ 1

0
|G(t)|dt =

4072
6075

.

Now, we apply the inequality (3.18) to obtain the estimate

∣∣∣R̃1
n(f )

∣∣∣ � 1
90(n!)

· Mn − mn

2
·
∫ 1

0
|G(t)|dt

�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

239
6480 (M1 − m1) for n = 1,

509
273375 (M2 − m2) for n = 2,
2(1−2−2k)

45[(2k)!] (M2k−1 − m2k−1)|B2k| for n = 2k − 1, k � 3
(1−5·22−2k+26−4k)

45[(2k)!] (M2k − m2k)|B2k| for n = 2k, k � 3

.

which proves our assertion. �

In the following discussion we assume that f : [0, 1] → R has a continuous
derivative of order n , for some n � 1 . In this case we can use (2.3) and the second
formula from Remark 2 to obtain, for n = 2k .

R̃2
2k(f ) =

1
90(2k)!

∫ 1

0
F2k (s) f (2k)(s)ds. (3.20)

THEOREM 6. If f : [0, 1] → R is such that f (2k) is a continuous function on
[0, 1] , for some k � 3 , then there exists a point η ∈ [0, 1] such that

R̃2
2k(f ) = − 1

90[(2k)!]
(2 − 5 · 23−2k + 27−4k)B2kf

(2k)(η). (3.21)
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Proof. Using (3.20) we can rewrite R̃2
2k(f ) as

R̃2
2k(f ) = (−1)k 1

90[(2k)!]
Jk, (3.22)

where

Jk =
∫ 1

0
(−1)kF2k(s)f (2k)(s)ds. (3.23)

From Corollary 1 follows that

(−1)kF2k(s) � 0, 0 � s � 1,

and the claim follows from the mean value theorem for integrals and Corollary 2. �

REMARK 8. For k = 3 formula (3.21) reduces to

R̃2
6(f ) = − 1

1935360
f (6)(η)

i.e. to (1.1).

COROLLARY 7. Let f ∈ C∞[0, 1] and λ ∈ R be such that 0 < λ < 2π and
|f (2k)(t)| � λ 2k for t ∈ [0, 1] and k � k0 for some k0 � 3 . Then∫ 1

0
f (t)dt = D(0, 1)− 1

90

∞∑
j=3

1
(2j)!

(2−5 ·23−2j+27−4j)B2j

[
f (2j−1)(1) − f (2j−1)(0)

]
.

(3.24)

Proof. From Theorem 6 when k � k0 we have that

|R̃2
2k(f )| � 1

90(2k)!
2|B2k|λ 2k ≈ 1

90(2k)!
· 2 · 2 (2k)!

(2π)2k
λ 2k =

2
45

(
λ
2π

)2k

,

so, (3.24) follows. �

THEOREM 7. If f : [0, 1] → R is such that f (2k) is a continuous function on
[0, 1] , for some k � 3 , and does not change its sign on [0, 1] , then there exists a point
θ ∈ [0, 1] such that

R̃2
2k(f ) = −4θ

1
90[(2k)!]

(
1 − 2−2k

)
B2k

[
f (2k−1)(1) − f (2k−1)(0)

]
. (3.25)

Proof. Suppose that f (2k)(t) � 0, 0 � t � 1. From Corollary 1 it follows that

0 � (−1)kF2k(s) � (−1)kF2k

(
1
2

)
, 0 � s � 1.

Therefore, if Jk is given by (3.23), then

0 � Jk � (−1)kF2k

(
1
2

) ∫ 1

0
f (2k)(s)ds.
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Using (3.5), we get

0 � Jk � (−1)k−14
(
1 − 2−2k

)
B2k

[
f (2k−1)(1) − f (2k−1)(0)

]
,

which means that there must exist a point θ ∈ [0, 1] such that

Jk = θ(−1)k−14
(
1 − 2−2k

)
B2k

[
f (2k−1)(1) − f (2k−1)(0)

]
.

Combining this with (3.22) we get (3.25). The argument is the same when f (2k)(t) � 0,
0 � t � 1, since in that case we get

(−1)k−14
(
1 − 2−2k

)
B2k

[
f (2k−1)(1) − f (2k−1)(0)

]
� Jk � 0. �

REMARK 9. The same series expansion of
∫ 1

0 f (t)dt as in Corollary 7 can be
obtain from previous theorem under assumption

∣∣f (2k−1)(1) − f (2k−1)(0)
∣∣ � λ 2k for

every k � k0 for some k0 � 3 where 0 < λ < 2π .

REMARK 10. If we approximate
∫ 1

0 f (t)dt by

I2k(f ) = D(0, 1) − 1
90

k−1∑
j=3

1
(2j)!

(2 − 5 · 23−2j + 27−4j)B2j

[
f (2j−1)(1) − f (2j−1)(0)

]
,

then the next approximation will be I2k+2(f ) . The difference

Δ2k(f ) = I2k+2(f ) − I2k(f )

is equal to the last term in I2k+2(f ), that is

Δ2k(f ) = − 1
90[(2k)!]

(2 − 5 · 23−2k + 27−4k)B2k

[
f (2k−1)(1) − f (2k−1)(0)

]
.

We see that, under the assumptions of Theorem 7, R̃2
2k(f ) and Δ2k(f ) are of the same

sign. Moreover, we have

R̃2
2k(f ) = 2θ

1 − 2−2k

1 − 5 · 22−2k + 26−4k
Δ2k(f ).

Thus, we have the following estimate for the remainder R̃2
2k(f ) :∣∣∣R̃2

2k(f )
∣∣∣ � 2 |Δ2k(f )| .

THEOREM 8. Suppose that f : [0, 1] → R is such that f (2k+2) is a continuous
function on [0, 1] for some k � 3. If

f (2k)(x) � 0 and f (2k+2)(x) � 0, x ∈ [0, 1] ,

or
f (2k)(x) � 0 and f (2k+2)(x) � 0, x ∈ [0, 1] ,

then the remainder R̃2
2k(f ) has the same sign as the first neglected term Δ2k(f ) and∣∣∣R̃2

2k(f )
∣∣∣ � |Δ2k(f )| .
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Proof. We have

Δ2k(f ) + R̃2
2k+2(f ) = R̃2

2k(f ),

that is

Δ2k(f ) = R̃2
2k(f ) − R̃2

2k+2(f ). (3.26)

By (3.20) we have

R̃2
2k(f ) =

1
90[(2k)!]

∫ 1

0
F2k(s)f (2k)(s)ds

and

−R̃2
2k+2(f ) =

1
90[(2k + 2)!]

∫ 1

0
[−F2k+2(s)]f (2k+2)(s)ds.

Under the assumptions made on f , we see that for all s ∈ [0, 1] either

f (2k)(s) � 0 and f (2k+2)(s) � 0

or

f (2k)(s) � 0 and f (2k+2)(s) � 0.

Also, from Corollary 1 it follows that for all s ∈ [0, 1]

(−1)kF2k(s) � 0 and (−1)k[−F2k+2(s)] � 0.

We conclude that R̃2
2k(f ) has the same sign as −R̃2

2k+2(f ) . Therefore, because of (3.26),
Δ2k(f ) must have the same sign as R̃2

2k(f ) and −R̃2
2k+2(f ) . Moreover, it follows that∣∣∣R̃2

2k(f )
∣∣∣ � |Δ2k(f )| and

∣∣∣−R̃2
2k+2(f )(f )

∣∣∣ � |Δ2k(f )| . �

RE F ER EN C ES

[1] M. ABRAMOWITZ AND I. A. STEGUN (EDS), Handbook of mathematical functions with formulae, graphs
and mathematical tables, National Bureau of Standards, Applied Math. Series 55, 4th printing, Wash-
ington, 1965.

[2] I. S. BEREZIN AND N. P. ZHIDKOV, Computing methods, Vol. I, Pergamon Press, Oxford, 1965.
[3] P. J. DAVIS AND P. RABINOWITZ, Methods of Numerical Integration, New York, 1975.
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