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ON EULER-BOOLE FORMULAE
J. PECARIC, 1. PERIC AND A. VUKELIC

(communicated by D. Hinton)

Abstract. A number of inequalities, for functions whose derivatives are either functions of
bounded variation or Lipschitzian functions or R -integrable functions, is proved by applying
the Euler-Boole formulae. The results are applied to obtain some error estimates for the Boole
quadrature rules.

1. Introduction

One of the quadrature rules of closed type is Boole’s rule based on Boole’s formula
3, p. 63]

/Olf(t)dt = % {7f (0) + 32f G) + 12f (%) + 32f (%) + 7f (1)} (1.1)
L e
935350 (&):

where 0 < & < 1. Formula (1.1) is valid for any function f with continuous sixth
derivative £(® on [0, 1]. In the recent paper [4] the following two identities, named
the extended Euler formulae, have been proved. For n > 1

) = / F ()i + T,(x) + RL(x) (12)
and .
f) = / FOde+ T, 1 () + R(x), (1.3)
where Ty(x) = 0 and
o) = 30 B [remv) - pecng)), (14)
k=1 :
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for 1 < m < n, while

and |
R(x) =~ / B! (x— 1) — B, ()] df ") (o).

Here, as in the rest of the paper, we write fol g(#) do(r) to denote the Riemann-Stieltjes

integral with respect to a function ¢ : [0, 1] — R of bounded variation, and jg g(r) dr
for the Riemann integral. The identities (1.2) and (1.3) extend the well known formula
for the expansion of an arbitrary function in Bernoulli polynomials [6, p. 17]. They
hold for every function f : [0,1] — R such that f"~1 is a continuous function of
bounded variation on [0, 1], for some n > 1, and for every x € [0, 1]. The functions
By (1) are the Bernoulli polynomials, By = Bi(0) are the Bernoulli numbers, and B (%),
k > 0, are periodic functions of period 1, related to the Bernoulli polynomials as

Bi(t) =Bi(t), 0 <t <1, and By(t+ 1) =B;(t), t € R.

The Bernoulli polynomials By(f), k > 0 are uniquely determined by the following
identities
B/i(l‘) = kBk_l(l), k>1, Bo(l) =1 (15)
and
Bi(t+1) — Bi(t) = k51, k> 0. (1.6)
For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have

Bo()=1,Bi(1)=t—=, Bo() =P —t+—, Bs(t)=¢F — = + =t

1 5 5 1
Bit) =t -2+ — —, Bs()=pF — 2 + 2 — —¢ 1.7
4(1) + 30’ 5(1) i t3 b (1.7)

so that Bj(r) = 1 and Bj(z) is a discontinuous function with a jump of —1 at each
integer. From (1.6) it follows that By (1) = Bx(0) = By for k > 2, so that B} (¢) are
continuous functions for k > 2. Moreover, using (1.5) we get

BY'(1) = kBj_, (1), (1.8)

forevery r € R when k > 3, and forevery 7 € R\ Z when k = 1,2.

The aim of this paper is to establish generalizations of the Boole formula (1.1) and
give various error estimates for the quadrature rules based on such generalizations.

In Section 2 we use the extended Euler formulae (1.2) and (1.3) to obtain two new
integral identities. We call them the Euler-Boole formulae, since they generalize the
Boole formula (1.1).

In Section 3 we prove a number of inequalities related to the Euler-Boole formulae,
for functions whose derivatives are either functions of bounded variation or Lipschitzian
functions or R -integrable functions.
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2. Euler-Boole formulae

For k > 1 define the functions Gi(¢) and Fi(z) as

1 1 3
Gi(r) = 14B; (1 — t) + 32B; (Z —t) + 12B; (5 —t) + 32B; (Z —t) ,teR

and _
Fk(t) = Gk(t) 7Bk7 re R7 k P 17

where
~ 1 1 3
By = 7Bi(0) + 32B; 1 + 12B; 3 + 32B; 1 + 7By (1), k> 1.

Especially, using (1.7) we get
B, =B, =B;=B,=Bs=0.
Also, for k > 2 we have B, = G (0), that is
Fi(t) = Gi(t) — Gi(0), k > 2, and Fi(r) = Gi(r), t€R.

Obviously, G(r) and Fi(r) are periodic functions of period 1 and continuous for
k>2.

Let f : [0,1] — R be such that £*~1 exists on [0, 1] for some n > 1. We
introduce the following notation

1 1 1 3
DmJ)_gaPﬂm+3y<z)+1y<§>+3y(1>+zﬂn}
Further, we define fo(O, 1) =0 and, for 1 < m < n,
T,(0 U-——L 7T,(0) + 32T, D fr, (1) 4321, (2 + 7T, (1)

m b - 90 m m 4 m 2 m 4 m )
where T,,(x) is given by (1.4). It is easy to see that 71(0,1) = T»(0,1) = T3(0,1) =
T4(0,1) = T5(0,1) = 0 and for m > 6
1 m

90
k=6

£

Tal0,1) = ) ) 2.1)

b

In the next theorem we establish two formulae which play the key role in this paper.
We call them the Euler-Boole formulae.

THEOREM 1. Let f : [0,1] — R be such that f "= is a continuous function of
bounded variation on [0, 1], for some n > 1. Then

/}mm_manﬁmn+ﬂqy (2.2)
0
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and )
| £a=D0.1) = T0.) + B, (2.3)
0
where .
R)(f G, (1) df "~V (),
0
and )
RX(f Fy (1) df "0 (2).
0
Proof. Put
1 1 3
X—O, 17 57 17 1

in formula (1.2) to get five new formulae. Then multiply these new formulae by

7 32 12 32 7

90’ 90" 90" 90’ 90
respectively, and add. The result is formula (2.2). Formula (2.3) is obtained from (1.3)
by the same procedure. [J

REMARK 1. The interval [0,1] is used for simplicity and involves no loss in
generality. In what follows this theorem and others will be applied, without comment,
to any interval that is convenient.

So, it is simply to prove that if f : [@,b] — R be such that £ "1 is a continuous
function of bounded variation on [a, b], for some n > 1,

b 7an b —a
/f(t)dt_D(a,b)Tn(a,b)Jr(l;O(n!; /Gn (2 )df” Ve (24)

b —a)y [? —a
/f(t)dt:D(“’b)_T”“(a’b)Jr(go(nzg /Fn (2 )df" V), (2.5)

where
o5 (32) o (22) () ]
and ) k

Tu(a,b) = 91—0 2 (b ;!a) By [f<’< () — f & )}

REMARK 2. Suppose that f : [0, 1] — R is such that £ ") exists and is integrable
n [0, 1], for some n > 1. In this case (2.2) holds with

1
R(f) = % / Gy (1) (1),
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while (2.3) holds with

- 1 1
R:(f) = F, () f ™ ()dt
By direct calculations we get
-7, t=0
—90r+7, 0<r<1/4
Fi(t)=G(t)=¢ —90r+39, 1/4<r<1/2 (2.6)

—90r+ 51, 1/2<t<3/4
—90r + 83, 3/4<t<1

901> — 14¢, 0<r<1/4
B ) 902 —78t+16, 1/4<1<1)/2
Fa0) = Ga(0) = 902 _ 1021128, 1/2<1<3/4 (2.7)

9072 — 1661+ 76, 3/4 <1< 1

—907* + 2172, 0<r<1/4
—90£* + 1172 — 48t +6, 1/4<t<1/2

BO=6G0=3 o153 -sar+15 12<1<34 @Y
—90F + 249> — 228+ 69, 3/4 <t <1
90r* — 28¢, 0<t<1/4
90r* — 1561° + 961> — 241 + 2, 1/4<t<1/2
Fat) = Gal) = 90p — 2047 + 1682 — 60t +8, 1/2<1<3/4 29
90r* — 3327 + 456/ — 2761 + 62, 3/4 <1< 1
and
—908 + 35¢*, 0<t<1/4

—90F + 195¢* — 160F° + 601> — 10t +5/8, 1/4<t<1/2

—9075 + 2554 — 2803 + 1502 — 401 +35/8, 1/2<1<3/4 -

—90° + 415¢* — 7607 + 6902 — 310t + 55, 3/4<1<1
(2.10)

F5(l) = G5(l) =

Applying (2.2) with n =1, 2, 3, 4, 5 we get the identities

1 1
[ roa=po.n = g [Cawan
= %80 i G, (1) df V(2)
1

_ 1 )
- 5 ] GO

1 1
- 3

1

1 “
= 10800/0 Gs (1) df W(r).
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The same identities are obtained from (2.3) with n = 1, 2, 3, 4, 5 since TO(O, 1) =
Tl(O, 1) = Tz(o, 1) = T}(O, 1) = T4(07 1) =0 and Fk(l) = Gk(l) fork=1,2,3,4,5
while (2.3) with n = 6 yields the identity

1 B 1 1 )
/Of(t)dth(O,l)_m/O Fs (1) df 2 (z).

3. Some inequalities related to Euler-Boole formulae

In this section we use the Euler-Boole formulae established in Theorem 1 to prove
a number of inequalities for various classes of functions. First, we need some properties
of the functions G(¢) and Fi(¢) defined in the previous section.

The Bernoulli polynomials are symmetric with respect to %, that is [1, 23.1.8]

Bi(1 —1) = (—=1)*By(r), Vt€R, k> 1. (3.1)

Setting 7 = 1 in (3.1) we get
3 1
B> )=(0'Be( =), k> 1.
1

Bi(1) = Bi(0) = B, k>2, Bi(1) = =Bi(0) = 3

Also, we have

and
By_1 =0, j=2.

Therefore, using [1,23.121] and [1, 23.122]

By; (1) =—(1-2"%)By, j2=1,

2

and 3

1 j j

By 7 ) =Boy| ;)= 277 (1 - 21_2'1) By, j 21,

4 4

we get ~
By_1=0, j>1 (3.2)

and

=~ 1 1 . _
sz = 14B2j + 64sz (Z) + lszj <§> = (2 —5.037% 4 27—4_/) B2j, j> 1.

Now, by (3.2) we have
Fyj1(t) = Gyj1 (1), j =1, (33)
and, by (3.3),

Fyj(t) = Gj(t) — Boj = Goy(t) = (2= 5277 + 27 %) By, j> 1. (34)
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Further, the points 0 and 1 are the zeros of Fi(t) = Gi(t) — G¢(0), k > 2, thatis
Fi(0) = F(1) =0, k> 2.

As we shall see below, 0 and 1 are the only zeros of Fy;(r) for j > 3. Next, setting

t=1in (3.1) we get
1 1
Bi(z)=1'Be(5]), k=1

which implies that

Using the above formulae, we get

1 1 .
Fa (5) =Gy (§> =0,j2>21

We shall see that 0, % and 1 are the only zeros of Fo_i(t) = Gy—1(t), for j > 3.
Also, note that

1 . ,
Gy (2> 1432,( )+64sz( )+1232, =(-2-9-2274+2"Y) By, j>1
and
( ) Gz;( ) Byy=—4(1-27%)By, j> 1 (3.5)
LEMMA 1. For k > 2 we have
Gi(1—1) = (=1)'Gi(r), 0<1 <1,

and
Fi(1—1) = (—1)*F(r), 0<r< 1.

Proof. As we noted in introduction, the functions Bj () are periodic with period
and continuous for £ > 2. Therefore, for k > 2 and 0 < ¢ < 1 we have

3 1 1
(1 —l) = 14-B;<< (l) +323: (_Z +l) + 12B;<< <—§ +l) +3ZB;: <_Z +l‘>

—_

14Bk(t)+323,<(%+)+1sz(%+¢)+3sz(§+¢), 0<r<l,
B 14Bk(t)+32Bk(%+t)+123k(%+t)+32Bk(f%+t), %<t§§,
T ) 4Bi(t)+32Bi (3 +1) + 12Bu (=3 +1) +32Bi (—5 +1) <1<,

14B, (1) +32Bi (—3 + 1) + 12Bi (—5 +1) +32Bc (-5 +1), 3 <1<,
= (—1)k><

14B (1 — 1) +32B (2 — 1) + 12Bx (3 — 1) +32B1 ( —1), 0<1< L,

14B; (1 — 1) +32B (3 —t) + 12B; (3 — 1) +32B¢ (3 — 1), § <t < 3,

14B (1 —1) +32B (3 — 1) +12Bx (3 — 1) +32B¢ (3 — 1), 5 <1< 3,

14B, (1 —1) +32Bx (2 —1) + 12By (3 —1) +32Bx (3 —1), 3 <t<1,

= (-D'G(0),
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which proves the first identity. Further, we have Fy(¢) = G (t)—Gi(0) and (—1)*G(0)
= G(0), since Gy41(0) = 0, so that we have

Fi(1—1) = G (1 —1) = Ge(0) = (= 1)" [Gu(r) — Gi(0)] = (—1)Fx (1) ,
which proves the second identity. [J

Note that the identities established in Lemma 1 are valid for k£ = 1, too, except at
the points 0, 1/4, 1/2, 3/4 and 1 of discontinuity of F,(¢) = G,(¢).

LEMMA 2. For k > 3 the function Gy—1(t) has no zeros in the interval (07 %) .
The sign of this function is determined by

1
(=) 1'Gy (1) >0, 0<t< 3

Proof. For k =3, Gs(t) is given by (2.10) and using the Sturm theorem it is easy
to see that

1
Gs(1) > 0, 0<t<§.

Thus, our assertion is true for k = 3. Now, assume that k > 4. Then 2k — 1 > 7 and
Ga—1(2) is continuous and at least twice differentiable function. Using (1.8) we get

Gy (1) = —(2k — 1)Gy—a(1)
and
Glzlk_l(l) = (2k — 1)(2]( — 2)G2k_3(l).
Let us suppose that Gx—3 has no zeros in the interval (0, 1) . We know that 0 and 1

are the zeros of Gy;— (7). Let us suppose that some ¢, 0 < a < %, is also a zero of
Ga—1(1) . Then inside each of the intervals (0, ) and (ct, 1) the derivative G, ()
must have at least one zero, say f;, 0 < i < @ and [, o < B, < % Therefore,
the second derivative G5, _(#) must have at least one zero inside the interval (B, ) .
Thus, from the assumption that G;—1(#) has a zero inside the interval (07 %) , it follows
that (2k — 1)(2k — 2)Ga—3(¢) also has a zero inside this interval. Thus, Ga—;(f) can
not have a zero inside the interval (0, 3) . To determine the sign of G (), note that

1 1
Gor—1 (Z) = —2By_ (Z) .

We have [1,23.1.14]

which implies

(1) 'Gyy G) =2 (=1)"By_, (}1) > 0.

Consequently, we have

1
(—1D)"'Gy (1) >0, 0<t< 3 O
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COROLLARY 1.  For k > 3 the functions (—1)*Fy(t) and (—1)*Gyu(t) are
strictly increasing on the interval (07 %) , and strictly decreasing on the interval (%, 1) .
Further, for k > 3, we have

Fu()|=4(1-2"%)|B
fé}%’h' w(0)] =4 ( ) 1Bl

and
max |Gy (f)] = (2+9 2272 —277%) |By].
t€0,1]

Proof. Using (1.8) we get

(1 F()]" = [(=1)*Gu(r)]" = 2k(=1)* "G 1 (1)

and (—1)"'Gy—1(r) > 0 for 0 < ¢ < J, by Lemma 2. Thus, (—1)*Fy(r) and
(—=1)*G(r) are strictly increasing on the interval (0, 1) . Also, by Lemma 1, we have
Fo(1—1) = Fy(1), 0 <t < 1 and Gy (1—1) = Gxu(1), 0 <t < 1, whichimplies that
(=1)*Fp(r) and (—1)*Gy(t) are strictly decreasing on the interval (3,1) . Further,

F5(0) = F5(1) = 0, which implies that |Fx(7)| achieves its maximumat ¢ = 3, that

1S
1
F2k (E) ’ =4 (1 — 2_2k) ‘sz‘ .

o ()}

1
= ’sz (5) ‘ = (249227 —27"%) By,

Fo (1) =
,‘33’1‘]‘ 2%(1)]

Also

max |Gy (f)] = max {|G2k (0)],
t€0,1]

which completes the proof. [
COROLLARY 2. For k > 3, we have
1 1 4
/ ‘sz_l(l‘)| dr = / ‘sz_l(l)‘ dr= - (1 — 272]6) ‘sz‘ .
0 0 k
Also, we have
1
/ |Far(1)] dt = ’sz’ = (2-5-2% 4 277%) |By|
0
and )
/ |G2k(t)‘ dr <2 ‘Ezk‘ = (4 — 5.4 % + 2874k) |sz| .
0
Proof. Using (1.8) it is easy to see that

G.(t) = —mG,_(t), m >3. (3.6)
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Now, using Lemma 1, Lemma 2 and (3.6) we get
1 L
2
/ |G2k_1(l‘)| dt = 2 / sz_l(l)dl
0 0

1 1 4
- —) - =—(1-2"%)|B
k‘sz (2> sz(O)‘ k( ) |Bx]

which proves the first assertion. By Corollary 1 and because Fy(0) = Fyu(1) = 0,
F(t) does not change its sign on the interval (0, 1). Therefore, using (3.4) and (3.6),

we get
1 1
/ |F2k(t)|dt: / sz(t)dt =
0 0

1
2k+1

1 1
_ o 2
= 2‘ o7 GZk(t)o‘

1 [GZk(t) - EZk} dr

G2k+1(t)|(1) — By

= ‘sz )

which proves the second assertion. Finally, we use (3.4) again and the triangle inequality
to obtain

1 1 1
/ |Gox (1) dt = / ’sz(t) JrBZk‘ dr < / |For(2)| dt + ‘sz‘ =2 ’BZk ,
0 0 0

which proves the third assertion. [

THEOREM?2. Let f : [0,1] — R be such that f ") is an L-Lipschitzian function
on [0, 1] for some n > 1. Then

D(0,1) + T,_1(0,1) ()|dr-L (3.7)
and
/f Hdr — D0, 1) + T (0, 1) / GO dr-L. (3.8)
Proof. For any integrable function @ : [0, 1] — R we have

/01 o(1)df "V (1)

since f "~ is L-Lipschitzian function. Applying (3.9) with ®(¢) = F,, (¢) , we get

1 ! n—1)
—90(n!)/0 (1) df /\F ) dr- L.

Applying the above inequality, we get inequality (3.7) from identity (2.3). Similarly,
we can apply inequality (3.9) with ®(7) = G, (¢), and then use identity (2.2), to obtain
inequality (3.8). O

/ ()| dr - L, (3.9)
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COROLLARY 3. Let f : [0,1] — R be given function.
If f is L-Lipschitzian on [0, 1}, then

239
f Ndi =D, 1) < 3335
If f' is L-Lipschitzian on [0, 1], then
1018
/f 1dr = DO, 1)| < 373375

Proof. Using (2.6) and (2.7) we get
4072
Fy(t)]dt = =— and Fo(r)|dt = ——.
/‘1| o /'2‘ 6075
Therefore, applying (3.7) with n = 1,2, we get the above inequalities. [
As we have already noted in Section 2, we have
To(0,1) = T1(0,1) = T5(0,1) = T3(0,1) = T4(0,1) = T5(0,1) =0.  (3.10)
Moreover, since By = 0 and By = (2 —5-232% 4+ 27-*)By . k > 1, we have
1 2] 1

T,,(0,1) = —0 ﬁ(z—5-23—2’<+27—4’<)32k FC=D1) — D), m> 6,

I3

(3.11)

where [%] is the greatest integer less than or equal to 7.

COROLLARY 4. Let f : [0,1] — R be such that £~V is an L-Lipschitzian
Sfunction on [0,1] for some n > 5. Set D\(f) = Da(f) := 0 and for any integer r
such that 3 <r< g define

D, (f) :_91_0,-_3ﬁ( _5.237% 4 974)p ,[f<2"-1>(1)ff<2f—1>(0)]. (3.12)
Ifn=2k—1, k>3, then
/f f)di — D(0,1) + D1 (f)] < m(l—z—”‘)wz,{u.
If n =2k, k>3, then
/f 1)dt — D(0,1) + Di—1(f)| < m(1—5-22_2k+26_4")|32k|-L

1

2 5.2 4 2774y |By| - L.
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Proof. For n =2k — 1, by (3.11) we have that T,_;(0,1) = D;_;(f). Thus, the
first inequality follows from Corollary 2 and (3.7). For n = 2k, by (3.11) we have
that T,,_1(0,1) = D, (f) and T,(0,1) = Di(f ). Now, the second inequality follows
from Corollary 2 and (3.7), while the third one follows from Corollary 2 and (3.8). O

REMARK 3. Suppose that f : [0,1] — R is such that ) exists and is bounded
on [0, 1], for some n > 1. Therefore, the inequalities established in Theorem 2 hold
with L = ||f ]| so.

THEOREM 3. Let f : [0,1] — R be such that f "= is a continuous function of
bounded variation on [0, 1] for some n > 1. Then

max [F,(0)] - Va(FY)  (3.13)

1
~ 1
/0 f(l)dl — D(O, 1) + Tn71(07 1) < 90(’1') 1€[0,1]

and

<—— Gu(0)| - V3=V 3.14

/lf(t)dt —D(0,1) 4+ T,(0,1)
0

where V(£ "=V is the total variation of f =1 on [0, 1].

Proof. If @ : [0,1] — R is bounded on [0, 1] and the Riemann-Stieltjes integral
fol ®(7) d f "~V (t) exists, then

1
/ ®(1)df "V (1)| < max |D(r)| - VE(F ). (3.15)
0 1€[0,1]

We apply estimate (3.15) to ®(7) = F, (¢) to obtain

1

1 1 (n—1) 1(p(n—1)
550 |, 040 < s ma (0] V)

Now, we use the above inequality and identity (2.3) to obtain (3.13). In the same
manner, we apply estimate (3.15) to ®(#) = G, (r), and then use identity (2.2), to
obtain inequality (3.14). O

COROLLARY 5. Let f : [0,1] — R be given function.
If f is a continuous function of bounded variation on [0, 1], then

11
< — - VA(f).

/ F(dt— Do, 1)

If f' is a continuous function of bounded variation on [0, 1], then

17

1
/Of(t)dt—D(O,l) <T4O-Vé(f’).
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Proof. From explicit expressions (2.6) and (2.7), we get

3 33
max |F1(0) 1(4) 2
max |F(1)] F ! 17
X = —_ = —.
o) 2 \4 8

Therefore, applying (3.13) with n = 1,2 we get the above inequalities. [

COROLLARY 6. Let f : [0,1] — R be such that f "=V is a continuous function
of bounded variation on [0, 1] for some n > 5. Define D,(f ), r > 3 asin Corollary 4.
Ifn=2k—1, k>3, then

1
/0 f(t)dth(O’ 1) +Dk71<f) < mtren[g)li ‘sz 1( )‘ . Vé(f<2k72)).

If n=2k, k>3, then

1 2 — 1 —1
/0 f(0)dt = D(0,1) + D1 (f)| < B30T (1—27%) [Byl -V (F *Y)
f f)dr = D(0,1) + Di(f)| < 73 [(12]()!] (1492172 — 26=4Y B,y [V (F 1),

Proof. The argument is similar to that used in the proof of Corollary 4. We apply
Theorem 3 and use the formulae established in Corollary 1. [

REMARK 4. Suppose that £ : [0,1] — R is R-integrable function for some
n > 1 Inthis case £ "~ is a continuous function of bounded variation on [0, 1] and

we have
1
v = [ lrowfar= 1o
0

Therefore, the inequalities established in Theorem 3 hold with [|f ||, in place of
Va(f (n— 1>) . However, a similar observation can be made for the results of Corollaries 5
and 6.

THEOREM 4. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <

00, 1_9 + ~=1 or p=oo, gq=1. Let lf " ‘ [0,1] — R is R-integrable function
for some n 1. Then we have

/f dt — DO, 1) + Ty (0,1)] < K(m,p) - IIf ™. (3.16)
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and
/f 0dr = D(0,1) + 7,(0,1)| < K*(m,p) - I/ (3.17)
where
K(n,p) = /ln qm],
and N
mez%w)lﬁmmw$.

Proof. Applying the Holder inequality we have

! :
/I&UWM]'WW
0

= K(n,p)- I |-

Using the above inequality, by Remark 2, from (2.3) we get estimate (3.16). In the
same manner, from (2.2) we get estimate (3.17). O

1
m /0 Fo (0 (1)dr

< -
= 90(n!) »

REMARK 5. For p = oo we have

90(n!)/0 [Fa(r)]dr - and - K (n><><>)=90(n!)/O G, (1)] dr.

The results established in Theorem 4 for p = oo coincide with the results of Theorem 2
with L = |[f || . Moreover, by Remark 3 and Corollary 3, we have

K(n,00) =

1
f()dt —D(0,1)| < K(n,00) - |f ||oe, n=1,2,
0

where
239 ~ 1018

K(1,00) = = - .
(1,%0) = 35407 (2,00) = 273375
REMARK 6. Let us define for p = 1

K(n,1) = max |F,(f)] and K*(n,1)=

1 L max [G,(1)
90(n!) refo.1] 90(n!) eyl

Then, using Remark 4 and Theorem 3, we can extend the results established in Theorem 4
to the pair p = 1, g = co. Also, by Remark 4 and Corollary 5, we have

1
F(0)de = DO, )] < K(n, 1) - [F 7|1, n=1,2,
0

where
11 17
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REMARK 7. Note that K*(1,p) = K(1,p), for 1 < p < oo, since Gy (t) = Fi ().
Also, for 1 < p < oo we can easily calculate K(1,p). We get

1 {12qul + 149+ 4 31941 4 334+

K(Lp) =55 45(q + 1)24+1

1
q
I <p< oo
90 ],<poo

In the limit case when p — 1, thatis when g — oo, we have

lim —
qinolo 90

1
1 [129H 4 14970 4 3191 43304170 1]
{ + + + ] = — = K(1,1).

45(q + 1)24+1 T 60

Now we use the formula (2.2) to obtain Griiss type inequality related to that Euler-
Boole formula. To do this we need the following two technical lemmas. The first one is
proved in [5, Lemma 2] and the second one is the key result from the recent paper [7]:

LEMMA 3. Let k> 1 and y € R. Then

1
/ Bi(y —t)dt = 0.
0

LEMMA 4. Let F,G: [0,1] — R be two integrable functions. If
m<F@) <M, 0<r<1

and

then

1 M—m 1
/OF(t)G(t)dt < 3 -/0 |G(1)|dz. (3.18)

THEOREM 5. Supposethat f : [0, 1] — R is suchthat f () exists and is integrable
on [0, 1], for some n > 1. Assume that

my <fO (1) <M, 0<r<1,

for some constants m, and M,,. Then

1
/f(t)dth(O, 1) 4 7,(0,1) (3.19)
0
%(Ml—ml) forn=1,
soiss (Mo — my) forn =12,
< 2(1-27%

W(Mzk_l —m2k_1)|B2k| forn:2k—1, k>3 -
(175_2272k+2674k)

45[(20) ] (M2k - m2k)|BZk| fOI‘l’l = 2k, k = 3



42 J. PECARIC, 1. PERIC AND A. VUKELIC

Proof. By Remark 2 we can rewrite R!(f) as

where

Also, using Corollary 2 for n > 5 we get

1 1 _ 4 (1 — 2*2’6) |Ba| forn=2k—1
/0 \G(t)|dt:/0 |G, (s)|ds {< 4_5_24—2k_|_28—4k) |By| forn =2k

For n =1 and n = 2 we have

239 4072
G dt G d =
/ G| / Gl = 2.

Now, we apply the inequality (3.18) to obtain the estimate

1 M, —m, [
) <—~7-/ |G(t)|dt
! 2 0

sagg (M1 —m1) forn=1,
3375 (Mo — m) forn =2,
< 2127

W(MZkflfmZkfl)‘BZk‘ forn=2k—1,k>3 -
(152872 20— 4)

45[(2k)!] (M2k — m2k)|BZk| forn = Zk,k 2 3

which proves our assertion. [

In the following discussion we assume that f : [0,1] — R has a continuous
derivative of order n, for some n > 1. In this case we can use (2.3) and the second
formula from Remark 2 to obtain, for n = 2k.

Blf) = g | P 000 s, (3.20)

THEOREM 6. If f : [0,1] — R is such that f® is a continuous function on
[0, 1], for some k > 3, then there exists a point 1 € [0, 1] such that

1

W(z —5.03 2% 4 27—4/<)szf(2k)(n). (3.21)

ﬁ%k(f) ==
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Proof. Using (3.20) we can rewrite R3,(f) as

Ry(f) = (- )mh, (3.22)
where .
Jp = /O (=1 Fa(s)f @0 (s)ds. (3.23)

From Corollary 1 follows that
(=1 Fy(s) >0, 0<s< 1,

and the claim follows from the mean value theorem for integrals and Corollary 2. [
REMARK 8. For k = 3 formula (3.21) reduces to
~ 1
R(f)=—— (6
o) = ~{g33360
ie. to (1.1).

COROLLARY 7. Let f € C*[0,1] and A € R be such that 0 < A < 27 and
If @O (£)| < A% for t €[0,1] and k > ko for some ko > 3. Then

iy L 324 574\, [£@-1 (1) _ @1
/f D(0, 1) 90; S (252 2B, [f (1) —f (0)}.
(3.24)
Proof. From Theorem 6 when k > ky we have that
1 , 2 ) 2 (AN
\ 2 B A{Zk . 2 2k - 0

so, (3.24) follows. O

THEOREM 7. If f : [0,1] — R is such that f®* is a continuous function on

[0,1], for some k > 3, and does not change its sign on [0, 1], then there exists a point
0 € [0, 1] such that

~ 1
By(f) = —40

W (1 — Z*Zk) By [f(Zkfl)(l) *f(Zk*I)(O)} ) (3'25)

Proof. Suppose that f %X (¢) > 0, 0 << 1. From Corollary 1 it follows that

1
0 < (—DfFu(s) < (=1) Fy (5) , 0<s< 1.

Therefore, if J; is given by (3.23), then

0<Jir < (— kF2k(>/f2k
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Using (3.5), we get
0 <Je < (~1 14 (1—27%) By [f(zk—l)(l) 7f(2k—1)(0)} :
which means that there must exist a point 0 € [0, 1] such that
Jo=0(—1)F14 (1 — 27%) By, [f<2k*1>(1) ff<2’<*1>(0)} .

Combining this with (3.22) we get (3.25). The argument is the same when f %9 (1) < 0,
0 <t < 1, since in that case we get

(—1)14 (1—27%) By [f<2"‘”(1) ff(z"‘”(o)} <A<0. 0

REMARK 9. The same series expansion of fol f(#)dt as in Corollary 7 can be
obtain from previous theorem under assumption [f<2k*1)(1) —f (2’“’1)(0)‘ < A% for
every k > ko for some ko > 3 where 0 < A < 27.

REMARK 10. If we approximate fol f(p)dt by

Ly~ | 3 y7-4yg [ (i-1)
Izk(f):D(OJ)—%;@(Q—SQS Y427 4’)sz{f2] V(1) - 1(0)},

then the next approximation will be ;12 (f) . The difference

Mok (f) = L2 (f ) — Lo (f)

is equal to the last term in Iogi2(f ), thatis

1
A _ 5 _5.93-2% | oT—4\p [ (2k=1)(1) — £2=D (g } .
We see that, under the assumptions of Theorem 7, R3,(f) and Ay (f) are of the same
sign. Moreover, we have
1— 272k

~ o
RZk(f) - 291 _ 5 K 22—2k + 26—4kA2k(f)'

Thus, we have the following estimate for the remainder ﬁ%k(f ):

R(r)] < 218201

THEOREM 8. Suppose that f : [0,1] — R is such that f***?) is a continuous
Sunction on [0, 1] for some k > 3. If

F@ >0 and fOx) >0, xel0.1],

or
f®x) <0 and P (x)<0, xelo,1],

then the remainder ﬁ%k(f ) has the same sign as the first neglected term Ay (f) and

Rr)] < Ian(r)]
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Proof. We have
Mor(f) + Bo o (f) = B3 (F),
that is
A(f) = Rou(f) — Roya(f)- (3.26)
By (3.20) we have

1
@W—%@mA&wWWMS

and

- 1 1
—Ryn(f) = m/o [~ Faicia(s)]f ) (5)ds.

Under the assumptions made on f , we see that for all s € [0, 1] either
fP9(s) >0 and f*(5)>0

or
FP(s) <0 and fH2(5) <o.

Also, from Corollary 1 it follows that for all s € [0, 1]
(—l)kng(S) = 0 and (—l)k[—F2k+2(S)] > 0.

We conclude that R3,(f) has the same sign as —R3, ,,(f ) . Therefore, because of (3.26),
A (f) must have the same sign as R3,(f) and —R3, +2(f) . Moreover, it follows that

B < 8alf)] and | =Raa()()] < 18] O
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