
Mathematical
Inequalities

& Applications
Volume 7, Number 1 (2004), 47–53

OPTIMAL INEQUALITIES BETWEEN

SEIFFERT’S MEAN AND POWER MEANS

PETER A. HÄSTÖ

(communicated by P. S. Bullen)

Abstract. In this paper optimal inequalities between Seiffert’s mean and power means are derived
using a simple monotony property.

1. Introduction and main results

In this paper we will derive inequalities between Seiffert’s mean and power means
using elementary methods, namely monotonity properties. Our method yields optimal
approximation results with quite little effort. Seiffert’s mean was introduced by H.-J.
Seiffert in [7] and is defined for distinct x, y ∈ R

> := (0,∞) by

P(x, y) :=
x − y

4 arc tan(
√

x/y) − π

and by P(x, x) := x ; an equivalent form is given in [8]. Inequalities of this mean have
also been considered in [2, 3, 4, 9, 11, 5, 6] (more on these later), and G. Toader [10]
has considered a generalization of it.

The classical power mean is defined by the formula

Ap(x, y) :=
(

xp + yp

2

)1/p

for x, y, p ∈ R
> and A0(x, y) :=

√
xy (for basic properties of the power means, see for

instance [1]). The first inequalities between the Seiffert mean and power means were

A1/2 � P � A2/3,

proved by A. A. Jagers in [3]. In a recent paper, [2], the author complemented this result
by showing that 1/2 is the greatest value of p for which the ratio P(x, 1)/Ap(x, 1) is
increasing in x > 1 and 2/3 is the least value of p for which the ratio P(x, 1)/Ap(x, 1)
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is decreasing in x > 1 . These results led to the inequalities ([2, Corollary 1.7] with
α = 1/2 )

A1/2 � P � (4/π)A1/2 (1)
and [2, Corollary 6.3]

(23/2/π)A2/3 � P � A2/3. (2)
The largest ratio between the upper and lower bounds in these three double in-

equalities is 21/2 ≈ 1.414 , 4/π ≈ 1.273 and π2−3/2 ≈ 1.111 , respectively. In this
paper we will derive optimal inequalities of Seiffert’s mean in the sense of minimizing
this ratio. We start with an inequality similar to that derived by Jagers.

THEOREM 1.1. Let p, q ∈ R
> . Then

Ap � P � Aq

if and only if p � p0 := log 2/ logπ and q � 2/3 .

With the optimal choice p = p0 and q = 2/3 in the previous theorem we get the
maximal ratio 2log π/ log 2−3/2 = π2−3/2 ≈ 1.111 between the upper and lower bounds.
If we allow multiplication of the power means by a constant, as in inequalities (1) and
(2), we can obviously expect to get a better approximation:

THEOREM 1.2. Let a, b, p, q ∈ R
> be such that

aAp � P � bAq.

Then sup bAq
aAp

� c0 with equality if and only if p = q = p0 := log 2/ logπ , a = 1 and
b = c0 , where

c0 := sup
x∈[1,∞)

P(x, 1)
Ap0(x, 1)

≈ 1.0298.

Before moving on to the proofs, let us note some other inequalities of Seiffert’s
mean. A lower bound was obtained by H.-J. Seiffert in [9] which involves power means
and the logarithmic mean:

P(x, y) � A(x, y)G(x, y)
log{x/y}

x − y
,

for x �= y . Here A denotes the arithemtic mean A1 and G is the geometric mean A0 .
Since this lower bound grows like

√
x log x as x → ∞ (for fixed y ) we see that it is a

worse estimate than Theorem 1.1, which grows like x , for large x . On the other hand,
numerical results suggest that it is better estimate for x ≈ y . J. Sándor has recently
derived several inequalities for Seiffert’s mean in [4] using a sequential method. Some
examples of his results are

A1/2 =
A + G

2
� P �

√(
A + G

2

)
A ,

which appears in Theorem 1, and

3√
A2G � P � G + 2A

3
,



OPTIMAL INEQUALITIES BETWEEN SEIFFERT’S MEAN AND POWER MEANS 49

which is part of Theorem 2. (A and G are as in the previous paragraph.) As Sándor
noted in Remark 4, the latter upper bound for P is better than the bound A2/3 derived
by Jagers (and also part of Theorem 1.1). The upper bound from Theorem 1.2 (that
is P � c0Ap0 ) grows like c021/q0x whereas the upper bounds from the previous two
inequalities grow like 2−3/2x and x/3 , respectively, for fixed y and x � y . We
therefore see that Theorem 1.2 provides the best upper bound in this case, although
it is obviously worse for x ≈ y . Of the lower bounds the first is worse than that of
Theorem 1.1, whereas the second lower bound seems to be better for x ≈ y but is worse
for x � y . Some further inequalities between P , A , G and other meansare given in
[11, 5, 6].

2. The proofs

Both of the theorems are based on the same fundamental lemma, the proof of
which is postponed until the end of the paper, since it is somewhat technical. It should
be noted that because of homogeneity in the inequality aAp(x, y) � P(x, y) � bAq(x, y)
we may assume without loss of generality that y = 1 � x , an assumption to which we
will adhere for the rest of the paper.

LEMMA 2.1. Let 1/2 < p < 2/3 . There exists a value xp ∈ (1,∞) such that
P(x, 1)/Ap(x, 1) is increasing for x ∈ [1, xp] and decreasing for x ∈ [xp,∞) .

Notice how this lemma complements the results in [2] which showed that the ratio
is in the lemma is decreasing for p � 2/3 and decreasing for p � 1/2 . Using this
lemma we can easily prove Theorem 1.1.

Proof of Theorem 1.1. Let us first prove that Ap � P if and only if p � p0 .
Suppose first that p � p0 . Since Ap0 � Ap by the well-known monotonicity property
of the power mean, it suffices to show that Ap0 � P . Define f (x) := P(x, 1)/Ap0(x, 1) .
We have

lim
x→∞ f (x) = 2p0/π = 1

and also f (1) = 1 , hence

f (x) � min{f (1), lim
x→∞ f (x)} = 1

for all x ∈ [1,∞) by Lemma 2.1, from which it follows that Ap � P . Assuming
conversely that Ap � P we see that 2p/π � 1 by considering x → ∞ and so
p � p0 . Let us move on to the inequality P � Aq . The inequality P � A2/3 was
proved by A. A. Jagers in [3], as was already mentioned, and the inequality P � Aq

for q � 2/3 follows from the monotonicity of the power mean. Suppose then that
P � Aq . It follows from the first paragraph in the proof of [2, Proposition 6.1] that
g(x) := P(x, 1)/Aq(x, 1) is strictly increasing for x ∈ [1, x0) for some x0 > 1 if
q < 2/3 . Since g(1) = 1 , it follows that g(x) > 1 with x ∈ (1, x0) for q < 2/3 ,
which means that P(x, 1) > Aq(x, 1) for the same x , contrary to the assumption
P � Aq . �

We will prove Theorem 1.2 in two steps, first assuming that p = q and then
considering what happens when we relax this constraint.
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LEMMA 2.2. Let a, b, p ∈ R
> . If

aAp � P � bAp

then b/a can be minimized by the choise p = p0 := log 2/ logπ , in which case the
constants can be chosen so that b/a = c0 , where c0 is as in Theorem 1.2.

Before proving this lemma let us give an “intuitive proof”based on two graphs,
which will hopefully also help in understanding the actual proof.
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Figure 1: The function y = P(x−2, 1)/Ap(x−2, 1) for p = 1/2 (top), p = p0 and p = 2/3
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Figure 2: The function y = P(x−2, 1)/Ap(x−2, 1) for p = p0 (top) and p = 0.61

(Note the argument x−2 of the function – this was chosen to make the graph
clearer, it obviously does not affect the argument below, which is based on differences
in the y–coordinate.) The ratio that we seek to minimize is that between the maximum
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and the minimum value along a single curve. In Figure 2. we directly see that we should
only consider curves close to the x -axis, in particular, which are not strictly positive at
x−2 = 0 . Moreover, as seen in the close-up in Figure 2., the curves are a lot steeper at
the minimum at x−2 = 0 then at the maximum in the middle of the curve and hence it
is probably not worth choosing a curve that goes below 0 as x → ∞ , since the gain in
the upper bound is smaller than the loss in the lower bound. The next proof formalizes
these thoughts.

Proof of Lemma 2.2. Assume first that p < p0 . Then we may choose a = 1 (we
always have a � 1 � b , since Ap(1, 1) = P(1, 1) = 1 ) but we have

b � sup
x∈[1,∞)

P(x, 1)
Ap(x, 1)

> sup
x∈[1,∞)

P(x, 1)
Ap0(x, 1)

= c0,

by the strict monotonicity of the power means (since the supremum does not occur
at x = 1 ). If p � 2/3 then we may choose b = 1 but have a � 21/p/π and so
b/a � π2−1/p > 1.110 > c0 ≈ 1.03 . We may assume then that p0 � p < 2/3 and
so Lemma 2.1 is applicable. Let us denote f (x) := P(x, 1)/Ap(x, 1) . Using the lemma
we conclude that

21/p/π = lim
z→∞ f (z) = min{f (1), lim

z→∞ f (z)} � f (x)

for every x ∈ [1,∞) and that there exists a y ∈ (1,∞) which maximizes f , hence
f (x) � f (y) . It follows that

b
a

� f (y)
limz→∞ f (z)

=
π(y − 1)

(4 arc tan(
√

y) − π)(yp + 1)1/p
.

The right hand side grows as p grows, and so the minimal lower bound is obtained
for the least p , hence p = p0 . For this value of p a numerical computation gives
y ≈ 38.0586 and so we find c0 = f (y) ≈ 1.0298 . �

Proof of Theorem 1.2. If aAp � P � bAq , then the largest ratio between the upper
and lower bounds is at x = 1 or at the limit x → ∞ according as p � q or p � q .
Hence the ratio equals

b
a

max{1, 21/p−1/q}.
Consider fixed p and a . If q � p then the ratio equals b/a and we should choose
q so as to be able to minimize b . But this means choosing q as large as possible
(since Aq grows in q ), that is q = p , in which case we can use Lemma 2.2. For
q > p the ratio equals (b2−1/q)/(a2−1/p) . For fixed a we should choose p as large
as possible, in particular, there is no need for considering p < p0 , since a can never
be larger than 1 . Similarly, we conclude that there is no need to consider q > 2/3 .
Since p0 � p < q � 2/3 Lemma 2.1 is applicable to the lower bound. Hence we have
a = min{1, 21/p/π} and so the ratio equals πb2−1/q . Since b � P(x, 1)/Aq(x, 1) for
every x ∈ [1,∞) , we find that

πb2−1/q � sup
x∈[1,∞)

π(x − 1)
(4 arc tan(

√
x) − π)(xq + 1)1/q

.
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As in the last part of the proof of Lemma 2.2, we find that the right hand side is
increasing in q , hence q should be chosen as small as possible, i.e. q = p0 (here we
use continuity of the ratio, since actually we had q > p ). �

It remains only to prove Lemma 2.1. The proof is based on differentiating suitably,
eliminating all difficult terms. This means that we start by defining a bunch of functions
related to the previous functions, specifically, which are simultaneously positive. The
actual argument begins only in the last paragraph of the proof, where we untwine this
jungle of functions.

Proof of Lemma 2.1. Let us denote f (x) := P(x, 1)/Ap(x, 1) . We have to prove
that f is initially increasing and then decreasing. We can do this by showing that the
logarithmic derivative has characteristic +|− . Since f is continuous, we may assume
that x > 1 . We then have

d log f (x)
dx

=
1

x − 1
− 2

(x + 1)
√

x
1

4 arc tan(
√

x) − π
− xp−1

xp + 1
.

Let us multiply the inequality d log f /dx � 0 by x(x − 1)(xp + 1)(4 arc tan(
√

x) − π)
and divide by xp + x . We get the inequality

g(x) := 4 arc tan(
√

x) − π − 2
√

x
(x − 1)(xp + 1)
(x + 1)(xp + x)

� 0,

which holds if and only if d log f /dx � 0 . We will show that g′(x) has characteristic
+|− . We find that

g′(x) =
(x − 1)

√
x

(x + 1)2(xp + x)2
[−(x + 3)x2p−1 − (2p − 1)(x2 − 1)xp−1 + 3x + 1]

hence g′ is positive if and only if h(x) := −(x+3)x2p−1−(2p−1)(x2−1)xp−1+3x+1
is. Now we find that

m(x) := h′′(x)x3−p = 2(1 − 2p)pxp+1 − 6(2p2 − 3p + 1)xp

− (2p2 + p − 1)px2 + 2p3 − 7p2 + 7p − 2.

Clearly h′′(x) is positive if and only if m(x) is. We find that

m′(x) = −2(2p2 + p − 1)p(xp + x) − 6(2p2 − 3p + 1)pxp−1

� −2(5p − 1)(2p − 1)pxp−1,

where the inequality follows since xp + x � 2xp−1 . Therefore m′(x) < 0 for p > 1/2 ,
and hence m is decreasing. Since m is decreasing and m(1) = −24p2 + 28p − 8 =
−4(2p − 1)(3p − 2) > 0 and m(x) → −∞ as x → ∞ for 1/2 < p < 2/3 it follows
that m and hence h′′ have characteristic +|− . Hence h′ is first increasing and then
decreasing. Since h′(1) = 4(2 − 3p) > 0 it follows that h′ is first increasing and
positive then decreasing and eventually negative, since limx→∞ h′(x) = −∞ , hence
h′ has characteristic +|− . In the same way we also conclude that h has characteristic
+|− , which means that g′ has characteristic +|− . Going through the same steps once
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more, we find that g too has characteristic +|− , which concludes the proof since g
was constructed so as to be positive if and only if d log f /dx � 0 . �

In conclusion, some ways in which the results of this paper could be extended are
stated. One possibility would be to replace the Seiffert mean by Seiffert-Toader type
means, defined in [10], for instance with M = Aq .

Another interesting extension would be to consider approximation of Seiffert’s
mean with extendedmean values, which are generalizations of the power means. Indeed
some results in this direction were already obtained in [2] (Theorem 1.6 and Corollary
6.2), although these are obviously far from optimal. Of course it might also be possible
to combine both of the proposed extensions in a more general result.

Acknowledgments. The author wishes to thank J. Sándor for bringing several new
inequalities of Seiffert’s mean to his attention.
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