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NECESSARY AND SUFFICIENT TAUBERIAN CONDITIONS IN THE

CASE OF WEIGHTED MEAN SUMMABLE INTEGRALS OVER R+

FERENC MÓRICZ

(communicated by Zs. Páles)

Abstract. Let 0 �≡ p(x) be a nondecreasing function on R+ := [0,∞) such that p(0) = 0 and

lim inf
t→∞ p(λ t)/p(t) > 1 for every λ > 1.

Given a real- or complex-valued function f ∈ L1
loc(R+) , we define

s(x) :=
∫ x

0
f (u)du and σ(t) :=

1
p(t)

∫ t

0
s(x)dp(x), t > 0.

It is known that if the finite limit limx→∞ s(x) = L exists, then the limit limt→∞ σ(t) = L
also exists. Our goal is to find necessary and sufficient conditions under which the converse
implication holds. Most of these conditions are expressed in terms of inequalities.

In the case of real-valued functions we present one-sided Tauberian conditions, while in the
case of complex-valued functions we present two-sided Tauberian conditions. As special cases,
we obtain well-known Tauberian conditions such as slow decrease in the sense of R. Schmidt,
slow oscillation in the sense of Hardy, and Landau type Tauberian c onditions.

1. Weighted mean summability of integrals over R+

Let 0 �≡ p : R+ → R+ be a nondecreasing function such that p(0) = 0 and

(1.1) lim inf
t→∞ p(λ t)/p(t) > 1 for every λ > 1.

In particular, it follows that limt→∞ p(t) = ∞ .
Given a real- or complex-valued function f , integrable in Lebesgue’s sense over

any finite interval (0, t) for 0 < t < ∞ , in symbol: f ∈ L1
loc(R+) , we set

(1.2) s(x) :=
∫ x

0
f (u)du and σ(t) :=

1
p(t)

∫ t

0
s(x)dp(x),

provided p(t) > 0 (by (1.1), this is the case if t is large enough). The second integral
in (1.2) exists in the Riemann-Stieltjes sense.
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The integral
∫ ∞

0 f (x)dx is said to be summable (by the weighted mean method
determined by the function p ) if the finite limit

(1.3) lim
t→∞σ(t) = L exists.

It is easy to check that if the finite limit

(1.4) lim
x→∞ s(x) = L exists

(that is, if the improper integral of f over R+ is convergent), then we also have (1.3).
The converse implication is not true in general.

REMARK 1. However, if a real-valued function f is of constant sign on R+ , then
(1.3) and (1.4) are equivalent. In fact, this follows from (1.2) by applying Fubini’s
theorem:

σ(t) =
1

p(t)

∫ t

0
dp(x)

∫ x

0
f (u)du =

∫ t

0
f (u)

{
1 − p(u)

p(t)

}
du.

The special case of summability (C, 1) corresponding to the choice p(t) := t , was
treated by Hardy [2, p. 11] and Titchmarsh [6, p. 26].

2. Main results

First, we consider real-valued functions f and prove the following theorem under
one-sided Tauberian conditions.

THEOREM 1. If a real-valued function f ∈ L1
loc(R+) is such that (1.3) holds, then

(1.4) holds if and only if both

(2.1) sup
λ>1

lim inf
t→∞

1
p(λ t) − p(t)

∫ λ t

t
[s(x) − s(t)]dp(x) � 0

and

(2.2) sup
0<λ<1

lim inf
t→∞

1
p(t) − p(λ t)

∫ t

λ t
[s(t) − s(x)]dp(x) � 0.

A real-valued function s(x) defined on R+ is said to be slowly decreasing if

(2.3) lim
λ→1+

lim inf
t→∞ min

t�x�λ t
[s(x) − s(t)] � 0.

In other words, (2.3) means that for every ε > 0 there exist λ1 = λ1(ε) > 1 and
t1 = t1(ε) > 0 such that

s(x) − s(t) � −ε whenever t1 � t � x � λ1t.

The term “slowly decreasing” was introduced by Schmidt [5] in the case of se-
quences of real numbers.
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REMARK 2. It is easy to check that condition (2.3) can be equivalently reformulated
as follows:

lim
λ→1−

lim inf
t→∞ min

λ t�x�t
[s(t) − s(x)] � 0.

Thus, the following corollary of Theorem 1 is obvious.

COROLLARY 1. If a real-valued function f ∈ L1
loc(R+) is such that (1.3) holds and

its integral function s(x) is slowly decreasing, then (1.4) holds.

REMARK 3. Condition (2.3) is certainly satisfied if there exist constants H > 0
and t1 > 0 such that

(2.4) tf (t) � −H for almost all t > t1.

Indeed, for all t1 < t < x < ∞ we have

s(x) − s(t) =
∫ x

t
f (u)du � −H

∫ x

t

du
u

= −H ln
x
t
,

whence it follows that

min
t�x�λ t

[s(x) − s(t)] � −H ln λ , t > t1 and λ > 1.

Choosing λ sufficiently close to 1, inequality (2.3) is satisfied. We note that condition
(2.4) resembles the one introduced by Landau [3] in the case of sequences of real
numbers.

REMARK 4. There is an example in [4, pp. 56-57] which shows that conditions
(2.1) and (2.2) in Theorem 1 are generally independent of one another.

REMARK 5. The proof of Theorem 1 in Section 3 below can be easily modified to
prove the following assertion: Theorem 1 remains valid if conditions (2.1) and (2.2)
are replaced by their symmetric counterparts:

inf
λ>1

lim sup
t→∞

1
p(λ t) − p(t)

∫ λ t

t
[s(x) − s(t)]dp(x) � 0

and

inf
0<λ<1

lim sup
t→∞

1
p(t) − p(λ t)

∫ t

λ t
[s(t) − s(x)]dp(x) � 0.

Second, we consider the general case where the function f may take on complex values.
We shall prove the following theorem under two-sided Tauberian condition.

THEOREM 2. If a complex-valued function f ∈ L1
loc(R+) is such that (1.3) holds,

then (1.4) holds if and only if

(2.5) inf
0<λ<∞
λ �=1

lim sup
t→∞

∣∣∣ 1
p(λ t) − p(t)

∫ λ t

t
[s(x) − s(t)]dp(x)

∣∣∣ = 0.
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We recall that a function s(x) defined on R+ is said to be slowly oscillating if

(2.6) lim
λ→1+

lim sup
t→∞

max
t�x�λ t

|s(x) − s(t)| = 0.

The term “slowly oscillating” was introduced by Hardy [1] in the case of sequences
of real numbers. Again (cf. Remark 2), it is easy to check that condition (2.6) can be
equivalently reformulated as follows:

lim
λ→1−

lim sup
t→∞

max
λ t�x�t

|s(t) − s(x)| = 0.

COROLLARY 2. If a complex-valued function f ∈ L1
loc(R+) is such that (1.3) holds

and its integral function s(x) is slowly oscillating, then (1.4) holds.

REMARK 6. Condition (2.6) is certainly satisfied if there exist constants H > 0
and t1 > 0 such that

|tf (t)| � H for almost all t > t1 (cf. (2.4)).

REMARK 7. We emphasize that condition (1.1) is important in the proofs of Theo-
rems 1 and 2. For example, in case p(t) := tα(log(1 + t))β , condition (1.1) is satisfied
if α > 0 and β ∈ R , but it is not satisfied if α = 0 and β > 0 . In the particular case
p(t) := t , one gets back the familiar Cesàro summability (C, 1) . In this particular case,
Theorems 1 and 2 were proved in [4].

3. Proofs

We begin with the following lemma, which is interesting in itself. It states that if
we have (1.3), then the so-called moving weighted avarages of s(x) also converge to
the same limit.

LEMMA. If the finite limit in (1.3) exists for a complex-valued function f ∈
L1

loc(R+) , then for every 0 < λ < ∞ , λ �= 1 , we also have

(3.1) lim
t→∞

1
p(λ t) − p(t)

∫ λ t

t
s(x)dp(x) = L.

Proof. Case λ > 1 . By definition,

1
p(λ t) − p(t)

∫ λ t

t
s(x)dp(x) =

1
p(λ t) − p(t)

[p(λ t)σ(λ t) − p(t)σ(t)]

(3.2) = σ(λ t) +
p(t)

p(λ t) − p(t)
[σ(λ t) − σ(t)].
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By (1.1), for each λ > 1 we have

0 < lim sup
t→∞

p(t)
p(λ t) − p(t)

=
[
lim inf
t→∞

p(λ t)
p(t)

− 1
]−1

< ∞,

and (3.1) follows from (1.3) and (3.2).
Case 0 < λ < 1 . By definition,

1
p(t) − p(λ t)

∫ t

λ t
s(x)dp(x) =

1
p(t) − p(λ t)

[p(t)σ(t) − p(λ t)σ(λ t)]

(3.3) = σ(t) +
p(λ t)

p(t) − p(λ t)
[σ(t) − σ(λ t)].

By (1.1), for each 0 < λ < 1 (then 1/λ > 1 ) we have

0 < lim sup
t→∞

p(λ t)
p(t) − p(λ t)

=
[
lim inf
t→∞

p(t)
p(λ t)

− 1
]−1

< ∞,

and (3.1) follows from (1.3) and (3.3).

Proof of Theorem 1. Necessity. Assume the fulfillment of (1.4) (then we also have
(1.3)). Let λ > 1 be arbitrary. By the Lemma,

(3.4) lim
t→∞

1
p(λ t) − p(t)

∫ λ t

t
[s(x) − s(t)]dp(x)

= lim
t→∞

1
p(λ t) − p(t)

∫ λ t

t
s(x)dp(x) − lim

t→∞ s(t) = L − L = 0.

This proves (2.1) even in a stronger form.
In case 0 < λ < 1 , we obtain in an analogous way that

(3.5) lim
t→∞

1
p(t) − p(λ t)

∫ t

λ t
[s(t) − s(x)]dp(x) = 0;

which is stronger than (2.2).
Sufficiency. This time we assume the fulfillments of (1.3), (2.1) and (2.2). We

have to prove (1.4). To this end, let ε > 0 be given. By (2.1), there exists some λ1 > 1
such that

(3.6) lim inf
t→∞

1
p(λ1t) − p(t)

∫ λ1t

t
[s(x) − s(t)]dp(x) � −ε;

and by (2.2), there exists some 0 < λ2 < 1 such that

(3.7) lim inf
t→∞

1
p(t) − p(λ2t)

∫ t

λ2t
[s(t) − s(x)]dp(x) � −ε.
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By (1.3), (3.6) and the Lemma, we obtain

−ε � lim
t→∞

1
p(λ1t) − p(t)

∫ λ1t

t
s(x)dp(x) − lim sup

t→∞
s(t)

= L − lim sup
t→∞

s(t);

while by (1.3), (3.7) and the Lemma, we obtain

−ε � lim inf
t→∞ s(t) − lim

t→∞
1

p(t) − p(λ2t)

∫ t

λ2t
s(x)dp(x)

= lim inf
t→∞ s(t) − L.

Combining the last two inequalities yields

L − ε � lim inf
t→∞ s(t) and lim sup

t→∞
s(t) � L + ε.

Being ε > 0 arbitrary small, hence (1.4) follows. �

Proof of Theorem 2. Necessity. Assume the fulfillment of (1.4). In the same way
as in the proof of the Necessity part of Theorem 1, we conclude (3.4) if λ > 1 , and
(3.5) if 0 < λ < 1 .

Sufficiency. Assume the fulfillments of (1.3) and (2.5). We shall prove (1.4).
Given ε > 0 , by (2.5) there exists some 0 < λ1 < ∞ , λ1 �= 1 , such that

(3.8) L1 := lim sup
t→∞

∣∣∣ 1
p(λ1t) − p(t)

∫ λ1t

t
[s(x) − s(t)]dp(x)

∣∣∣ � ε.

For example, assume that λ1 > 1 . By (1.3), (3.8) and the Lemma, we can estimate
as follows:

lim sup
t→∞

|L − s(t)|

� lim
t→∞

∣∣∣L − 1
p(λ1t) − p(t)

∫ λ1t

t
s(x)dp(x)

∣∣∣ + L1 � ε.

Being ε > 0 arbitrary, hence (1.4) follows. In the case where 0 < λ1 < 1 in (3.8),
the proof of (1.4) is similar (cf. the proof of the Sufficency part of Theorem 1). �

REMARK 8. As a by-product of the proofs of Theorems 1 and 2, we can conclude
the following

COROLARRY 3. (i) If a real-valued function f ∈ L1
loc(R+) is such that (1.3), (2.1)

and (2.2) hold, then (3.4) holds for every λ > 1 , and (3.5) holds for every 0 < λ < 1 .
(ii) If a complex-valued function f ∈ L1

loc(R+) is such that (1.3) and (2.5) hold, then
(3.4) holds for every λ > 1 , and (3.5) holds for every 0 < λ < 1 .
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