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OPERATOR MONOTONE FUNCTIONS INDUCED FROM
LOWNER-HEINZ INEQUALITY AND STRICTLY CHAOTIC ORDER

SAICHI IZUMINO AND NOBORU NAKAMURA

(communicated by T. Furuta)

Abstract. Furuta presented direct and simplified proofs of operator monotonicity of functions

o(1)

tlogt —t+ 1
VO g

by using Lowner-Heinz inequality. Extending his method, we give a sequence of operator
monotone functions {f;(1)}°, with fo(r) = @() and f(z) = y(r). We also study relations
between f1(¢) and strictly chaotic order defined among positive invertible operators and obtain
some extensions of results due to Furuta.

- logt

1. Introduction

A (bounded linear) operator A on a Hilbert space H is positive, in symbol A > 0,
if (Ax,x) > 0 forall x € H. In particular, A is strictly positive, in symbol A > 0, if A
is positive invertible. The well-known Lowner-Heinz inequality says thatif A > B > 0
then A% > B* for 0 < a < 1 ([7] - [12], etc.). This means that the function
t—1* (0 < a<1)on [0,00) is operator monotone. Another well-known example
of operator monotone functions is ¢ +— logs on (0,00) ([7], [9], [11], etc.). Based
on this fact, the chaotic order A > B, which is weaker than the usual order A > B,
is defined by logA > log B among strictly positive operators. (Similarly, the strictly
chaotic order A >> B is defined by logA > logB.)

Recently, Furuta [5] and [6], by using Lowner-Heinz inequality, presented direct
and simplified proofs of operator monotonicity of the functions

r—1 tlogt —t+1
= ———

and their dual functions 7/¢(¢) and 7/y(t). (The values of those functions at ¢+ = 0
and 7 = 1 are defined by their limits as + — 40 and ¢ — 1, respectively.)

As an extension of results on chaotic order due to Fujii et al [2] — [4], Furuta showed
in [5] (and [6]) the following fact related to the above functions:

o(1)

B logt’
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THEOREM F. Let A>> B for A, B > 0. Then there exists € (0, 1] such that

P(A%) > @(B*) (and w(A%) > w(B%)) foralla € (0,p). (1.1)

Furthermore, asking if the condition A > B can be replaced by the weaker one

A > B, Furuta, in [5] (and [6]), gave a decisive counterexample of a pair of positive
2 x 2 matrices such that A > B but ¢(A%) % ¢(B*) (and y(A%) # w(B%)) for all
o> 0.

In this paper, we induce from Lowner-Heinz inequality a sequence {fx}2>, and
some related sequences of operator monotone functions with fo = ¢ and f; = . We
use a method of successive differentiation, the idea of which we owe to Furuta [5] and
[6]. With respect to strictly chaotic order and functions fi(¢) of the sequence, we show
an extension of Theorem F, which allows us to replace ¢ or v in (1.1) by any f;. We
further, using the same matrices A and B chosen in [6] or somewhat general ones for a
counterexample, show an example of positive matrices A and B such that A > B but
there is B € (0, 1] with fr(A%) 2 fi(B*) for all integers k > 0 and all o € (0, ).
This gives, for k = 1, a weak counterexample for Furuta’s question mentioned before.

2. Sequences of operator monotone functions induced from Lowner-Heinz
inequality

In [5] and [6], Furuta presented direct and simplified proofs of operator monotonic-
ity of @(¢r) and y(r) stated before. The essence of his proofs is to make use of the
function

and |
Uni(t) = po [T, (x)]

then U,o(¢) and U, (¢) are operator monotone functions by Lowner-Heinz inequality,
so that

1
x=tn ’

t—1

nll>nolo Unolt) = logt =)
and
. tlogtr—t+1
Jlim U, (1) = oz ? (1)

are also operator monotone. This consideration suggests constructing a sequence of
operator monotone functions as follows.
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THEOREM 2.1. Let T, (x) = T, (x) and let

x=tn

1
Un,k(f):W[Tr(lm(x)] . for k=0,1,....,n—1.

Then for all integers k > 0
f(t) = nlglolo Uni(1)

exist and they are operator monotone. Furthermore

k! 1
fult) = 7{1 ftek(log —)} (2.1)

(log %)k“ t

where
S Sk
eo(s) =1 and es) :1+F+-~-+E (k=1).
Proof. Ttis not difficult to see thatif n > k > 1 then
1 n—1—k

Uni(t) = prasy (Cnfl,kt T e Ck+1,kt% + Ck,k), (2.2)

where ¢ = m(m —1)---(m —k+ 1). Hence U,x(¢) (and also its limit fy(¢) if it
exists) are operator monotone by Lowner-Heinz inequality. First for k = 0 we have,
as stated before,

=1 1 — teg(log 1)

t) = lim U,o(t) =
fO( ) n—oo ’O( ) IOgt log%

Next for (n >) k > 1, since T,(x)(x — 1) = x* — 1, we have, by Leibniz’ law on

k -times differentiation,

TOx)(x = 1) + kT D (x) =n(n—1)--- (n —k+ )x" %,

n

Dividing both sides by n*, we have, by the definition of U, (%),

Unk0) (% = 1) + KU1 (1) = (1 - %) (1- k; 1)t1_5.
Further, taking the limits of both sides as n — oo, we have
fi(t)logt + kfii(2) =t (2.3)
or
10 = o a0 1) 04

(We note that this recurrence formula (2.3) (or (2.4)) ensures existence of limits f(z)

successively.) By an elementary computation we can obtain (2.1) from these formu-
lae. O

~ -1 t—1
We remark that if we define fo(z) = {e ] = (=fo(r)) and
X x=logt log t

o=l
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for integers k > 1 then we have the same relation
fe()logt + kfi_1(t) =t

as (2.3) (by Leibniz’ law). Hence f(¢) = fx(¢) for all integers k > 0.

By the general theory on operator means [10] (cf. [9, p.169]), for a given operator
monotone function f () > 0 on (0, c0), the following three functions

(i) f()=1f (1) (transpose),

(i) f*(t)=1/f(3) (adjoint) and

(iii) f4(r) =1t/f(r)  (dual)
are defined, and they are all again operator monotone. Applying this general fact, we
obtain the following result.

COROLLARY 2.2. For each integer k > 0

gk(1) <: %fk(t)) = $7

k+1
() (= i () = U

and
t(log 1)+
(D) (= k() = —=1
]k()( fk ()) l—tek(log%)
are operator monotone.

We here remark that by the similar argument taken as in Theorem 2.1 we can give
(alternative) direct proofs of operator monotonicity of gx(¢), hx(f) and ji (). In fact, if
we put V,,(f) = tU,,vk(%), Wi (t) = 1/U,,7k(%) and Z,;(t) = t/Un(t), then we see
them operator monotone from (2.2), so that as their limits (n — oo) we obtain operator
monotone functions ‘f¢(¢), £ (t) and £ (¢), respectively.

If a function f(f) = f (¢, &) is an operator monotone function with a continuous
parameter o € [0, 0], then its integral with respect to ¢ is again operator monotone
[1]. In particular, if we put fo(f) = t*, a € [0,1], then by successive integration we
have the sequence {gx(r)}32, as follows (cf. [9, p. 152]):

1
THEOREM 2.3. Let qo(t) = / “dot and let
0

qk(t):/o g1 (1*)do (k=1,2,...).

Then qi(t) = gi(¢) for all integers k = 0.

Proof. Clearly qo(t) = go(t) =
Then

1
- Assume that gx(r) = gi(¢) fora k > 0.
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1

qiy1(t) = / o g (1%) da
0

By URLEPY10
0

d
(log 1)1 o

- m/o {1 — ex(atlogr)} da
- m{f —ery1(logn)} = g1 (2).

This completes the proof by induction. [

3. An extension of Theorem F

In the study of chaotic order Fujii et al [2] (and [3], [4]) pointed out that A >>B

is equivalent to A* > B* for an o > 0. As stated before, Furuta [5] (and [6]) also
presented Theorem F related to operator monotone functions and strictly chaotic order;
if A>> B thenthereexists € (0, 1] suchthat p(A%) > @(B%) (and y(A%) > y(B%))

forall a € (0, B) . We try to extend those results, giving the similar fact for all f(r).

LEMMA 3.1. Let A and B be selfadjoint operators and let A > B. Then there
exisits B € (0, 1] such that
Fk(O!A) > Fk(O!B)

forall integers k > 0 and all a € (0, ), where

k!
Fi(t) = fu(e') = W{l — e e(—1)}
Proof. We can obtain the expansion
1 t r
Fi(7) + + +--- (3.1)

Tk+1 (k+2) -1 (k+3)-2!
for any integer k£ > O directly by Taylor’s theorem, or by the induction method, using

the relation (2.4) replaced t by €', i.e.,

Fu(r) = %{e' —kF (1)} (k=1,2,...).

Since A > B, we may assume that A — B > € for some € > 0. Hence for 0 < o < 1

o o?

_ 2 2
Fi(ad) = FlaB) = gmme (A= B)+ gy (T = B+
a [AIP+IBIP AP +[B8]°
> —_
o k+2{8 ( 2! * 31 o )af
> Y e (g eliBly gy

k+2
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3

Puting B = min{ 1,

0,6). O

THEOREM 3.2. Let A and B be strictly positive operators with 1 ¢ o(A), o(B)
and let A>> B. Then there exists 3 € (0,1] such that

fe(A%) > fe(B*) (3.2)
for all integers k > 0 and all o € (0, ).

}, we have Fy(aA) — Fr(aB) > 0 for o €

Proof. We have only to replace A by logA and B by logB, respectively in
Lemma3.1. O

4. Counterexamples

We want to show that in Theorem 3.2 the condition A > B cannot be relaxed to

A > B in order to guarantee (3.2). We begin with the following example of 2 x 2
matrices with respect to Lemma 3.1.

EXAMPLE 1. Let

2 2 1 0
A—(2 1) and B_<0 5).

These are the same matrices adopted in [6] for a counterexample (showing that A > B,
but y(e*) = F(aA) # Fi(aB) = y(e*®) forall a > 0.) We can then really show
that for any integer k > O there exists some f; € (0, 1] such that

Fk(OCA) ? Fk(O!B) for dall ae (0, Bk) (41)

Here, however, let us consider somewhat general matrices instead: Let again

A:(Zbc> and B:(g?e), (4.2)

where all letters a, b, ¢, d and e are nonzero real numbers, and satisfy the conditions
a—d>0,c—e>0,d#e and (a—d)(c—e)=0b" (4.3)

Then it is easy to see A > B. Furthermore, (4.1), in the general setting above, is still
true for each integer k > 0, which we shall show after Example 2.

EXAMPLE 2. Let

a b d 0
logA—<b C) and logB—(0 e),

where a, b, ¢, d and e satisfy (4.3). Then from the fact stated above, logA = A; >
B) =logB,i.c., A > B but there exists some f € (0, 1] for each integer k£ > 0 such
that

Jr(A%) = Fi(aA) 2 Fi(aB) = fr(BY)
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forall o € (0, ). Hence we have a counterexample with respect to Theorem 3.2.

Proof of (4.1) for A and B in the general setting (4.2). We may show that
Dk(OC) = Fk(O!A) — Fk(OCB) ;/5 0 or detDk(a) <0 (44)

for all sufficiently small o > 0. By (3.1) we have

2 3

(04 (04 (04

Di(a) = m(A —B) + m(A2 —B*) + W(A3 —B)+ -
_ m [{2(k +3)(A - B) + a(k +2)(A% — B?)}
a?(k+2)(k+3)
s Em e LA @)},
where C(a) is the remainder such that alinlo C(a) = 0. For convenience sake, write
Li(a) = 2(k+3)(A — B) + a(k +2)(A* — B?) (4.5)
and
Mi(a) = A® — B* + C(w). (4.6)

Then, since Li(a) is invertible as shown afterwards (in (i)), we see that

a a?(k+2)(k+3)
Dk(a) = m{lzk(a) + ka(a)}
= mm(a)%(a),
where
2
Ne(or) = 1 + %Lk(a)le(a). (4.7)
Hence we see that
2
detDy(cr) = {m} det Ly (o) det Ny(cv),

so that it suffices to show the following (i) and (ii) (in order to see (4.4)):
(i) detLy(cr) < O (hence Li(cx) is invertible), or precisely

det (o) = —a (k4 2)*b*(d — e)* < 0. (4.8)
(ii) detNi(cr) > 0O for all sufficently small o > 0, or the fact

. k* + 6k + 6
detNk(O) = all>rr+10detNk(a) = m > 0. (49)
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First for (i), put Ly(a) = < 511 lllz ) Then from (4.5), we have
21 2

Li(o) = 2(k+3)(a—d)+ alk+2)(a* +b* —d*),

lo(o) = bi(a) ={2(k+3)+ a(k+2)(a+c)}b, (4.10)

Ly(a) = 2(k+3)(c—e)+ a(k+2)(b* +* —é).
Using the identity b*> = (a — d)(c — ), we have

A - =@ —d)+=(a—d)(a+d+c—e),

and similarly
PP+t —e*=(c—e)la—d+c+e),

so that we can rewrite /;;(a) and I (o) as follows;
(o) = {2(k+3)+ak+2)(a+d+c—e)}(a—d), (4.11)
In(la) = {2(k+3)+ak+2)(a—d+c+e)}(c—e). (4.12)

Further, then from (4.10), (4.11), (4.12) and the identity b x -2 = ¢ — e, we have

bi(a) = () —li(a) x = —a(k+2)b(d —e),

a—d

by(a) = In(a) —l(a) x —a(k+2)(c—e)(d—e).

a—d:

I(a) o) \ _ (a) la(a)
der (000 1000 ) g (fule) teles )
= —o?(k+2)*b*(d —e)*. (Use (a—d)(c—e)=b" again.)

Hence we see that

deth(Oc)

This is the desired result. Next for (ii), we begin with computation of the product
Li(a)~'Mi (). For Li(o)~!, we note that

1 1 In(a) —ha(o)
L)™' = o (Z(a) }i(a))’ (4.13)

mpp miz

and for My (), putting My (o) = < o1 m
21 My

) , we have, from (4.6), that

) = & +2ab* + b’ —d’ + fu(a),
mp(a) = my (o) = b(a*+ac+b*+ )+ fa()  (fi2 =fa1),
) = ab* +2b%c+ S — &+ fn(a),

m“(a

mZz(OC

where fi(a)(i,j = 1,2) are components of C(ct) with linlof,-j(a) = 0. Hence we
o—
have, from (4.8) and (4.13),

_ _ 1 In(a) —lp(a) myi(a) mip(o)
L) M) = e iy re ) (e e ).
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Now taking the limit as o« — +0, we have

2(k+3)
(k+2)%b%(d — e)?
c—e —b @ +2ab® + b*c — d&® b(a* + ac+ b + 3?)
X 2 2, 2 2 2 3,3 )¢
—b a—d b(a* 4+ ac + b+ c*) ab*+2b°c+c’ —e

lim a’Li(a) "My (o) = —
o—

ut ( 2 1 {; 12 ) the product of the two matrices right above. Then for p;; , using the
21 P22

identity > = (a — d)(c —e) (or (a — d)(c — e) = b*) repeatedly, we have

pii = (c—e)(d +2ab* +b*c —d®) — b*(d* +ac+b* + ¢?)
(c —e){(a® —d®) + (2a + )b*} — (a — d)(c — e)(a* + ac + b* + ¢?)
= (c—e)a—d){a® +ad+d* + (2a+c)(c — e) — (a® +ac + b* + *)}
= (c—e)a—d){d +(a+c—e)d—(a+c)e}

= b*(d—e)(d+a+c).
Similarly we have

pi2 = blc—e)(d—e)(e+a+0),
pn = —bla—d)(d—e)(d+a+c),
pn = —b(d—e)(eta+o).

Hence for Ni(0), we have (from (4.7))

I+ %asz(a)le(oﬂ}

o _ )(
oy k23 { 2<k+(2> }(pn Pi2 >
)

lim
o—
)

3
3(k+4) (k+ 2)2b2 — 6)2 P21 P22

_ 2(k + 3)2 b(d+a+c) (c—e)(e+a+c)
B 3k+2)(k+4)b(d—e) \ —(a—d)(d+a+c) —bletatc) ’

Now if we rewrite Ni(0) as

1 ny on
M) = S e ). (4.14)

then we see that

ny = {3(k+2)(k+4)(d—e) —2(k+3)*d+a+c)b,

np = —2k+3)%c—e)le+a+tc),
ny = 2(k+3)*(a—d)(d+a+ec),
ny = {3(k+2)(k+4)(d—e)+2(k+3)*(e+a+c)lb.
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Further, we have, using 5> = (a — d)(c —e) (or b x -2 = ¢ — ¢) again,

nyy = o X —— = 3(k+2)(k +4)b(d — e),

b

ny, = npp+nxn X par i 3(k+2)(k+4)(d—e)(c—e).

Hence
! !
det ( e > = det ( i M ) (4.15)
na1 N hy1 N2

= 3(k+2)(k +4)b*(d — e)*(k* + 6k + 6).
Consequently, we have, from (4.14) and (4.15),

1 2 ny n K+ 6k +6
det Ni(0) = {3(k+2)(k+4)b(d—€)} o ( . s ) BE BRI

This is the desired (4.9).
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