
Mathematical
Inequalities

& Applications
Volume 7, Number 1 (2004), 103–112

OPERATOR MONOTONE FUNCTIONS INDUCED FROM

LÖWNER–HEINZ INEQUALITY AND STRICTLY CHAOTIC ORDER

SAICHI IZUMINO AND NOBORU NAKAMURA

(communicated by T. Furuta)

Abstract. Furuta presented direct and simplified proofs of operator monotonicity of functions

ϕ(t) =
t − 1
log t

and ψ(t) =
t log t − t + 1

(log t)2

by using Löwner-Heinz inequality. Extending his method, we give a sequence of operator
monotone functions {f k(t)}∞k=0 with f 0(t) = ϕ(t) and f 1(t) = ψ(t) . We also study relations
between f k(t) and strictly chaotic order defined among positive invertible operators and obtain
some extensions of results due to Furuta.

1. Introduction

A (bounded linear) operator A on a Hilbert space H is positive, in symbol A � 0 ,
if (Ax, x) � 0 for all x ∈ H . In particular, A is strictly positive, in symbol A > 0 , if A
is positive invertible. The well-known Löwner-Heinz inequality says that if A � B � 0
then Aα � Bα for 0 � α � 1 ([7] – [12], etc.). This means that the function
t �→ tα (0 � α � 1) on [0,∞) is operator monotone. Another well-known example
of operator monotone functions is t �→ log t on (0,∞) ([7], [9], [11], etc.). Based
on this fact, the chaotic order A � B , which is weaker than the usual order A � B ,
is defined by logA � logB among strictly positive operators. (Similarly, the strictly
chaotic order A�

s
B is defined by logA > logB .)

Recently, Furuta [5] and [6], by using Löwner-Heinz inequality, presented direct
and simplified proofs of operator monotonicity of the functions

ϕ(t) =
t − 1
log t

, ψ(t) =
t log t − t + 1

(log t)2

and their dual functions t/ϕ(t) and t/ψ(t). (The values of those functions at t = 0
and t = 1 are defined by their limits as t → +0 and t → 1 , respectively.)

As an extension of results on chaotic order due to Fujii et al [2] – [4], Furuta showed
in [5] (and [6]) the following fact related to the above functions:
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THEOREM F. Let A�
s

B for A, B > 0. Then there exists β ∈ (0, 1] such that

ϕ(Aα) > ϕ(Bα)
(
and ψ(Aα) > ψ(Bα)

)
for all α ∈ (0, β). (1.1)

Furthermore, asking if the condition A�
s

B can be replaced by the weaker one

A � B , Furuta, in [5] (and [6]), gave a decisive counterexample of a pair of positive
2×2 matrices such that A � B but ϕ(Aα) �� ϕ(Bα)

(
and ψ(Aα) �� ψ(Bα)

)
for all

α > 0.

In this paper, we induce from Löwner-Heinz inequality a sequence {f k}∞k=0 and
some related sequences of operator monotone functions with f 0 = ϕ and f 1 = ψ . We
use a method of successive differentiation, the idea of which we owe to Furuta [5] and
[6]. With respect to strictly chaotic order and functions f k(t) of the sequence, we show
an extension of Theorem F, which allows us to replace ϕ or ψ in (1.1) by any f k. We
further, using the same matrices A and B chosen in [6] or somewhat general ones for a
counterexample, show an example of positive matrices A and B such that A � B but
there is β ∈ (0, 1] with f k(Aα) �� f k(Bα) for all integers k � 0 and all α ∈ (0, β) .
This gives, for k = 1 , a weak counterexample for Furuta’s question mentioned before.

2. Sequences of operator monotone functions induced from Löwner-Heinz
inequality

In [5] and [6], Furuta presented direct and simplified proofs of operator monotonic-
ity of ϕ(t) and ψ(t) stated before. The essence of his proofs is to make use of the
function

Tn(x) =
xn − 1
x − 1

= xn−1 + · · · + x + 1 (x �= 1), Tn(1) = lim
x→1

Tn(x) = n

and its derivative T ′
n(x) . In fact, if we define

Un,0(t) =
1
n

[
Tn(x)

]
x=t

1
n

and

Un,1(t) =
1
n2

[
T ′

n(x)
]
x=t

1
n
,

then Un,0(t) and Un,1(t) are operator monotone functions by Löwner-Heinz inequality,
so that

lim
n→∞Un,0(t) =

t − 1
log t

= ϕ(t)

and

lim
n→∞Un,1(t) =

t log t − t + 1
(log t)2

= ψ(t)

are also operator monotone. This consideration suggests constructing a sequence of
operator monotone functions as follows.
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THEOREM 2.1. Let T(0)
n (x) = Tn(x) and let

Un,k(t) =
1

nk+1

[
T(k)

n (x)
]
x=t

1
n

for k = 0, 1, . . . , n − 1.

Then for all integers k � 0
f k(t) = lim

n→∞Un,k(t)

exist and they are operator monotone. Furthermore

f k(t) =
k!

(log 1
t )

k+1

{
1 − tek

(
log

1
t

)}
, (2.1)

where

e0(s) = 1 and ek(s) = 1 +
s
1!

+ · · · + sk

k!
(k � 1).

Proof. It is not difficult to see that if n > k � 1 then

Un,k(t) =
1

nk+1

(
cn−1,kt

n−1−k
n + · · · + ck+1,kt

1
n + ck,k

)
, (2.2)

where cm,k = m(m − 1) · · · (m − k + 1). Hence Un,k(t) (and also its limit f k(t) if it
exists) are operator monotone by Löwner-Heinz inequality. First for k = 0 we have,
as stated before,

f 0(t) = lim
n→∞Un,0(t) =

t − 1
log t

=
1 − te0(log 1

t )
log 1

t

.

Next for (n >) k � 1, since Tn(x)(x − 1) = xn − 1 , we have, by Leibniz’ law on
k -times differentiation,

T(k)
n (x)(x − 1) + kT(k−1)

n (x) = n(n − 1) · · · (n − k + 1)xn−k.

Dividing both sides by nk , we have, by the definition of Un,k(t),

Un,k(t) · n(t
1
n − 1) + kUn,k−1(t) =

(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)
t1−

k
n .

Further, taking the limits of both sides as n → ∞ , we have

f k(t) log t + kf k−1(t) = t (2.3)

or

f k(t) =
1

log 1
t

{kf k−1(t) − t}. (2.4)

(We note that this recurrence formula (2.3) (or (2.4)) ensures existence of limits f k(t)
successively.) By an elementary computation we can obtain (2.1) from these formu-
lae. �

We remark that if we define ˜f 0(t) =
[
ex − 1

x

]
x=log t

=
t − 1
log t

(
= f 0(t)

)
and

f̃ k(t) =
[

dk

dxk

(ex − 1
x

)]
x=log t
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for integers k � 1 then we have the same relation

f̃ k(t) log t + k ˜f k−1(t) = t

as (2.3) (by Leibniz’ law). Hence f̃ k(t) = f k(t) for all integers k � 0 .
By the general theory on operator means [10] (cf. [9, p.169]), for a given operator

monotone function f (t) > 0 on (0,∞) , the following three functions
(i) tf (t) = tf

(
1
t

)
(transpose),

(ii) f ∗(t) = 1/f
(

1
t

)
(adjoint) and

(iii) f ⊥(t) = t/f (t) (dual)
are defined, and they are all again operator monotone. Applying this general fact, we
obtain the following result.

COROLLARY 2.2. For each integer k � 0

gk(t)
(

=
1
k!t

f k(t)
)

=
t − ek(log t)
(log t)k+1

,

hk(t) (= k!f ∗
k (t)) =

t(log t)k+1

t − ek(log t)

and

jk(t)
(
= k!f ⊥

k (t)
)

=
t(log 1

t )
k+1

1 − tek(log 1
t )

are operator monotone.

We here remark that by the similar argument taken as in Theorem 2.1 we can give
(alternative) direct proofs of operator monotonicity of gk(t), hk(t) and jk(t) . In fact, if
we put Vn,k(t) = tUn,k( 1

t ), Wn,k(t) = 1/Un,k( 1
t ) and Zn,k(t) = t/Un,k(t) , then we see

them operator monotone from (2.2), so that as their limits (n → ∞) we obtain operator
monotone functions tf k(t), f ∗

k (t) and f ⊥
k (t) , respectively.

If a function fα(t) = f (t,α) is an operator monotone function with a continuous
parameter α ∈ [α1,α2] , then its integral with respect to α is again operator monotone
[1]. In particular, if we put fα(t) = tα , α ∈ [0, 1] , then by successive integration we
have the sequence {gk(t)}∞k=0 as follows (cf. [9, p. 152]):

THEOREM 2.3. Let q0(t) =
∫ 1

0
tα dα and let

qk(t) =
∫ 1

0
αkqk−1(tα) dα (k = 1, 2, . . .).

Then qk(t) = gk(t) for all integers k � 0.

Proof. Clearly q0(t) = g0(t) =
t − 1
log t

. Assume that qk(t) = gk(t) for a k � 0.

Then



OPERATOR MONOTONE FUNCTIONS 107

qk+1(t) =
∫ 1

0
αk+1gk(tα) dα

=
∫ 1

0
αk+1 tα − ek(log tα)

(log tα)k+1
dα

=
1

(log t)k+1

∫ 1

0
{tα − ek(α log t)} dα

=
1

(log t)k+2
{t − ek+1(log t)} = gk+1(t).

This completes the proof by induction. �

3. An extension of Theorem F

In the study of chaotic order Fujii et al [2] (and [3], [4]) pointed out that A�
s

B

is equivalent to Aα > Bα for an α > 0 . As stated before, Furuta [5] (and [6]) also
presented Theorem F related to operator monotone functions and strictly chaotic order;
if A�

s
B then there exists β ∈ (0, 1] such that ϕ(Aα) > ϕ(Bα)

(
andψ(Aα) > ψ(Bα)

)
for all α ∈ (0, β) . We try to extend those results, giving the similar fact for all f k(t) .

LEMMA 3.1. Let A and B be selfadjoint operators and let A > B . Then there
exisits β ∈ (0, 1] such that

Fk(αA) > Fk(αB)
for all integers k � 0 and all α ∈ (0, β) , where

Fk(t) = f k(et) =
k!

(−t)k+1
{1 − et · ek(−t)}.

Proof. We can obtain the expansion

Fk(t) =
1

k + 1
+

t
(k + 2) · 1!

+
t2

(k + 3) · 2!
+ · · · (3.1)

for any integer k � 0 directly by Taylor’s theorem, or by the induction method, using
the relation (2.4) replaced t by et , i.e.,

Fk(t) =
1
t
{et − kFk−1(t)} (k = 1, 2, . . .).

Since A > B , we may assume that A− B � ε for some ε > 0 . Hence for 0 < α � 1

Fk(αA) − Fk(αB) =
α

(k + 2) · 1!
(A − B) +

α2

(k + 3) · 2!
(A2 − B2) + · · ·

� α
k + 2

{
ε−

(‖ A ‖2 + ‖ B ‖2

2!
+

‖ A ‖3 + ‖ B ‖3

3!
+ · · ·

)
α

}

� α
k + 2

{ε − (e‖A‖ + e‖B‖)α}.
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Putting β = min
{

1,
ε

e‖A‖ + e‖B‖

}
, we have Fk(αA) − Fk(αB) > 0 for α ∈

(0, β). �

THEOREM 3.2. Let A and B be strictly positive operators with 1 /∈ σ(A),σ(B)
and let A�

s
B . Then there exists β ∈ (0, 1] such that

f k(Aα) > f k(Bα) (3.2)

for all integers k � 0 and all α ∈ (0, β) .

Proof. We have only to replace A by logA and B by logB , respectively in
Lemma 3.1. �

4. Counterexamples

We want to show that in Theorem 3.2 the condition A�
s

B cannot be relaxed to

A � B in order to guarantee (3.2). We begin with the following example of 2 × 2
matrices with respect to Lemma 3.1.

EXAMPLE 1. Let

A =
(

2 2
2 −1

)
and B =

(
1 0
0 −5

)
.

These are the same matrices adopted in [6] for a counterexample (showing that A � B ,
but ψ(eαA) = F1(αA) �� F1(αB) = ψ(eαB) for all α > 0. ) We can then really show
that for any integer k � 0 there exists some βk ∈ (0, 1] such that

Fk(αA) �� Fk(αB) f or all α ∈ (0, βk). (4.1)

Here, however, let us consider somewhat general matrices instead: Let again

A =
(

a b
b c

)
and B =

(
d 0
0 e

)
, (4.2)

where all letters a, b, c, d and e are nonzero real numbers, and satisfy the conditions

a − d > 0, c − e > 0, d �= e and (a − d)(c − e) = b2. (4.3)

Then it is easy to see A � B . Furthermore, (4.1), in the general setting above, is still
true for each integer k � 0 , which we shall show after Example 2.

EXAMPLE 2. Let

logA =
(

a b
b c

)
and logB =

(
d 0
0 e

)
,

where a, b, c, d and e satisfy (4.3). Then from the fact stated above, logA = A1 �
B1 = logB , i.e., A � B but there exists some βk ∈ (0, 1] for each integer k � 0 such
that

f k(Aα) = Fk(αA) �� Fk(αB) = f k(Bα)
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for all α ∈ (0, βk). Hence we have a counterexample with respect to Theorem 3.2.

Proof of (4.1) for A and B in the general setting (4.2). We may show that

Dk(α) := Fk(αA) − Fk(αB) �� 0 or detDk(α) < 0 (4.4)

for all sufficiently small α > 0 . By (3.1) we have

Dk(α) =
α

(k + 2) · 1!
(A − B) +

α2

(k + 3) · 2!
(A2 − B2) +

α3

(k + 4) · 3!
(A3 − B3) + · · ·

=
α

2(k + 2)(k + 3)

[{
2(k + 3)(A − B) + α(k + 2)(A2 − B2)

}

+
α2(k + 2)(k + 3)

3(k + 4)
{
A3 − B3 + C(α)

}]
,

where C(α) is the remainder such that lim
α→+0

C(α) = 0 . For convenience sake, write

Lk(α) = 2(k + 3)(A − B) + α(k + 2)(A2 − B2) (4.5)

and

Mk(α) = A3 − B3 + C(α). (4.6)

Then, since Lk(α) is invertible as shown afterwards (in (i)), we see that

Dk(α) =
α

2(k + 2)(k + 3)

{
Lk(α) +

α2(k + 2)(k + 3)
3(k + 4)

Mk(α)
}

=
α

2(k + 2)(k + 3)
Lk(α)Nk(α),

where

Nk(α) = 1 +
α2(k + 2)(k + 3)

3(k + 4)
Lk(α)−1Mk(α). (4.7)

Hence we see that

detDk(α) =
{

α
2(k + 2)(k + 3)

}2

detLk(α) det Nk(α),

so that it suffices to show the following (i) and (ii) (in order to see (4.4)):
(i) detLk(α) < 0 (hence Lk(α) is invertible), or precisely

detLk(α) = −α2(k + 2)2b2(d − e)2 < 0. (4.8)

(ii) detNk(α) > 0 for all sufficently small α > 0 , or the fact

det Nk(0) =: lim
α→+0

det Nk(α) =
k2 + 6k + 6

3(k + 2)(k + 4)
> 0. (4.9)
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First for (i), put Lk(α) =
(

l11 l12

l21 l22

)
. Then from (4.5), we have

l11(α) = 2(k + 3)(a − d) + α(k + 2)(a2 + b2 − d2),
l12(α) = l21(α) = {2(k + 3) + α(k + 2)(a + c)}b, (4.10)

l22(α) = 2(k + 3)(c − e) + α(k + 2)(b2 + c2 − e2).

Using the identity b2 = (a − d)(c − e) , we have

a2 + b2 − d2 = (a2 − d2) + b2 = (a − d)(a + d + c − e),

and similarly
b2 + c2 − e2 = (c − e)(a − d + c + e),

so that we can rewrite l11(α) and l22(α) as follows;

l11(α) = {2(k + 3) + α(k + 2)(a + d + c − e)}(a − d), (4.11)

l22(α) = {2(k + 3) + α(k + 2)(a − d + c + e)}(c − e). (4.12)

Further, then from (4.10), (4.11), (4.12) and the identity b × b
a−d = c − e , we have

l21(α)′ := l21(α) − l11(α) × b
a − d

= −α(k + 2)b(d − e),

l22(α)′ := l22(α) − l12(α) × b
a − d

= −α(k + 2)(c − e)(d − e).

Hence we see that

detLk(α) = det

(
l11(α) l12(α)
l21(α) l22(α)

)
= det

(
l11(α) l12(α)
l21(α)′ l22(α)′

)

= −α2(k + 2)2b2(d − e)2. (Use (a − d)(c − e) = b2 again.)

This is the desired result. Next for (ii), we begin with computation of the product
Lk(α)−1Mk(α) . For Lk(α)−1, we note that

Lk(α)−1 =
1

detLk(α)

(
l22(α) −l12(α)
−l21(α) l11(α)

)
, (4.13)

and for Mk(α) , putting Mk(α) =
(

m11 m12

m21 m22

)
, we have, from (4.6), that

m11(α) = a3 + 2ab2 + b2c − d3 + f 11(α),

m12(α) = m21(α) = b(a2 + ac + b2 + c2) + f 12(α) (f 12 = f 21),

m22(α) = ab2 + 2b2c + c3 − e3 + f 22(α),

where f ij(α)(i, j = 1, 2) are components of C(α) with lim
α→+0

f ij(α) = 0 . Hence we

have, from (4.8) and (4.13),

α2Lk(α)−1Mk(α) = − 1
(k + 2)2b2(d − e)2

(
l22(α) −l12(α)
−l21(α) l11(α)

) (
m11(α) m12(α)
m21(α) m22(α)

)
.
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Now taking the limit as α → +0, we have

lim
α→0

α2Lk(α)−1Mk(α) = − 2(k + 3)
(k + 2)2b2(d − e)2

×
(

c − e −b
−b a − d

) (
a3 + 2ab2 + b2c − d3 b(a2 + ac + b2 + c2)
b(a2 + ac + b2 + c2) ab2 + 2b2c + c3 − e3

)
.

Put

(
p11 p12

p21 p22

)
the product of the two matrices right above. Then for p11 , using the

identity b2 = (a − d)(c − e) (or (a − d)(c − e) = b2 ) repeatedly, we have

p11 = (c − e)(a3 + 2ab2 + b2c − d3) − b2(a2 + ac + b2 + c2)

= (c − e){(a3 − d3) + (2a + c)b2} − (a − d)(c − e)(a2 + ac + b2 + c2)

= (c − e)(a − d){a2 + ad + d2 + (2a + c)(c − e) − (a2 + ac + b2 + c2)}
= (c − e)(a − d){d2 + (a + c − e)d − (a + c)e}
= b2(d − e)(d + a + c).

Similarly we have

p12 = b(c − e)(d − e)(e + a + c),
p21 = −b(a − d)(d − e)(d + a + c),

p22 = −b2(d − e)(e + a + c).

Hence for Nk(0), we have (from (4.7))

Nk(0) := lim
α→+0

Nk(α) = lim
α→+0

(
I +

(k + 2)(k + 3)
3(k + 4)

α2Lk(α)−1Mk(α)

)

= I +
(k + 2)(k + 3)

3(k + 4)
×
(
− 2(k + 3)

(k + 2)2b2(d − e)2

) 
p11 p12

p21 p22

!

= I − 2(k + 3)2

3(k + 2)(k + 4)b(d − e)

 
b(d + a + c) (c − e)(e + a + c)

−(a − d)(d + a + c) −b(e + a + c)

!
.

Now if we rewrite Nk(0) as

Nk(0) =
1

3(k + 2)(k + 4)b(d − e)

(
n11 n12

n21 n22

)
, (4.14)

then we see that

n11 = {3(k + 2)(k + 4)(d − e) − 2(k + 3)2(d + a + c)}b,

n12 = −2(k + 3)2(c − e)(e + a + c),

n21 = 2(k + 3)2(a − d)(d + a + c),

n22 = {3(k + 2)(k + 4)(d − e) + 2(k + 3)2(e + a + c)}b.
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Further, we have, using b2 = (a − d)(c − e) (or b × b
a−d = c − e ) again,

n′11 := n11 + n21 × b
a − d

= 3(k + 2)(k + 4)b(d − e),

n′12 := n12 + n22 × b
a − d

= 3(k + 2)(k + 4)(d − e)(c − e).

Hence

det

(
n11 n12

n21 n22

)
= det

(
n′11 n′12
n21 n22

)
(4.15)

= 3(k + 2)(k + 4)b2(d − e)2(k2 + 6k + 6).

Consequently, we have, from (4.14) and (4.15),

detNk(0) =
{

1
3(k + 2)(k + 4)b(d − e)

}2

det

(
n11 n12

n21 n22

)
=

k2 + 6k + 6
3(k + 2)(k + 4)

.

This is the desired (4.9).
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