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SPECHT’S RATIO AND LOGARITHMIC

MEAN IN THE YOUNG INEQUALITY

MASARU TOMINAGA

(communicated by J. Pečarić)

Abstract. For a positive operator A with 0 < m � A � M (m, M ∈ R) , the Young operator
inequality gives as follows: λA + (1 − λ) � Aλ for λ ∈ [0, 1].

In this note, we prove that the estimation of the converse Young operator inequality is

obtained by using Specht’s ratio S(t) = t
1

t−1

e log t
1

t−1

and the logarithmic mean L(s, t) = t−s
log t−log s

(s, t > 0) , that is, we have for a given p under some conditions

pAλ + max

{
L(1, m) log

S(m)
p

, L(1,M) log
S(M)

p

}
� λA + (1 − λ) (� Aλ ) for λ ∈ [0, 1].

Moreover by using operator means, we consider the converse Young operator inequality related
to two operators A and B .

Furthermore we discuss reverse inequalities of the Hölder-McCarthy inequality and the
inequality on the concavity of the logarithmic function.

1. Introduction

We cite the Young inequality which is considered as the λ -weighted arithmetic-
geometric mean inequality as follows:

Let a and b be positive real numbers. Then the inequalities

λa + (1 − λ ) � aλ (1.1)

and
λa + (1 − λ )b � aλb1−λ (1.2)

hold for every λ ∈ [0, 1] .
In this note, an operator means a bounded linear operator acting on a complex

Hilbert space H . The inequalities (1.1) and (1.2) are extended to an operator version.
For it we use the following two means. Let A and B be positive invertible operators.
For every λ ∈ [0, 1] , we denote by �λ the λ -weighted arithmetic mean as follows:

B �λ A := λA + (1 − λ )B,
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and by �λ the λ -weighted geometric mean as follows:

B �λ A := B
1
2 (B− 1

2 AB− 1
2 )λB

1
2 .

The λ -weighted geometric mean is introduced by F. Kubo and T. Ando in [3]. The
following Young operator inequality is regarded as an operator version of the λ -
weighted arithmetic-geometric mean inequality:

THE YOUNG OPERATOR INEQUALITY. Let A be a positive operator. Then the
inequality

λA + (1 − λ ) � Aλ (1.3)
holds for every λ ∈ [0, 1] .

Furthermore, let A and B be positive invertible operators. Then the inequality

B �λ A � B �λ A (1.4)

holds for every λ ∈ [0, 1] .

For the sake of convenience, we recall some constants as follows: Let m and M
be real numbers with 0 < m < M . Then the logarithmic mean L(m, M) (cf. [2]) is
defined by

L(m, M) =
M − m

logM − logm
.

Next the constant S(h) defined by

S(h) =
h

1
h−1

e log h
1

h−1

(h > 1)

is called Specht’s ratio [1], [8], which is the best upper bound of the arithmetic mean
by the geometric one for positive numbers: For xi ∈ [m, M] with M > m > 0
( i = 1, 2, . . . , n ), the following inequality holds

S(h) n
√

x1x2 . . . xn � x1 + x2 + . . . + xn

n
(� n

√
x1 . . . xn),

where the constant h = M
m is called a condition number in the sense of Turing [11].

In our previous note [10], we show converse ratio and difference inequalities of
the Young operator inequality (1.4) independent of λ ∈ [0, 1] as follows: For positive
invertible operators A and B with 0 < m � A, B � M and h = M

m (> 1) , the inequality

[Ratio inequality] S(h)(B �λ A) � B �λ A (� B �λ A),
[Difference inequality] hL(m, M) log S(h) � B �λ A − B �λ A (� 0)

hold for every λ ∈ [0, 1] .
The purpose of this paper is to give complementary inequalities of the above

converse ratio and difference inequalities, independent of a real number λ ∈ [0, 1] : Let
A and B be positive invertible operators with 0 < m � A, B � M and h = M

m > 1 .
For some real number p > 0 , we show the following inequality:

p(B �λ A) + hL(m, M) log
S(h)
p

� B �λ A (� B �λ A).
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To prove above complementary inequality, we show the following inequality which is
the converse Young operator inequality of (1.3):

pAλ + max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
� λA + (1 − λ ) (� Aλ ).

In the above two inequalities, we see that Specht’s ratio and the logarithmic mean play
the important role.

As applications, we consider the converse inequalities of well-known inequalities.
Moreover, as the converse inequality of the Hölder-McCarthy inequality [4]:

〈Ax, x〉 λ � 〈Aλ x, x〉 for every λ ∈ [0, 1] and every unit vector x ∈ H,

we show the following inequality:

p〈Aλx, x〉 + max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
� 〈Ax, x〉 λ (� 〈Aλ x, x〉 )

for every λ ∈ [0, 1] and every unit vector x ∈ H .
Furthermore the Young inequality (1.2) implies the concavity of the logarithmic

function, that is, we have

log(λa + (1 − λ )b) − λ log a + (1 − λ ) log b � 0.

We show the upper bound of the above inequality. Hence we give its operator version
as follows:

2 log S(h) � log(λA + (1 − λ )B) − (λ logA + (1 − λ ) logB) � 0.

2. Converse inequalities of the Young inequality

For the sake of convenience, we denote by Ia the following closed interval

Ia :=
{ [

L(1, 1
a ), L(1, a)

]
for a � 1[

L(1, a), L(1, 1
a )

]
for 0 < a < 1 .

(2.1)

We remark that a family of the interval Ia (a > 0 ) has a monotone property in the
sense that

Ia ⊂ Ib for 1 � a < b or 0 < b < a < 1.

Moreover it is obvious that 1 ∈ Ia for a > 0 by the monotonicity of the logarithmic
mean.

In this section, we give the converse inequalities of the Young inequalities (1.1),
(1.2) and the Young operator inequalities (1.3), (1.4). For it we give the following
lemmas. In our previous note [10], we obtain the following properties by considering
Specht’s ratio S(t) as a function for t > 0 :

LEMMA 2.1. A function S(t) is strictly decreasing for 0 < t < 1 and strictly
increasing for t > 1 . Furthermore the following equations hold

S(1) = 1 and S(t) = S
(1

t

)
for all t > 0.
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Moreover we show the following lemma related to the order of Specht’s ratio and
the logarithmic mean:

LEMMA 2.2. The following inequality holds

L
(
1,

1
t

)
� 1 � S

(1
t

)
= S(t) � L(1, t) for t � 1

(
or L(1, t) < 1 < S(t) = S

(1
t

)
< L

(
1,

1
t

)
for 0 < t < 1

)
.

Proof. Let t > 1 . From the property of the mean (L(1, 1
t ) < 1 < L(1, t) ) and

Lemma 2.1 (S(t) = S( 1
t ) > 1 ) we only prove an inequality S(t) � L(1, t) . Since it

follows from the Klein inequality (i.e., log t � t− 1 for t > 0 ) that log t
t−1 � 1 , we have

log
t

1
t−1

e
� 0.

Taking an exponential and multiplying L(1, t) in the both sides of the above inequality,
we have

L(1, t)
t

1
t−1

e
� L(1, t)

and so the desired inequality is complete by S(t) = t−1
log t · t

1
t−1

e .

Let 0 < t < 1 . The desired inequality holds by replacing t with 1
t in the above

case.
Let t = 1 . Then we have the following equation (related to the property of the

mean):

lim
t→1

L(1, t) = lim
t→1

t − 1
log t

= lim
t→1

1
1
t

= 1.

Hence we have the desired inequality from Lemma 2.1 (S(1) = 1) . �
In the following theorem, we show converse inequalities of the Young inequalities

(1.1) and (1.2):

THEOREM 2.3. Let a be a positive number. Suppose that p be a positive number
in Ia . Then the inequality

paλ + L(1, a) log
S(a)
p

� λa + (1 − λ ) (� aλ ) (2.2)

holds for every λ ∈ [0, 1] .
Furthermore let a and b be positive numbers. Suppose that p be a positive

number in I a
b
. Consequently, the inequality

paλb1−λ + L(a, b) log
S( a

b )
p

� λa + (1 − λ )b (� aλb1−λ ) (2.3)

holds for every λ ∈ [0, 1] .
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Proof. Let a �= 1 . For every p > 0 , we put a function f p,a(λ ) derived from the
Young inequality (1.1) as follows:

f p,a(λ ) := λa + (1 − λ ) − paλ = (a − 1)λ + 1 − paλ .

Then we want to determine the maximum of f p,a(λ ) . We have by a differential
calculation

f ′
p,a(λ ) = (a − 1) − paλ log a

and so an equation f ′
p,a(λ ) = 0 has the following unique solution λ = λp,a :

λp,a =
log a−1

p log a

log a
= loga

a − 1
p log a

.

The condition p ∈ Ia for a > 1 is equivalent to the condition λp,a ∈ [0, 1] . Indeed we
have

p ∈ Ia ⇐⇒ 1 � a − 1
p log a

� a ⇐⇒ λp,a ∈ [0, 1]

by L(1, 1
a ) = L(1,a)

a . Similarly, the condition p ∈ I 1
a

for 0 < a < 1 is equivalent to

the condition λp,a ∈ [0, 1] . It follows from f ′′
p,a(λ ) = −paλ (log a)2 < 0 that f p,a(λ )

is the strictly concave function. So a maximum of f p,a(λ ) takes at λ = λp,a , and we
have

max
0�λ�1

f p,a(λ ) = f p,a(λp,a)

=
a − 1
log a

log
a − 1
p log a

+ 1 − a − 1
log a

=
a − 1
log a

(
log

a − 1
p log a

+
log a
a − 1

− 1

)

=
a − 1
log a

log
a

1
a−1

pe log a
1

a−1

= L(1, a) log
S(a)
p

,

and the desired inequality (2.2) is obtained.
Let a = 1 . Then the inequality (2.2) is ensured by Lemma 2.1 (S(1) = 1 ), the

property of the mean (L(1, 1) = 1 ) and the Klein inequality ( log p � p−1 for p > 0 ).
The desired inequality (2.3) is obtained by replacing a with a

b in (2.2). �
From the above theorem, we see that the estimation of the converse Young inequal-

ity is obtained by using Specht’s ratio and the logarithmic mean. Moreover we see that
the estimation is the best upper bound from the proof of Theorem 2.3.

In the following remark we give the upper bound of λa+(1−λ )a−paλ in p �∈ Ia
for a > 0 :

REMARK 2.4. Let a � 1 and p �∈ Ia in Theorem 2.3. Then the value of f ′
p,a(λ )

for λ ∈ [0, 1] is positive if 0 < p < L(1, 1
a ) and negative if L(1, a) < p . So the

maximum of f p,a(λ ) takes at λ = 1 if 0 < p < L(1, 1
a ) and λ = 0 if L(1, a) < p ,

i.e.,

λa + (1 − λ ) − paλ �
{

(1 − p)a (= f (1)) if 0 < p < L(1, 1
a )

1 − p (= f (0)) if L(1, a) < p

< L(1, a) log
S(a)
p

.
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On the other hand, let 0 < a < 1 and p �∈ Ia in Theorem 2.3. Then the maximum
of f p,a(λ ) is given as follows :

λa + (1 − λ ) − paλ �
{

1 − p (= f (0)) if 0 < p < L(1, a)

(1 − p)a (= f (1)) if L(1, 1
a ) < p

< L(1, a) log
S(a)
p

.

As the special case of Theorem 2.3, we have the following converse ratio and
difference inequalities of the Young inequalities (1.1) and (1.2) (cf. [10]):

COROLLARY 2.5. Let a and b be positive numbers. Then the following converse
ratio and difference inequalities hold for every λ ∈ [0, 1]
[Ratio inequalities ]

S(a)aλ � λa + (1 − λ ) (� aλ ), (2.4)

S
(a

b

)
aλb1−λ � λa + (1 − λ )b (� aλb1−λ ), (2.5)

[Difference inequalities ]

L(1, a) log S(a) � λa + (1 − λ ) − aλ (� 0), (2.6)

L(a, b) log S
(a

b

)
� λa + (1 − λ )b − aλb1−λ (� 0). (2.7)

Proof. Since we have S(a), 1 ∈ Ia for a > 0 fromLemma2.2, the inequality (2.2)
suffices for the inequalities (2.4) and (2.6) by putting p = S(a) and 1 , respectively.
Moreover the inequality (2.3) suffices for the inequalities (2.5) and (2.7) by putting
p = S( a

b ) and 1 ∈ I a
b
, respectively. �

In the following theorem, we show the converse inequality of the Young operator
inequality (1.3), that is, the operator version of (2.2):

THEOREM 2.6. Let A be a positive operator with 0 < m � A � M and m < M .
Suppose that p be a positive number satisfying one of the following conditions

(i) p ∈ Im if (mM � M >) m � 1,
(ii) p ∈ Im if (M >) mM � 1 > m > 0,
(iii) p ∈ IM if M � 1 > mM (� m > 0),
(iv) p ∈ IM if 1 > M (> m > mM > 0).

Then the inequality

pAλ + max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
� λA + (1 − λ ) (� Aλ ) (2.8)

holds for every λ ∈ [0, 1] .
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Proof. Let t be a positive number m � t � M and let p > 0 . We put a function
f p(t, λ ) as follows:

f p(t, λ ) := λ t + (1 − λ ) − ptλ , (2.9)

where λ ∈ [0, 1] . Then we have by the differential calculation of f p,λ (t) (= f p(t, λ ))
for t

f ′
p,λ (t) = λ − pλ tλ−1 = λ (1 − ptλ−1)

and
f ′′
p,λ (t) = −pλ (λ − 1)tλ−2 (� 0).

It implies that f p,λ (t) is a convex function, and hence the maximum of f p,λ (t) for
t ∈ [m, M] takes at the extreme point t = m or M . So we have for every λ ∈ [0, 1]

max
m�t�M

f p,λ (t) = max
{
f p,λ (m), f p,λ (M)

}
(= max {f p(m, λ ), f p(M, λ )}) .

Furthermore, let f p,t(λ ) = f p(t, λ ) in (2.9). By the same method as in the proof
of Theorem 2.3, we want to determine the maximums of f p,m(λ ) and f p,M(λ ) for
λ ∈ [0, 1] . We sketch it.

Let p hold the condition (i) (i.e., p ∈ Im for m � 1 ). We calculate the maximum
of f p,m(λ ) for λ ∈ [0, 1] . An equation f ′

p,m(λ ) = 0 has a unique solution λ = λp,m .
The condition p ∈ Im is equivalent to the condition λp,m ∈ [0, 1] . By the strict concavity
of f p,m(λ ) , a maximum of f p,m(λ ) takes at λ = λp,m , and so we have

max
0�λ�1

f p,m(λ ) = f p,m(λp,m) = L(1, m) log
S(m)

p
.

Next we calculate the maximum of f p,M(λ ) . Since we have p ∈ Im ⊂ IM by M > m �
1 and Lemma 2.2, a unique solution λ = λp,M of the equation f ′

p,M(λ ) = 0 for λ is
included in [0, 1] . By the strict concavity of f p,M(λ ) we have

max
0�λ�1

f p,M(λ ) = f p,M(λp,M) = L(1, M) log
S(M)

p
.

Therefore we have for every t ∈ [m, M] and every λ ∈ [0, 1]

f p(t, λ ) � max{f p(m, λ ), f p(M, λ )} � max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
.

By the same method as in the above case (i) , we have in the case (ii) – (iv)

ptλ + max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
� λ t + (1 − λ ),

and so by functional calculus we have the desired inequality (2.8). �
As the special case of Theorem 2.6, we have the following converse ratio and

difference inequalities of the Young operator inequality (1.3):

COROLLARY 2.7. Let A be a positive operator with 0 < m � A � M and
m < M . Then the following ratio and difference inequalities hold for every λ ∈ [0, 1] :
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[Ratio inequality ]

max{S(m), S(M)}Aλ � λA + (1 − λ ) (� Aλ ), (2.10)

[Difference inequality ]

max{L(1, m) log S(m), L(1, M) log S(M)} � λA + (1 − λ ) − Aλ (� 0). (2.11)

Proof. By Theorem 2.6 and moreover Remark 2.4 and the proof of Theorem 2.6,
we have for every p > 0

pAλ + max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
� λA + (1 − λ ) (� Aλ ).

Since equations L(1, m) log S(m)
p = 0 and L(1, M) log S(M)

p = 0 have unique solutions
p = S(m) and S(M) , respectively. So we have the desired inequality (2.10).

On the other hand, by putting p = 1 (which is included in every interval defined
by (2.1)) the inequality (2.8) suffices for the inequality (2.11). �

We remark that the value max{S(m), S(M)} in (2.10) is determined as

max {S(m), S(M)} =
{

S(M) if mM � 1
S(m) if 1 > mM > 0

by Lemma 2.1.
In the following theorem, we show a converse inequality of the Young operator

inequality (1.4), that is, it is the operator version of (2.3):

THEOREM 2.8. Let A and B be positive invertible operators with 0 < m �
A, B � M and h = M

m > 1 . Suppose that p be a positive number in Ih . Then the
inequality

p(B �λ A) + hL(m, M) log
S(h)
p

� B �λ A (� B �λ A) (2.12)

holds for every λ ∈ [0, 1] .

Proof. In Theorem 2.6, we replace A with B− 1
2 AB− 1

2 . Then we have m
M �

B− 1
2 AB− 1

2 � M
m , i.e., 1

h � B− 1
2 AB− 1

2 � h . Moreover p ∈ Ih is corresponding to

a condition (ii) in Theorem 2.6

(
i.e., p ∈ I 1

1
h

and h · 1
h = 1 > 1

h > 0

)
. Hence we

have for every λ ∈ [0, 1]

p(B− 1
2 AB− 1

2 )λ + L(1, h) log
S(h)
p

� λB− 1
2 AB− 1

2 + (1 − λ )

by Lemma 2.1 (S(t) = S( 1
t ) for t > 0 ) and the property of the mean (L(1, s) > L(1, t)

for s > t > 0 ), and hence we have

pB
1
2 (B− 1

2 AB− 1
2 )λB

1
2 + L(1, h)

(
log

S(h)
p

)
B � λA + (1 − λ )B.
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So we have the desired inequality (2.12) by M � B � m > 0 . �
As the special case of Theorem 2.8, we have the following converse ratio and

difference inequalities [10] of the Young operator inequality (1.4):

COROLLARY 2.9. Let A and B be positive invertible operators with 0 < m �
A, B � M and h = M

m > 1 . Then the following ratio and difference inequalities hold
for every λ ∈ [0, 1]
[Ratio inequality ]

S(h)(B �λ A) � B �λ A (� B �λ A), (2.13)
[Difference inequality ]

hL(m, M) log S(h) � B �λ A − B �λ A (� 0). (2.14)

Proof. Since we have S(h), 1 ∈ Ih from Lemma 2.2, the inequality (2.12) suffices
for the inequalities (2.13) and (2.14) by putting p = S(h) and 1, respectively. �

From Theorems 2.6 and 2.8, we see that the logarithmic mean and Specht’s ratio
play an important role in a converse inequalities of the Young operator inequalities (1.3)
and (1.4).

3. Applications of the converse Young inequalities

In this section, as applications of the converse Young operator inequalities, we
consider converse inequalities of the well-known Hölder-McCarthy inequality and in-
equalities related to concavity of the logarithmic function.

We cite the well-known Hölder-McCarthy inequality [4]:

THE HÖLDER-MCCARTHY INEQUALITY. Let A be a positive operator. Then the
inequality

〈Ax, x〉 λ � 〈Aλ x, x〉 (3.1)
holds for every λ ∈ [0, 1] and every unit vector x ∈ H .

The above Hölder-McCarthy inequality is extended by using the geometric mean
as follows:

THE EXTENDED HÖLDER-MCCARTHY INEQUALITY. Let A and B be positive in-
vertible operators. Then the inequality

〈Bx, x〉 �λ 〈Ax, x〉 � 〈B �λ Ax, x〉 (3.2)

holds for every λ ∈ [0, 1] and every unit vector x ∈ H .

Without depending on λ ∈ [0, 1] , we show converse inequalities of the Hölder-
McCarthy inequality (3.1) by Theorem 2.6 as follows:

THEOREM 3.1. Let A be a positive operator with 0 < m � A � M and m < M .
Suppose that p (, m and M ) be a positive number satisfying one of the conditions
(i) – (iv) in Theorem 2.6. Then the inequality

p〈Aλx, x〉 + max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
� 〈Ax, x〉 λ (� 〈Aλ x, x〉 )

(3.3)
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holds for every λ ∈ [0, 1] and every unit vector x ∈ H .
Furthermore the following ratio and difference inequalities hold for every λ ∈

[0, 1] and every unit vector x ∈ H :
[Ratio inequality ]

max{S(m), S(M)}〈Aλx, x〉 � 〈Ax, x〉 λ (� 〈Aλ x, x〉 ), (3.4)

[Difference inequality ]

max{L(1, m) log S(m), L(1, M) log S(M)} � 〈Ax, x〉 λ − 〈Aλx, x〉 (� 0). (3.5)

Proof. By Theorem 2.6 and the Young inequality (1.1), we have for a given p > 0

p〈Aλx, x〉 + max

{
L(1, m) log

S(m)
p

, L(1, M) log
S(M)

p

}
� λ 〈Ax, x〉 + (1 − λ ) � 〈Ax, x〉 λ ,

which is just the desired inequality (3.3). By the same method as in the above, (3.4)
and (3.5) are easily checked from Corollary 2.7. �

By the same method as in Theorem3.1, we have the following converse inequalities
of the extended Hölder-McCarthy inequality (3.2) by Theorem 2.8, independent of
λ ∈ [0, 1] :

THEOREM 3.2. Let A and B be positive invertible operators with 0 < m �
A, B � M and h = M

m > 1 . Suppose that p be a positive number in Ih . Then the
inequality

p〈B �λ Ax, x〉 + hL(m, M) log
S(h)
p

� 〈Bx, x〉 �λ 〈Ax, x〉 (� 〈B �λ Ax, x〉 ) (3.6)

holds for every λ ∈ [0, 1] and every unit vector x ∈ H .
Furthermore the following ratio and difference inequalities hold for every λ ∈

[0, 1] and every unit vector x ∈ H :
[Ratio inequality ]

S(h)〈B �λ Ax, x〉 � 〈Bx, x〉 �λ 〈Ax, x〉 (� 〈B �λ Ax, x〉 ), (3.7)

[Difference inequality ]

hL(m, M) log S(h) � 〈Bx, x〉 �λ 〈Ax, x〉 − 〈B �λ Ax, x〉 (� 0). (3.8)

Proof. By Theorem 2.8 and the Young inequality (1.2), we have for a given p ∈ Ih

p〈B �λ Ax, x〉 + hL(m, M) log
S(h)
p

� 〈B�λAx, x〉 = λ 〈Ax, x〉 + (1 − λ )〈Bx, x〉
� 〈Bx, x〉 �λ 〈Ax, x〉 .

So we have the desired inequality (3.6).
By the same method as in the above, (3.7) and (3.8) are easily checked from

Corollary 2.9. �
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From Theorems 3.1 and 3.2, we see that the estimations of the converse (extended)
Hölder-McCarthy inequalities independent of λ ∈ [0, 1] are represented by using
Specht’s ratio and the logarithmic mean.

Next we consider the estimation of the following inequality which represents the
concavity of the logarithmic function: For every positive numbers a and b

λ log a + (1 − λ ) log b � log(λa + (1 − λ )b) (3.9)

holds for λ ∈ [0, 1] .
In the following theorem, we estimate the upper bound in (3.9), in which Specht’s

ratio appears:

THEOREM 3.3. Let a and b be positive numbers. Then the inequality

0 � log(λa + (1 − λ )b) − (λ log a + (1 − λ ) log b) � log S
(a

b

)
(3.10)

holds for every λ ∈ [0, 1] .
Consequently, the inequality

0 � log(λa + (1 − λ )) − λ log a � log S(a) (3.11)

holds for every λ ∈ [0, 1] .

Proof. Taking logarithmic of both sides of 2.5, the desired inequality (3.10) is
obtained. The desired inequality (3.11) is obtained by putting b = 1 in (3.10). �

The logarithmic function is well-known as one of the operator concave functions,
that is, for positive invertible operators A and B the inequality

λ logA + (1 − λ ) logB � log(λA + (1 − λ )B) (3.12)

holds for every λ ∈ [0, 1] .
We consider the operator version of (3.10), i.e., the converse inequality of (3.12).

For it, as the application of Theorem 2.8, we have the following lemma by putting
〈Ax, x〉 and 〈Bx, x〉 instead of A and B for every unit vector x ∈ H , respectively:

LEMMA 3.4. Let A and B be positive operators with 0 < m � A, B � M and
h = M

m > 1 . Suppose that p be a positive number in Ih . Then the inequality

p〈Ax, x〉 λ 〈Bx, x〉 1−λ + hL(m, M) log
S(h)
p

(3.13)

� λ 〈Ax, x〉 + (1 − λ )〈Bx, x〉 (� 〈Ax, x〉 λ 〈Bx, x〉 1−λ )

holds for every λ ∈ [0, 1] and every unit vector x ∈ H .
Furthermore the following ratio and difference inequalities hold for every λ ∈

[0, 1] and every unit vector x ∈ H :
[Ratio inequality ]

S(h)〈Ax, x〉 λ 〈Bx, x〉 1−λ

� λ 〈Ax, x〉 + (1 − λ )〈Bx, x〉 (� 〈Ax, x〉 λ 〈Bx, x〉 1−λ ), (3.14)
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[Difference inequality ]

hL(m, M) log S(h)

� λ 〈Ax, x〉 + (1 − λ )〈Bx, x〉 − 〈Ax, x〉 λ 〈Bx, x〉 1−λ (� 0). (3.15)

Proof. In (2.12), we replace A and B with 〈Ax, x〉 and 〈Bx, x〉 , respectively.
Then we have m

M � 〈 Ax,x〉
〈 Bx,x〉 � M

m , i.e., 1
h � 〈 Ax,x〉

〈 Bx,x〉 � h . Hence for p ∈ Ih the inequality

p〈Ax, x〉 λ 〈Bx, x〉 1−λ + hL(m, M) log
S(h)
p

� λ 〈Ax, x〉 + (1 − λ )〈Bx, x〉

holds for every λ ∈ [0, 1] and every unit vector x ∈ H . By the same method as in the
above, the inequalities (3.14) and (3.15) are checked from Corollary (2.9). �

The following lemma gives the upper bound of (0 �) log〈Ax, x〉 − 〈 (logA)x, x〉
which is a converse difference inequality of Jensen’s inequality related to a logarithmic
function (cf. [5], [6], [7], [9]):

LEMMA 3.5. Let A be a positive invertible operator on H with 0 < m � A � M
and h = m

M > 1 . Then the inequality

(0 �) log〈Ax, x〉 − 〈 (logA)x, x〉 � log S(h) (3.16)

holds for every unit vector x ∈ H .

Proof. The proof of this lemma is given in [9]. But we give the proof to complete
this lemma directly. Since the inequality log t � αlogt + βlog holds for m � t � M , we
have by functional calculus

〈 (logA)x, x〉 � αlog〈Ax, x〉 + βlog,

where αlog = log M−log m
M−m and βlog = M log m−m log M

M−m . So it is sufficient to see the
maximum value of log〈Ax, x〉 − (αlog〈Ax, x〉 +βlog) , i.e., the function f (t) := log t−
(αlogt + βlog) on t ∈ [m, M] . We have f ′(t) = 1

t − αlog = 0 if and only if t = tlog =
1

αlog
= L(m, M) (∈ [m, M]) . Moreover we easily see f ′(t) > 0 for 0 < t < tlog and

f ′(t) < 0 for t > tlog . Hence the maximum value of f (t) on [m, M] is attained for
t = tlog , and we have as the explicit expression

max
m�t�M

f (t) = f (tlog) = log
1
αlog

− (1 + βlog)

= log
M − m

logM − logm
− 1 +

m logM − M logm
M − m

= log
m

e log h
1

h−1

+ log
M

m
M−m

m
M

M−m

= log
m

e log h
1

h−1

+ log
M

m
M−m

m
m

M−m · m
= log

h
1

h−1

e log h
1

h−1

,

which shows the desired inequality (3.16). �
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In the following theorem, we show the converse inequality of (3.12) independent
of λ ∈ [0, 1] as the operator version of Theorem 3.3:

THEOREM 3.6. Let A and B be positive invertible operators with 0 < m �
A, B � M and h = m

M > 1 . Then the inequality

0 � log(λA + (1 − λ )B) − (λ logA + (1 − λ ) logB) � 2 log S(h) (3.17)

holds for every λ ∈ [0, 1] .

Proof. Since a logarithmic function is operator monotone, we have the first in-
equality of (3.17). On the other hand we have

〈 log(λA + (1 − λ )B)x, x〉 � log〈 (λA + (1 − λ )B)x, x〉
� λ log〈Ax, x〉 + (1 − λ ) log〈Bx, x〉 + log S(h)

(by(3.14))
� λ 〈 (logA)x, x〉 + (1 − λ )〈 (logB)x, x〉 + 2 log S(h)

(by (3.16)).

Hence the proof of Theorem 3.6 is complete. �
As the operator version of (3.11), we hold the following theorem:

THEOREM 3.7. Let A be a positive invertible operator with 0 < m � A � M and
h = M

m > 1 . Then the following inequality holds

0 � log(λA + (1 − λ )) − λ logA � log S(h). (3.18)
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[6] B. MOND AND J. E. PEČARIĆ, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993),

405–420.
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