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Abstract. Based on a general framework for the auxiliary problem principle involving con-
tinuously m -Frechet-differentiable (m � 2) mappings, the approximation-solvability of the
following class of nonlinear variational inequality problems (NVIP) involving the generalized
partially relaxed monotone mappings is presented.

Find an element x∗ ∈ K such that

〈 T(x∗),η(x, x∗)〉 + f (x) − f (x∗) � 0 for all x ∈ K,

where T : K → Rn is a mapping from a nonempty closed invex subset K of Rn into Rn ,
η : K × K → Rn is a mapping, and f : K → R is a continuous invex function on K . The
general class of the auxiliary problems principle is described as follows: for a given iterate
xk ∈ K and for a parameter ρ > 0 , determine xk+1 such that

〈 ρT(xk) + h′(xk+1) − h′(xk),η(x, xk+1)〉 + ρ[f (x) − f (xk+1)] � 0 for all x ∈ K,

where h : K → R is continuously Frechet-differentiable on K .

1. Introduction

Verma [5, 8, 9] introduced the general class of partially relaxedmonotonemappings
and applied them to the approximation-solvability of several classes of nonlinear varia-
tional inequalities in different space settings. In the context of numerical computations,
it has been an open question: how can one come up with some adaptive linesearch rule
that would work under the partial relaxed monotonicity condition? The main obstacle
is the way this condition evolves in the analysis, that is, it always involves a unknown
solution point. As a result it differs from how, for example, strong monotonicity and
Lipschitz continuity conditions, are usually applied to other projection methods. Re-
cently Argyros and Verma [1] developed a general framework for the auxiliary problem
principle in the context of the solvability of a general class of nonlinear variational
inequalities. Here our aim is to apply this general framework for the auxiliary problem
principle to the approximation-solvability of a general class of nonlinear variational
inequalities involving a class of generalized partially relaxed monotone mappings. The
results thus obtained complement the earlier works of Cohen [3], Verma [5, 8, 9] on
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the approximation-solvability of nonlinear variational inequalities in different space
settings.

Let T : K → Rn be any mapping from K , a nonempty closed invex subset of Rn ,
into Rn . Let f : K → R be a continuous invex function on K . We consider a class of
nonlinear variational inequality problems (abbreviated as NVIP) involving generalized
partially relaxed monotone mappings as follows: find an element x∗ ∈ K such that

〈T(x∗),η(x, x∗)〉 + f (x) − f (x∗) � 0 for all x ∈ K. (1.1)

For η(x, x∗) = x − x∗ , we have:
Find an element x∗ ∈ K such that

〈T(x∗), x − x∗〉 + f (x) − f (x∗) � 0 for all x ∈ K. (1.2)

Let ||x||B denote the norm induced by the positive definite matrix B , defined by

||x||B = 〈Bx, x〉 1
2 .

And let ||x||2 denote the standard Euclidean norm on Rn with respect to the dot product
〈 . , .〉 .

A subset K of a linear space X is said to be invex if there exists a function
η : K × K → X such that whenever x, y ∈ K and t ∈ [0, 1] , it follows that tx + (1 −
t)η(y, x) ∈ K .

A function f : K → R is called invex if whenever x, y ∈ K and t ∈ [0, 1] , we
have

f [x + tη(y, x)] � (1 − t)f (x) + tf (y).

A mapping T : K → Rn is said to be η - γ -μ generalized partially relaxed
monotone (GPRM) if for all x, y, z ∈ K , we have

〈T(x) − T(y),η(z, y)〉 � (−γ )||z − x||2 + μ||x − y||2,

where γ ,μ > 0 are constants. Clearly, it implies that

〈T(x) − T(y),η(z, y)〉 � (−γ )||z − x||2,

that is, we have the following implication:

the η - γ -μ -generalized partially relaxed monotonicity
⇓

the η - γ -generalized relaxed monotonicity

The generalized partial relaxed monotonicity is more general than the other notions of
strong monotonicity and cocoercivity. For more details on partial relaxed monotonicity
and cocoercivity, we recommend [2, 5, 9, 10].
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2. General auxiliary problem principle

This section deals with the approximation-solvability of the NVIP (1.1) based on
a general framework for the existing auxiliary problem principle (APP) introduced by
Cohen [3] and later generalized by Verma [5]. This general framework for the auxiliary
problem principle (Gapp) is stated as follows:

GAPP 2.1. For a given iterate xk , determine an xk+1 such that (for k � 0 )

〈 ρT(xk)+h′(xk+1)−h′(xk),η(x, xk+1)〉 +ρ[f (x)−f (xk+1)] � 0 for all x ∈ K, (2.1)

where K is an invex subset of Rn, h : Rn → R is continuously Frechet-differentiable,
and ρ > 0 , a parameter.

For η(x, y) = x − y in Gapp 2.1, we arrive at:

GAPP 2.2. For a given iterate xk , compute an xk+1 such that

〈ρT(xk) + h′(xk+1) − h′(xk), x − xk+1〉 + ρ[f (x) − f (xk+1)] � 0 for all x ∈ K.

Next, we recall some auxiliary results crucial to the approximation-solvability of
the NVIP (1.1).

Let h : E2 → R be a continuously Fre’chet-differentiablemapping. It follows that
h′(x) ∈ L(E2, R) – the space of bounded linear operators from E2 into R . From now
on, we denote the real number h′(x)(y) by 〈 h′(x), y〉 for x, y ∈ E2 .

LEMMA 2.1 [1]. Let K be a non-empty invex subset of Rn . Suppose that the
following assumptions hold:

(i) There exist an x∗ ∈ K and numbers α � 0 and r � 0 such that for all
x ∈ K, t ∈ [0, 1] , we have

〈 h′(x∗ + tη(x, x∗)) − h′(x∗),η(x, x∗)〉 � tα||η(x, x∗)||2,
where h : K → R is a continuously Frechet-differentiable mapping, and
η : K × K → R satisfies:

||η(x, x∗)|| � r, and ||η(x, x∗)|| � ||x − x∗||.
(ii) The set S0 defined by

S0 = {(h,η) : h′(x∗ + t(x − x∗))(x − x∗) � 〈 h′(x∗ + tη(x, x∗)),η(x, x∗)〉 }
is nonempty.

(iii) The set
K0 = ∪(x∗, r) = {x ∈ K : ||x − x∗|| � r}.

Then, for all x ∈ K0 and (h,η) ∈ S0 , the following estimate holds

h(x) − h(x∗) − 〈 h′(x∗),η(x, x∗)〉 � α
2
||x − x∗||2.
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LEMMA 2.2 [1]. Let E1 and E2 be two Banach spaces and K be a nonempty invex
subset of E1 . Suppose that the following assumptions hold:

(i) There exist an x∗ ∈ K and numbers δ � 0 , q � 0 such that for all x ∈ K1

and t ∈ [0, 1] , we have

〈 h′(x∗ + tη(x, x∗)) − h′(x∗),η(x, x∗)〉 � tδ ||η(x, x∗)||2,
where h : K → R is a continuously Frechet-differentiable mapping, and
η : K × K → E2 satisfies:

||η(x, x∗)|| � ||x − x∗|| � q.

(ii) The set S1 defined by

S1 = {(h,η) : h′(x∗ + t(x − x∗))(x − x∗) � 〈 h′(x∗ + tη(x, x∗)),η(x, x∗)〉 }
is nonempty.

(iii) The set
K1 = ∪(x∗, q) ⊂ K.

Then, for all x ∈ K1 and (h,η) ∈ S1 , the following estimate holds

h(x) − h(x∗) − 〈 h′(x∗),η(x, x∗)〉 � δ
2
||x − x∗||2.

We are just about ready to present, based on the Gapp 2.1, the approximation-
solvability of the NVIP (1.1).

THEOREM 2.1. Let T : K → Rn be η - γ -generalized partially relaxed monotone
from a nonempty closed invex subset K of Rn into Rn . Let f : K → R be proper,
invex and lower semicontinuous on K and h : K → R be continuously Fre’chet-
differentiable on K . Suppose that there exist an x∗ ∈ K and non-negative numbers α ,
δ , r and q such that for all t ∈ [0, 1] and x ∈ K0 ∩ K1 , we have

〈 h′(x∗ + tη(x, x∗)) − h′(x∗),η(x, x∗)〉 � tα||x − x∗||2, (2.2)

and
〈 h′(x∗ + tη(x, x∗)) − h′(x∗),η(x, x∗)〉 � tδ ||x − x∗||2, (2.3)

where

K0 = {x ∈ K : ||x − x∗|| � r}, K1 = {x ∈ K : ||x − x∗|| � q},
and η : K × K → Rn satisfies the following assumptions:

(i) η(x, y) + η(y, x) = 0 and ||η(x, y)|| � ||x − y|| .
(ii) For each fixed y ∈ K , map x → η(y, x) is sequentially continuous from the

weak topology to the weak topology in the second variable.
(iii) η is s-expanding.
(iv) The set S defined by

S = {(h,η) : h′(x∗ + t(x − x∗))(x − x∗) � 〈 h′(x∗ + tη(x, x∗)),η(x, x∗)〉 }
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is nonempty.

If in addition, x∗ ∈ K is any fixed solution of the NVIP (1.1) and

0 < ρ <
α
2γ

,

then the sequence {xk} , generated by Gapp 2.1, converges strongly to x∗ .

Proof. To show the sequence {xk} converges to x∗ , a solution of the NVIP (1.1),
we first define a function Λ∗ by

Λ∗(x) = h(x∗) − h(x) − 〈 h′(x),η(x∗, x)〉 .

Then, by Lemma 2.1, we have

Λ∗(x) = h(x∗) − h(x) − 〈 h′(x),η(x∗, x)〉 � α
2
||x∗ − x||2 for x ∈ K, (2.4)

where x∗ is any fixed solution of the NVIP (1.1). It follows that

Λ∗(xk+1) = h(x∗) − h(xk+1) − 〈 h′(xk+1),η(x∗, xk+1)〉 . (2.5)

Now we can express

Λ∗(xk) − Λ∗(xk+1)

= h(xk+1) − h(xk) − 〈 h′(xk),η(xk+1, xk)〉 + 〈 h′(xk+1) − h′(xk),η(x∗, xk+1)〉
� α

2
||xk+1 − xk||2 + 〈 h′(xk+1) − h′(xk),η(x∗, xk+1)〉

� α
2
||xk+1 − xk||2 + ρ〈T(xk),η(xk+1, x∗)〉 + ρ[f (xk+1) − f (x∗)]

for x = x∗ in (2.1).
(2.6)

If we replace x by xk+1 in (1.1) and combine with (2.6), we obtain

Λ∗(xk) − Λ∗(xk+1)

� α
2
||xk+1 − xk||2 + ρ〈T(xk),η(xk+1, x∗)〉 − ρ〈 (T(x∗),η(xk+1, x∗)〉

=
α
2
||xk+1 − xk||2 + ρ〈T(xk) − T(x∗),η(xk+1, x∗)〉 .

Since T is η - γ -generalized partially relaxed monotone, it implies that

Λ∗(xk) − Λ∗(xk+1) � α
2
||xk+1 − xk||2 − ργ ||xk+1 − xk||2

=
1
2
[α − 2ργ ]||xk+1 − xk||2 for α − 2ργ > 0,

(2.7)

that is,

Λ∗(xk) − Λ∗(xk+1) � 1
2
[α − 2ργ ]||xk+1 − xk||2 for α − 2ργ > 0. (2.8)
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Now if xk+1 = xk , then xk is a solution to the NVIP (1.1). If not, then left hand side
of (2.8) is non-negative for 0 < ρ < α

2γ , and as a result, the sequence {Λ∗(xk)} is a
strictly decreasing sequence, that means, the difference of two succeeding terms tends
to zero as k → ∞ . Hence,

lim
k→∞

||xk+1 − xk|| = 0.

Since ||xk − x∗||2 � 2
α Λ

∗(xk) and the sequence {Λ∗(xk)} is strictly decreasing, it
implies that the sequence {xk} is bounded. Thus, there exists a cluster point x′ and
hence there exists a subsequence of the sequence {xk} that converges strongly to x′ . If
we take the limit in (2.1), x′ is a solution of the NVIP (1.1).

In order to prove that the entire sequence {xk} converges to x′ , we need to replace
x∗ by x′ and to rerun the whole convergence analysis as before for x′ . We first define
an associate function Λ′ by

Λ′(xk) = h(x′) − h(xk) − 〈 h′(xk),η(x′, xk)〉 .

Then the sequence {Λ′(xk)} still strictly decreases, and so by Lemma 2.2, we find

Λ′(xk) � δ
2
||xk − x′||2,

we can infer that Λ′(xk) tends to zero. On the other hand, by Lemma 2.1, we have

Λ′(xk) � α
2
||xk − x′||2.

In light of the above arguments, we conclude that the entire sequence {xk} converges
to x′ as k → ∞ . This completes the proof.

When η(x, y) = x − y in Theorem 2.1, we arrive at:

THEOREM 2.2. Let T : K → Rn be γ -partially relaxedmonotone from a nonempty
closed convex subset K of Rn into Rn . Let f : K → R be proper, convex and lower
semicontinuous on K and h : K → R be continuously Fre’chet-differentiable on K .
If in addition, x∗ ∈ K is any fixed solution of the NVIP (1.2) and

0 < ρ <
α
2γ

,

then the sequence {xk} , generated by Gapp 2.2, converges strongly to x∗ .
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