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(communicated by C. Bandle)

Abstract. Let E be a subset of a convex, open, bounded, planar set G . Let P(E,G) be the
relative perimeter of E (the length of the boundary of E contained in G ). We obtain relative
geometric inequalities comparing the relative perimeter of E with the relative diameter of E
and with its relative inradius. We prove the existence of both extremal sets and maximizers for
these inequalities and describe the geometric properties of them. We also give a characterization
of planar convex sets of constant width in terms of the geometric constant corresponding to the
relative diameter.

1. Introduction

The oldest example of a relative geometric inequality arises from Dido’s problem.
The legend on the foundation of Carthage says that when Dido –the sister of King
Pygmalion– fled from Tyre, she landed at the North Africa shore and asked the local
chief for a tract by the sea as large as could be contained in an oxhide. The chief
graciously agreed and provided her with a large hide which she cut into very thin strips
and tied together to form a long string. She was thus faced with the following situation:

Let H be the Euclidean open half plane, ∂H be the straight line which is the
frontier of H (the shoreline) and Γ be a string of fixed length (the relative boundary
or the free boundary); “maximize the area bounded by Γ and ∂H ".

The classical isoperimetric inequality in the plane and a reflection argument show
that this area will be maximal if Γ is a half circle:

Figure 1. Dido’s problem.
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We can write the above result as

P(Γ)2 � 2πA

or equivalently
A

P(Γ)2
� 1

2π
, (1)

where equality holds if and only if Γ is a half circle.
Generally speaking, we say that if G is an open set in the Euclidean plane R

2 and
E is a subset of G with non–empty interior and rectifiable boundary such that E as well
as its complement G\E is connected, a relative geometric inequality is an inequality of
the type

μ(E)
P(E, G)α

� C. (2)

Here, μ(E) is some geometric measure, P(E, G) is the relative perimeter, i. e. the
length of the relative boundary or the free boundary (∂E ∩ G ), and α ∈ (0,α0] ,
where α0 is the real positive number which makes the ratio μ(E)/P(E) invariant under
dilatations (P(E) is the perimeter of E ).

Small discs with radius ε → 0 contained in G show that it is necessary for a
relative geometric inequality to hold that α � α0 .

If α > α0 the above example shows that using part of the boundary of G does not
improve the ratio; so for greater values of the exponent the relative inequality has not
meaning. The only inequality that has meaning in this case is the absolute inequality.
For instance for the diameter this inequality was proved by Rosenthal and Szasz [5] in
1917.

The geometric constant C(G,α) relative to given μ , G and α is the smallest
number C for which (2) holds, i.e.

C(G,α) = sup

{
μ(E)

P(E, G)α
: E ⊂ G

}

If we consider the relative geometric problem for an open set G , an extremal set
is a subset E0 ⊂ G such that among all subsets E ⊂ G with μ(E) = μ(E0) , it has
minimal value for the relative perimeter: P(E, G) � P(E0, G) .

With the same assumptions as above, a subset E0 ⊂ G is said to be a maximizer
(with respect to given μ , G and α ) if

C(G,α) =
μ(E0)

P(E0, G)α

(i.e., the equality sign holds in (2)).
Extremal sets and maximizers do not always exist. When both of them exist,

obviously every maximizer is an extremal set, but the converse is not true in general. An
assumption which usually guarantees the existence of maximizers is the boundedness
of G .
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Dido’s problem is a relative geometric problem in which G = H , α = 2 and
μ(E) = A(E) is the area of E . In this case, all extremal sets are maximizers.

If we use the same assumptions but take α = 1 , there are extremal sets (half
circles) but there is no maximizer (H is not bounded).

In the case where μ(E) = A(E) , relative geometric problems are called relative
isoperimetric problems and there are a lot of known results about them (see for instance
[1], [2] and [4]). There are also results when G is not a planar set but a subset of the
general n -dimensional Euclidean space R

n (see for instance [4]).
The aim of this paper is to obtain some relative geometric inequalities when other

geometric magnitudes different from the area are considered, determining the existence
and the geometric characteristics of the maximizers. In particular, we solve some
relative geometric problems for the diameter and the inradius for general planar convex
sets G , and give for some interesting examples of sets (discs, squares, ellipses, ...)
complete determination of the maximizers and the extremal sets. These quantities
discussed have interesting applications; for instance, for urban subdivisions in town
planning there are law regulations that state minimal requirements both for the inradius
and for the diameter of the small portions; the bounds that we obtain give control of these
quantities in terms of the relative perimeter which is also another interesting magnitude
for urban subdivision (for small relative perimeter costs decrease). There are also
several geometric applications: for instance we also give a characterization of planar
convex sets of constant width depending on the geometric constant corresponding to
the diameter.

2. Relative geometric inequalities concerning the diameter and the relative
perimeter of a subset of a planar convex set

Throughout this section let G be a planar open bounded set and E a subset of G
with non–empty interior and rectifiable boundary such that E as well as its complement
G\E is connected. Let P(E, G) be the relative perimeter of E .

The relative diameter of E with respect to G is defined as dG(E) = min{D(E),
D(G\E)} , where D(E) is the usual diameter, i.e. D(E) = sup{d(x, y), x, y ∈ E} .

For this problem we have α0 = 1 .

REMARK 1. The free boundary of E with respect to G is a path γ joining two
boundary points of G and P(E, G) is the length of γ . It is clear that C(G,α) �
C(G, 1) � 1 for any G .

PROPOSITION 1. There are sets G with C(G,α) = ∞ , for any α ∈ (0, 1] .

Proof. Obviously it suffices to consider the case α = 1 . Let G = {(x, y) : x >
0, y > 0, |(x, y)| > 1, |(x, y + 1)| < 2} .
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Figure 2. C(G,α) is not always bounded.

Further let P = (cosϕ, sinϕ) and Q = λP be the intersection of 0P and the circle
with center (0,−1) and radius 2. Elementary calculation yields λ =

√
4 − cos2 ϕ −

sinϕ . Let E be the subset of G which is bounded by the segment PQ and the two
circular arcs from (0, 1) two P and from (0, 1) two Q , respectively.

It follows P(E, G) = λ − 1 =
√

4 − cos2 ϕ − sinϕ − 1 . Further

D2 = |(0, 1) − Q|2 = |(λ cosϕ, λ sinϕ − 1)|2 = λ 2 + 1 − 2λ sinϕ.

Consequently

(
dG(E)

P(E, G)

)2

=
λ 2 + 1 − 2λ sinϕ
λ 2 + 1 − 2λ

= 1 + 2 · λ · 1 − sinϕ
(λ − 1)2 .

Applying the law of de l’Hopital shows that dG(E)/P(E, G) → ∞ (ϕ → π/2) . �

On the other hand, for convex sets G , C(G,α) is bounded.
For this let s(G, u) be the maximal length of a chord parallel to u and let s(G) =

minu s(G, u) be the minimal length of the maximal chord.

LEMMA 1. Let G ⊂ R
2 be convex and E ⊂ G. Then

dG(E)
P(E, G)α

� D(G)1−α ·
(

1 +
(

D(G)
s(G)

)2
)α/2

.

Proof. Without restriction let d := dG(E) = D(E) . Further let P, Q ∈ E with
|P − Q| = d and let RT be the maximal chord of G orthogonal to PQ . The distance
of P to RT is at most D := D(G) . Since G is convex the parallel chord through Q
has length q � d/D · |R − T| � d/D · s(G) .

Without restriction we can assume that Q ∈ conv{P, R, T} . Q divides the inter-
section of the chord with conv{P, R, T} into two parts of length a and b .

P(E, G) is at least the sum of the distances from Q to the lines PR and PT and
so

P(E, G) � ad
a2 + d2

+
bd

b2 + d2
.

Minimizing this function under the condition a+b = q gives P(E, G) � d·q/
√

q2 + d2
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and so

dG(E)
P(E, G)α

� d
dα
√

1 + (d/q)2
α

� D1−α ·
(

1 +
(

d
q

)2
)α/2

� D1−α ·
(

1 +
(

D
s(G)

)2
)α/2

.

�

LEMMA 2. Let P, A, B be three points and d > 0 . Then there is a point Q with
|P −Q| = d and minimal value of |A −Q|+ |B − Q| . Further the angles <)AQP and
<)BQP are congruent.

Proof. The existence of Q follows from a standard compactness argument. Q
is the solution of the following optimization problem: minimize |x − A| + |x − B|
under the restriction |x − P| = d . The corresponding Lagrange function is |x −
A| + |x − B| + λ (|x − P| − d) . It follows that Q satisfies the equation 0 = (Q −
A)/|Q − A| + (Q − B)/|Q − B| + λ · (Q − P)/|Q − P| . Hence there is a μ such that
Q − P = μ((Q − A)/|Q − A| + (Q − B)/|Q − B|) . This means that P lies on the
bisector of the angle <)AQB . �

LEMMA 3. Let G ⊂ R
2 be a bounded set with diameter D(G) . Then for each

d ∈ (0, D(G)) there is an extremal set E ⊂ G with dG(E) = d .

Proof. Let 0 < d < D(G) and p0 := inf{P(E, G) : E ⊂ G, dG(E) = d} . There
is a sequence En ⊂ G with P(En, G) → p0 . The sequence {En} of compact sets has
a converging subsequence with limit E ⊂ G . It follows dG(E) = d and P(E, G) = p0

and hence E is an extremal set. �
The boundary of extremal sets consists of a segment an a part of the boundary of

G :

THEOREM 1. Let G ⊂ R
2 be convex and bounded and E ⊂ G extremal. Then

the free boundary of E is a segment.

Proof. Let E ⊂ G be an extremal set with dG(E) = d and minimal P(E, G) � d .
Let γ be the free boundary of E with endpoints A and B . There are points Q, Q′ ∈ γ
in the half planes corresponding to the line AB with maximal distance to AB . Since
E is extremal it follows that Q and Q′ together with points P and P′ on the opposite
sides form diameters of E and G\E respectively, i. e. |P − Q| = D(E) =: d1 and
|P′ − Q′| = D(G\E) =: d2 (without restriction let d2 � d1 = d ).

From the extremality of E it follows that γ consists of the three line segments
AQ, QQ′ and Q′B .

(1) If d1 < d2 then Q′ = B (else we can decrease P(., G) without changing
dG ). Let hA, hB be supporting lines to G through A and B respectively. Since E is
extremal we can assume that hA is perpendicular to AQ and hB is perpendicular to BQ
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and hA and hB intersect on the side of γ which contains E . Then Q has minimal sum
of distances to hA and hB among all points in G with distance d1 to P . It is easy to
see that then Q = A or Q = B and so γ is a segment.

(2) Now let d1 = d2 = d . As in case (1) we can assume that Q �= A and
Q′ �= B . Let S be the intersection of the two circles with centers P and P′ and radius
d . A, B, Q, Q′ are contained in S ∩ G . Let hQ be the line through Q perpendicular
to PQ and hQ′ the line through Q′ perpendicular to P′Q′ . Further let hA be the line
through A perpendicular to QA and hB the line through B perpendicular to Q′B .
Since E is extremal it follows that hA and hB are supporting lines for G .

Figure 3. PQ and P′Q′ bisect angles AQQ′ and BQQ′ .

Further we conclude from Lemma 2 that <)AQP = <)PQQ′ =: ϕ and <)BQ′P′ =
<)P′Q′Q =: ψ . Let a = |A − Q|, q = |Q − Q′| and b = |Q′ − B| . Let Z = {X :
|X − A| + |X − Q′| � a + q} the ellipse with foci A and Q′ and axes (a + q)/2 and√

aq cosϕ , and K = {X : |X − P| � d} the circle with center P and radius d .
From the extremality of E we conclude that there is a neighborhood U of Q such

that U ∩ Z ⊂ U ∩ K . It follows that d is greater or equal than the radius of curvature
of ∂Z in Q . Hence

d � 2aq
(a + q) · cosϕ

. (3)

On the other hand P is on the same side of hA as Q and so <)PAQ is acute and hence
d � a/ cosϕ . Together with (3) we obtain a � q .

Now consider the triangle with vertices Q, Q′ and T , where T is the intersection
point of the lines hQ′ and QA . From |T − Q| > |A − Q| = a � q it follows
<)QQ′T > <)Q′TQ and so π/2 − ψ > π − 2ϕ − (π/2 − ψ) or equivalently ψ < ϕ .
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But the same considerations with interchanging the roles of A and B , Q and Q′ , ϕ
and ψ shows that also ϕ < ψ which is a contradiction. �

An immediate consequence is the following Corollary.

COROLLARY 1. Let G ⊂ R
2 be convex. Then

C(G,α) = sup

{
dG(E)

P(E, G)α
: E = G ∩ H+, H+ half plane

}
,

i. e. it suffices to consider sets E whose free boundary is a line segment.

THEOREM 2. Let G ⊂ R
2 be convex. Then

C(G,α) = sup

{
dG(E)

P(E, G)α
: E ⊂ G, D(E) = D(G\E)

}
.

Proof. We consider a subset E ⊂ G with d1 := D(E) < D(G\E) =: d2 . It

suffices to give a subset E′ with D(E′) = D(G\E′) such that dG(E′)
P(E′,G)α � dG(E)

P(E,G)α .
Because of Corollary 1 we can assume that the free boundary of E is a line segment

AB . Further let P, Q ∈ E with |P − Q| = d1 and P′, Q′ ∈ G\E with |P′ − Q′| = d2 .
Let a, b be supporting lines to G through A and B , respectively. If a and b are
parallel or intersect in the half plane with respect to AB which contains G\E , then
AB can be translated into a parallel line such that d1 = d2 without decreasing dG and
without increasing P(., G) .

So we can assume that a and b intersect in the half plane with respect to AB
which contains E .

Q is one of the points A, B : Let g be the line parallel to AB through Q and Ã, B̃
its points of intersection with PA and PB , respectively. Then

|P − Q| � max{|P − Ã|, |P − B̃|} � max{|P − A|, |P − B|}.
In the following we assume that Q = A .

Figure 4. D(E′) = D(G/E′) and dG(E′)
P(E′,G)α � dG(E)

P(E,G)α .
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There is a chord A′B′ of G parallel to AB on the side of AB opposite to P , which
divides G into two subsets E′ and G\E′ with equal diameter d′

1 = d′
2 � d1 . Let

ϕ = <)APB and ψ = <)PBA .
From |P − Q| � |Q − B| it follows ϕ � ψ , in particular ϕ � π/2 . Let B′′ be

the intersection point of A′B′ with PB and ϕ′ = <)A′PB′′ . Obviously ϕ′ � ϕ � π/2 .
From the sinus theorem it follows

dG(E′)
P(E′, G)α

� dG(E′)1−α ·
( |P − A′|
|A′ − B′|

)α

� dG(E′)1−α ·
( |P − A′|
|A′ − B′′|

)α

= dG(E′)1−α ·
(

sinψ
sinϕ′

)α

� dG(E′)1−α ·
(

sinψ
sinϕ

)α

= dG(E′)1−α ·
( |P − A|
|A − B|

)α

= dG(E′)1−α · dG(E)α

P(E, G)α

� dG(E)
P(E, G)α

.

�

For each 0 < α � 1 there are maximizers.

COROLLARY 2. Let G ⊂ R
2 be convex. Then there is a convex set E0 ⊂ G such

that
dG(E0)

P(E0, G)α
= C(G,α).

Proof. Let {En} be a sequence of subsets of G such that dG(En)
P(En,G)α → C(G,α) . By

Corollary 1 we can assume that En is the intersection of G with a half plane generated
by a chord AB . By Theorem 2 we can assume that D(En) = D(G\En) , for all n . In
particular we have D(En) � D(G)/2 .

From Lemma 1 it follows that P(En, G) � c > 0 for all n , where c is a constant
depending only on G . According to Bolzano–Weierstrass the sequences {An} and
{Bn} have convergent subsequences. We can assume that already An → A0 and
Bn → B0 . Let E0 be the intersection of G with the half plane generated by A0B0 .
Then E0 is a convex set with D(E0) = D(lim En) = limD(En) and D(G\E0) =
D(lim G\En) = lim D(En) and so dG(E0) = lim dG(En) . Further

P(E0, G) = |A0 − B0| = lim |An − Bn| = limP(En, G) > 0.

Hence E0 is nonempty and

dG(E0)
P(E0, G)α

= lim
dG(En)

P(En, G)α
= C(G,α).

�
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COROLLARY 3. Let G ⊂ R
2 be a centrally symmetric convex set. Then there is a

convex set E0 ⊂ G with G\E0 = −E0 such that

dG(E0)
P(E0, G)α

= C(G,α).

Proof. Because of Theorem 2 and Corollary 2 there is a convex set E ⊂ G with
dG(E)

P(E,G)α = C(G,α) and D(E) = D(G\E) . It suffices to conclude a contradiction from

the assumption that 0 /∈ AB . If this is the case then without restriction let 0 ∈ intG\E .
Let P, Q ∈ E with |P − Q| = D(E) . We can assume that Q is contained in AB (else
AB can be translated parallel towards P without decreasing dG/P(., G)α ). Hence,
without loss of generality, let Q = A .

Further, G has a supporting line through B which is orthogonal to AB (else you
can fix dG and improve P(E, G) = |A − B| locally). It follows that G is contained
in the strip generated by the two parallel supporting lines through B and −B . We
have <)PA(−B) � π/2 and consequently |P − (−B)| > D(E) . This leads to the
contradiction

D(E) = D(G\E) � |(−P) − B| = |P + B| > D(E).

Figure 5. If 0 /∈ AB then we conclude a contradiction.

�
EXAMPLES. (For all examples the optimal E is an intersection of G with a half

plane H+ containing 0 in its boundary.)
(1) If G is a circular disc then C(G, 1) = 1 .

Figure 6. Maximizer of a circular disc.

(2) If G is a square then C(G, 1) = 1
2

√
3 +

√
5 = 1.144... :
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Let G = conv{±(1, 1),±(1,−1)} . Further let A = (1, x) and B = −A and Ex

the corresponding set. Then dG(Ex) =
√

4 + (x + 1)2 and P(Ex, G) = 2
√

1 + x2 .

Standard methods show that dG(Ex)/P(Ex, G) attains its maximum
√

3 +
√

5 in x =√
5 − 2 (A divides the edge (−1, 1), (1, 1) in the golden ratio).

Figure 7. Maximizer of a square.

(3) If G is an ellipse with axis lengths a and b then C(G, 1) = 1
2

(
a
b + b

a

)
.

Figure 8. Maximizer of an ellipse with axis lengths a and b .

For some particular sets G, extremal sets can be determined:
EXAMPLES. (1) If G is a circular disc, extremal sets are the circular segments.

All extremal sets are maximizers.

Figure 9. Extremal set of a circular disc.

(2) If G is a square, extremal sets are represented in the Figure 10.

Figure 10. Extremal sets.
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An interesting question is whether the circular disc is the only convex set with
C(G, 1) = 1 . In the following theorem we show that there is a whole class of convex
bodies with this property.

For this we first need the following notation.
A chord AB of a convex set G is called a normal in A if there is a supporting

hyperplane for G through A which is orthogonal to AB .
The following characterizationof convex sets of constantwidth is verywell–known

(see for instance [3]).

PROPOSITION 2. Let G be convex. Then the following statements are equivalent
(i) G is of constant width.
(ii) Any chord AB of G which is normal in A is also normal in B .
(iii) For any pair H1, H2 of parallel supporting planes for G there are points A ∈

H1, B ∈ H2 such that AB is orthogonal to H1, H2 .

THEOREM 3. Let G ⊂ R
2 be convex. Then C(G, 1) = 1 if and only if G is of

constant width.

Proof. (1) Let G be of constant width. We will show that the assumption
C(G, 1) > 1 leads to a contradiction. By Corollary 2 there is a set E ⊂ G with
dG(E)/P(E, G) = C(G, 1) > 1 . By Theorem 1 we can assume that E is the intersec-
tion of G with a half plane generated by a chord AB . Let P, Q ∈ E with |P−Q| = D(E)
and P′, Q′ ∈ G\E with |P′ −Q′| = D(G\E) . Since dG(E) > P(E, G) we can assume
that P and P′ are not contained in AB .

From the optimality of E it follows that PQ and P′Q′ are normal in P and P′ ,
respectively. According to Proposition 2 the chords PQ and P′Q′ of E are also normal
in Q and Q′ . In particular both diameters are equal to the constant width w = D(E) .
We have |A−B| < w and because of Proposition 2 AB is normal in no endpoint A, B .
So these points cannot be moved on ∂(G) without changing dG(E) .

Hence we can assume that Q = A and Q′ = B . Then we have

G\E ⊂ T := {Z : |Z − P| � w, |Z − A| � w} ∩ H+,

where H+ is the half plane defined by PA which contains B . T has diameter w and it
is attained for three pairs of points (P, A), (P, S) and (A, S) , where S is the intersection
point of the two circular arcs defining T . Since A �= B we have Q′ = B = P or
B = S . In both cases we obtain P(E, G) = |A − B| = w which is a contradiction.

(2) Now let C(G, 1) = 1 . Let h1, h2 be two parallel supporting lines for G
with normal vector u . Every chord in direction u divides G into two parts E1, E2 .
According to the intermediate value theorem there is a chord AB in direction u such
that D(E1) = D(E2) . By assumption AB is a diameter of E1 as well as of E2 . It
follows that C = E1 ∪ E2 is contained in the strip between the lines hA, hB parallel to
h1, h2 through A and B , respectively. Hence AB is a chord as required in Proposition
2 (iii). Since h1, h2 were chosen arbitrary it follows from Proposition 2 that C is of
constant width. �
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3. Relative geometric inequalities concerning the inradius and the relative
perimeter of a subset of a planar convex set

Throughout this section let G be a planar open bounded convex set and E the
family of subsets E ⊂ G with non–empty interior and rectifiable boundary such that E
as well as its complement G\E is connected.

The relative inradius of E with respect to G is defined as ρG(E) =
min{ρ(E), ρ(G\E)} .

For this problem again α0 = 1 and for α ∈ (0, 1] let

C(G,α) = sup

{
ρG(E)

P(E, G)α
: E ∈ E

}
.

REMARK 2. It is clear that C(G, 1) � 1
2 . (Equality is attained for many sets, for

instance a rectangle with edges a and b , b � 2a ).

LEMMA 4. Let G ⊂ R
2 be convex and ρ0 = sup{ρG(E) : E ∈ E } . Then for

each ρ ∈ (0, ρ0) there is an extremal set E ∈ E with ρG(E) = ρ .

Proof. Let 0 < ρ < ρ0 and p0 := inf{P(E, G) : E ∈ E , ρG(E) = ρ} . There
is a sequence En ∈ E with P(En, G) → p0 . The sequence {En} of compact sets has
a converging subsequence with limit E0 ⊂ G . ρ is continuous and P(·, G) is lower
semi–continuous. It follows ρG(E0) = ρ and P(E0, G) � p0 and hence E0 is an
extremal set. �

THEOREM 4. Let G ⊂ R
2 be convex and let E ∈ E be an extremal set with

respect to C(G,α) and with inradius ρ ∈ (0, ρ0) . Then E and G\E contain balls
B1, B2 with radius ρ interior and tangent to ∂G.

The boundary of E consists of at most five parts:

– two straight line segments tangent to B1, B2 and orthogonal to ∂G;

– two circular arcs of ∂B1 and ∂B2 ;

– a straight line segment tangent to B1 and B2 joining the two circular arcs.

Proof. Let E be an extremal set with relative inradius ρ . Then there are balls
B1 ⊂ E and B2 ⊂ G\E with radius ρ . The relative boundary of E with respect to G
is a geodesic in G\(B1 ∪ B2) . Hence it consists of straight line segments and arcs of
∂B1 or ∂B2 . Since every part is a geodesic segment there is at most one connected arc
in each of the boundaries of B1, B2 .

From theminimality of P(E, G) it follows by local arguments that the line segments
joining ∂G and ∂B1 (or ∂B2 ) are orthogonal to ∂G in one endpoint and tangent to B1

(or B2 ) in the (possible) other endpoint. Analogously the possible line segment joining
∂B1 and ∂B2 is tangent to the circular arcs. �
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Figure 11. Extremal set with a three arcs boundary.

REMARK 3. Remark (1) As Figure 12 shows the boundary of an extremal set may
have five arcs. If ρG(E) �= ρG(G\E) then it consists only of three parts: the circular
arc of only one inball and two line segments.

Figure 12. Extremal set with a five arcs boundary.

(2) Let E ⊂ G and let ϕ be the angle between the supporting lines through the
endpoints of the free boundary. Then P(E, G) � ρG(E) · (2 + ϕ) .

THEOREM 5. Let G ⊂ R
2 be convex. Then for each α ∈ (0, 1] there is an extremal

set Eα ⊂ G which is also a maximizer.

Proof. There is a sequence of extremal sets {En} with En ∈ E and
ρG(En)/P(En, G)α → C(G,α) . The sequence {En} of compact convex sets has a
converging subsequence with limit E0 ⊂ G .

If ρ(E0) > 0 then E0 is a maximizer since ρ is continuous and P(·, G) is lower
semi–continuous.

We still have to exclude the case ρ(E0) = 0 . In this case E0 is a point x0 ∈ ∂G .
If α < 1 then ρG(En)/P(En, G)α � P(En, G)1−α/2 → 0 , for n → ∞ , which is a
contradiction.

Hence let α = 1 . Let ϕ = 2π · lim
ε→0

A(G ∩ Bε(x0))/A(Bε(x0)) be the internal

angle of G at x0 . From the above remark it follows that P(En, G) � ρG(En)(2 + ϕ)
for infinitely many n and so C(G, 1) � 1/(ϕ + 2) .
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On the other hand we can choose a ball B ⊂ G with (sufficiently small) radius
ρ which touches both arcs of ∂G in points y0 and z0 . Let hy, hz be the supporting
lines to G through y0 and z0 , let C be the cone which is formed by hy and hz and ψ
be the angle of C in its apex. Further let E be the subset of G containing B whose
relative boundary consists of an arc of ∂B and two line segments orthogonal to ∂C and
tangent to ∂B . Then P(E, G) � ρ · (2 + ψ) .

From ψ � ϕ we conclude that ρG(E)/P(E, G) � 1/(ψ + 2) � C(G, 1) . Hence
E is a maximizer. �
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