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QUASI-VARIATIONAL EQUATION

RABIA NESSAH AND CHENGBIN CHU

(communicated by A. M. Fink)

Abstract. The main result proved in this article is the following. There is an X € X such that

¢(X) € C(x) and sup ¥(X,y) = ¥(X,¢(X)) where C: X — 2V is a correspondence; (g is
yeCH)

a function defined over X in Y) and a function ¥ defined over X x ¥ in R; X and Y are

different sets. This results generalizes the quasi-variational inequation. According to this result,

we show the existence of generalized Berge strong equilibrium for a constrained non cooperative

game.

1. Introduction and preliminary results

Considering the importance of the quasi-variational inequation in different areas
such as mathematics, optimal control theory, mathematical economics and more gen-
erally non linear optimization, cited in Arrow and Debreu [1], Aubin [3], Aubin and
Ekeland [5], Mosco [11], Shafer and Sonnenshein [14], etc.

Many researchers attempted to generalize this inequality by weakening the condi-
tions for the existence of at least one solution. Among these researchers, one can cite
the papers of Shih and Tan [13], Tian and Zhou ([15], [16]) and Zhou and Chen [17].

Given two nonempty subsets X, Y of a space E and F respectively, a function
¥ defined over X x Y in R, a function g defined over X in Y and a correspondence
C defined over X in 27.

We study in this article the existence of X € X such that:

g(x) e C(x) and sup ¥(x,y) = ¥(x,2(x)). (1.1)
yEC(¥)

This paper is organized as follows. Section 2 derives a theorem about the quasi-
variational equation. In Section 3, we show how to apply this result.

Let us first introduce some notation and definitions.

Consider X anonempty subset of a metrical space E, Y anonempty subset of a lo-
cally convex space F. Let 2! be the set of all the parts of Y. A correspondence C : X —
2Y is said to be upper semi-continuous over X if the set {x € X such that C(x) N A # 0}
is closed in X, forall closed set A in Y [18], it is said to be closed if the corresponding
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graph is closed in X X Y3 i.e., set {(x,y) € X x Y suchthaty € C(x)} is closed in
X x Y [2]. A function f : ¥ — R is said to be upper semi-continuous over Y if
Yyo € Y, YA > f(y9), there is a neighborhood v of yo suchthat Vy € v, A > f(y); f
is said to be continuous over Y if f and —f are upper semi-continuous over Y. We say
that f is quasi-concave (resp. quasi-convex) over Y if for any y;, y, in Y and for any
0 € [0, 1], we have min {f (y1), f (y2)} <f(0y1+ (1 —0)y2) (—f is quasi-concave).
We say that correspondence C : ¥ — 2 is upper hemi-continuous over Y if for any
p € Y*, function x — o(C(x),p) = sup (p,y) is upper semi-continuous Y, where
yeC(x)

(p,y) = p(y) and Y* is the set of continuous linear forms of Y.

We denote by A the closure of set A and by JA its border. Given Y, a nonempty

subsetof Y and y € Yy, wedenoteby Hy,(y), Zy,(y), Ty,(y) and Ny, (y) the following
subsets: Hy,(v) = U [Yo—y]/h, Ty, (v) = Hy,(v), Zr,(y) = [Ty, (v) +)]NY and
Ny, (y) = {p € Y* such that (p,v) <0, Vv e Ty, (y)}.

DEFINITION 1.1. A quasi-variational equation is the following system (1.1).

DEFINITION 1.2. We say that correspondence C : X — 2F satisfies (X is assumed
to be convex) :
1) the tangential condition if

Vx e X, Clx) NTx(x) #0 (1.2)

2) the dual tangential condition if
Vx € X,Vp € Nx(x), then o(C(x), —p) > 0. (1.3)

We will use the following results :
LEMMA 1.1. [4] The tangential condition (1.2) implies the dual tangential condition

(1.3).

LEMMA 1.2. [7] Let C : E — 2F be a correspondence where E and F are

metrical spaces. If the graph of C is compact, then C is upper semi-continuous over
E.

LEMMA 1.3. [18] (Separation Theorem) Consider K anonempty convex and closed
subset of a locally convex space X. If xo does not belong to K, there is a continuous
linear form p € X* such that {—p,xo) > o(K,—p).

2. The results

In the following theorem, we establish a sufficient condition for the existence of a
solution of the quasi-variational equation (1.1).

THEOREM 2.1. If:
1) X is a nonempty compact subset of a metrical space E

2) Y is a nonempty convex and compact subset of a locally convex separated space
F



QUASI-VARIATIONAL EQUATION 151

3) g:X — Y is a continuous function over X such that:
3.1) g(X) is convex over Y
4) C is an upper hemi-continuous correspondence over X in 2Y with nonempty,
convex and closed values such that for any g(x) € 0g(X), [C(x)—g(x)] N
Ty (6()) # 0
5) function ¥ : X x Y — R satisfies:
5.1) function (x,y) — P(x,y) is continuous over X x Y
5.2) forany x € X, function y — ¥ (x,y) is quasi-concave over Y
5.3) forany g(x) € 0g(X), forany y € Y and forany p € Y*, there is a
53.1)¥Y(x,y) < P(x,w
W € Zyx)(8(x)) such that { 5.3.25 <p(,y> )g <p7(w> )

6) set { x € X such that a(x) = sup ¥(x,y) < P(x, g(x))} is closed.
y€EC(x)

Than there is an X € X such that

g(x) € C(x) and Zlé}()_)‘l’()_c, y) = P(x, g(%)).

REMARK 2.1. Condition 5.3) in Theorem 2.1 implies Vg(x) € 0g(X), Vp € Y*,

we have sup[\¥'(x,y) + (p,y)| < sup [¥(x,2) + (p.2)].
yey 2€Zy(x) (8(x))

REMARK 2.2. Condition 5.3) in Theorem 2.1 is sufficient if g is surjective.

REMARK 2.3. Condition 6) in Theorem 2.1 is true if we assume furthermore that
correspondence C is lower semi-continuous over X .

Proof. Assume that the conclusion of Theorem 2.1 is false; i.e. Vx € X, we have

8(x) ¢ C(x)or Zlél())‘f’(x,y) > ¥ (x, g(x))- (2.1)

Let

Vo = {x € X such that sup ¥(x,y) > ‘P(x,g(x))} .
yEC(x)
According to Separation Theorem and considering the fact that C(x) is nonempty,
convex and closed, g(x) ¢ C(x) implies Vg(x) € g(X), Ip € Y* such that

(=p,8(x)) —o(C(x),—p) >0
where o(C(x),p) = sup (p,y) is asupporting function of C(x).
YEC(x)
Let
V, = {x € X such that { —p, g(x)) — o(C(x), —p) > 0}.
Assumptions 3), 4), 5.1) and 6) of Theorem 2.1 implies that sets V,, V, and
p € Y* are open.
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Claim (2.1) implies that X C Vo U |J V,. Since X is compact, it is possible to

peY*
cover it by a finite number 7 of its subsets. Let {/;},_5- be a partition unity subordinate
n
. VxeX, ) h(x)=1
to {Vo, Vpis oy Vi, }5 i€, we have ’ ,;) i)

Vi =1,n, supp h; C V,, and supp hy C Vp.
Introduce the following function

d:XxY—R

defined by (x,y) — ®(x,y) = ho(x)¥(x,y) + ghmxm,y () .

Function (x,y) — ®(x,y) is continuous over X x Y. We now show that there is
an X € X such that
sup®(x, y) = @(x, g(%))-
yeY
Assume
Vx € X, 3y € Y such that ®(x,y) > d(x, g(x)). (2.2)

Construct the following sets :
0, = {x € X such that ®(x,y) > ®(x,g(x))}, y € Y.

Then, Vy € Y, 0, is open, X C U 0, . Since X is compact, it can covered by a finite
yeY
number r of its subsets. Let {lj}jzl_,r be a partition unity subordinate to {6,,, ..., 6y, };

i.e. we have Vx € X, > li(x) = 1 and Vj = 1,7, supp [; C 6,,.
j=1
Consider the following correspondence :

M:X—2"
defined by x — M(x) = {y € Y such that ?a?Z/l,-(I)(x, yi) < CID(x,y)} where § =
€5i=1

{QL = (A1, ..y Ay) €R'suchthat ) A, =1, 4; > 0Vi= H}
i=1
We now show that correspondence M is upper semi-continuous over X, with
nonempty, convex and closed values in Y and satisfying: Vg(x) € dg(X), Ju € X,
Joa > 0 such that ag(u) + (1 — a)g(x) € M(x).
1. Vx € X, M(x) # 0.

.
Consider an x € X, function A — > A;®(x,y;)) is linear over R”. Therefore, it
i=1

is continuous over the compact set S and according to the Theorem of Weierstrass [2],

34 € S such that Iila?Z)LiCID(x,yi) = Y Ai®(x,y;) < S Aimax®(x,y;) = P(x,y;,).
€5i=1 i=1 i=1 i=lr

Therefore, y;, € M(x), which implies M(x) # ().
2. Vx € X, M(x) isclosedin Y.
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Consider x € X and z € M(x) . There is a sequence {z};, of elements of M (x)

which converges towards z.
As a consequence, the fact that Vk > 1, zx € M(x) implies

k> 1, AD(x, y) < B(x, 2.
\/ r;lg?g (x,1) < D(x,z) (2.3)

Taking into account condition 5.1) of Theorem 2.1 and the fact that p; € Y*, i = 1,r
with k — +o0, we obtain

r

max » A®D(x,y;) < ®(x,z)
res —

Therefore, z € M(x);i.e. M(x) is closed.

3. Vx € X, M(x) is convexin Y.
Let x € X and Z, 7 be elements of M(x) and 6 € [0,1]. We now show that
0z+ (1 —0)z € M(x) .

Since 7 and 7 are elements of M(x), we have

r

2®(x,v;) < D(x,Z) and 2D (x, v;) < D(x,3).
rl{1é1xll (x,v:) (x,Z) an Tg?; (x, 1) (x,2)

Therefore,
max Y A®(x,y;) < min {®(x,z), ®(x,2)}. (2.4)

A
e11

Taking into account condition 5.2) of Theorem 2.1 and the fact that p; € Y*, i = 1,r
and the inequality (2.4), we obtain

max > Ai®(x,yi) < D(x, 0z + (1 - 6)7), V6 € [0, 1],
i=1
ie, 02+ (1 —0)z€ M(x).
4. M is upper semi-continuous over X .
According to Lemma 1.2, it is sufficient to show that the graph of M is closed in
the compact set X x Y. Let (x,z) € Graph(M). There is a sequence {(xk,z)};s,
of elements of Graph(M) which converges toward (x,z). Therefore, Vk > 1, z €

M(x;);ie., Yk > 1, r)rtlaxZ/l,-(D(xk,y,-) < D(xe, zx) -
€Si=1

Taking into account condition 5.1) of Theorem 2.1 and p; € Y*, i = 1, r with k —
00, we obtain IilaxZ/l,-(I)(x, yi) < @(x,2); ie., z € M(x), then (x,z) € Graph(M);
€5 i=1

in other words, Graph(M) is closed.
5. Vg(x) € 9g(X), 3o > 0, Ju € X such that org(u) + (1 — or)g(x) € M(x).
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Let g(x) € 0g(X). Itis shownin 1 that Vx € X, Jy;, € ¥ such that

r

rilax Ai®(x,yi) < P(x, yiy) (2.5)
es

(In particular, (2.5) remains true for any x € X such that g(x) € 9g(X)).
Condition 5.3) of Theorem 2.1, implies Jo¢ > 0, Ju € X such that ®(x,y;,) <

D(x, ag(u) + (1 — a)g(x)) with ag(u) + (1 — or)g(x) € Y. Therefore,

r

1}12)( A (x,yi) < P(x, og(u) + (1 — a)g(x)),

i=

ie., ag(u)+ (1 —a)g(x) € M(x).

We now show that X € X such that g(xX) € M(X).

Assume that the conclusion is not true; i.e., Vx € X, g(x) ¢ M(x).

We have Vx € X, g(x) ¢ M(x), which implies, according to Lemma 1.3 and the
fact that M(x) is nonempty, convex and closed, Vx € X, there is a g € Y* such that

(—q,8(x)) > o(M(x), —q).
Define
A, = {x € X such that ( —q, g(x)) — o(M(x), —q) > O}.

The continuity of function g and the upper semi-continuity of M implies that
subsets A, are open, Vg € Y.

We have X C |J A,. Furthermore, since X is compact, it can be covered by a
geY*
finite number m of its subsets. Let {f;} 1
cover.

Consider the following function

Y:g(X)xg(X) =R

defined by (g(u),g(v)) — Z(g(u),g(v)) = ZfJ( Wi g(v) — g(u)) .

Function X is continuous with respect to the first variable, and quasi-concave with
respect to the second variable. Since g(X) is compact and convex. According to the
inequality of Ky Fan [9], there is a g(#) € g(X) such that

be a partition unity subordinate to this

ij (gj,8(v) — g()) <0,

which implies g = ij( )g; belongs to cone normal Nyx)(g(u)). According to

Lemma 1.1 and takmg 1nt0 account 5, we derive

o(M(@), —q) > (—q.8(@)) .-
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If fj(u) > 0, then j € suppf; C A, ; ie., (—gq;,gm) > o(M@),—g;),
therefore,

(=2,¢@) < oM(@),—q) = o(M(u), —ij(ﬁ)qj')

< Zf](ﬁ)o-( qj < Zf] —4qj,8 = <767g(ﬁ)>a
=1

which is impossible.
As a consequence, there is an X € X such that g(x) € M(x); i.e.,

r

max) L%, yi) < O(X, g(X)).

Thus VA €5, Y A®(F,v) < B, g(5).
i=1
Let & = (1,(®), -, 1,(¥)). We have 4 € S since [;(¥) > 0 and S i(F) = 1. We

i=1
have

D LD, yi) < (%, 8(¥) (2.6)
i1
Consider set J = {i = 1, ..., r such that [;(x) > 0} . By construction, J # (). Note that
Z;li@‘b(i yi) = X;I,-(fc)d)(%, yi) -
i= ic
We have Vi € J, [;(x) > 0, therefore x € supp l; C 6,,,i.e. Vi € J, ®(x,y;) >
D(x,g(x)). We then have > L(X)®(x,y;) > Y L(X)D(x,g(X)) = O(x,g(x)), ie.
icl =

D(x, g(x)) < ®(x,g(x)) , which is impossible. We can thus conclude that there is an
X € X such that

sup®(x, y) = P(x, g(x))
yeyYy

orVyev,

Y(x,y) +Zh (piry — g(x)) < ho()¥(X, g(x)). (2.7)

If ho(X) =0, we have Zhl(f) = 1. Therefore, (2.7) becomes
i=1

Zh (pi,y —g(x)) <0, Vyerx. (2.8)

A~

Inequality (2.8) implies p = Zh,-(f)p,- belongs to normal cone Nyx)(g(X)).
i=1
According to Lemma 1.1 and condition 4) of Theorem 2.1, we have

o(C(x),—p) = (-p.g(x)) - (2.9)
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The fact that h;(x) > 0, i = 1,n, implies X € supp h; C V,,;; i.e

(—pi,8(x)) > o(C(x), —p:)
We have

0(C(x),—p) = o(C(), *Zhi@)pi) < Zhi(f)G(C(f), —pi)

<Zh (—png®) = (~P.5(®).

which is in contradiction with inequality (2.9). We can then conclude hy(X) > 0.
Relation /y(X) > 0 implies that X € supp hy C V;. Therefore,

sup W(x,y) > ¥(x,g(x)).
yEC(x)

Since function y — ¥(x,y) is continuous over the compact C(x), it follows that,
according to Theorem of Weierstrass [3], thereis a y € C(X) such that sup ¥ (x,y) =
yecl
Y(X,y). Therefore:
H@¥EF) > h(@¥(E g(®)). (2.10)

If Shi(F) = 0, (2.7) becomes ho(D)¥(E,y) < h@)¥E (), W € 7,

which is in contradiction with inequality (2.10). Therefore > h;(xX) > 0. Let
i=1

K = {i=1,...,nsuchthat ;(x) > 0}. We have K # . In fact, > h(x) > 0.
i=1
If i € K, we have X € supp h; C V), ; i.e.,

(—pi,g(x)) > o(C(x), —pi)
We have

(=p,y) <0o(Cx),—p) = o(C(x), - hi(f)pi)

thus

Zh (pi,y — g(x)) >0. (2.11)

Inequalities (2.10) and (2.1 1) 1mply

Y(x,y) +Zh (Pi,y = 8(x)) > ho()¥(x,8(x)),
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which is in contradiction with (2.7).
We can then conclude that there is an X € X such that

g(x) € C(x) and sup ¥(x,y) = ¥(x,g(x)).
yeC(X)

O

REMARK 2.4. If F is finished dimension, condition Y is compact in Theorem 2.1
can be replaced with Y is bounded.

The quasi-variational inequality [3] is straightforward from Theorem 2.1.

COROLLARY 2.1. [3] (Quasi-variational inequality Theorem) Le?
1) E =F : separated locally convex space
2) X =Y : anonempty, convex and compact part of E
3) C is a upper hemi-continuous correspondence from X to 2% with nonempty,
convex and closed values.
4) Consider function ¥ : X x X — R such that
4.1) function (x,y) — ¥(x,y) is continuous over X x X
4.2) for any x € X, function y — ¥ (x,y) is quasi-concave over X

5) set < x € X such that a(x) = sup P(x,y) < ¥P(x,x) p is closed in X.
y€EC(x)
Then there is an X € X such that

X € C(X) and sup ¥(x,y) = ¥(*,%).
yeC(x)

Proof. Let us introduce the following identity function x — g(x) = x, Vx € X .
Function g is continuous and satisfies condition 3.1) of Theorem 2.1.

Let us show that correspondence C satisfies condition 4) of Theorem 2.1. Since
C(x) C X and X C Tyx)(g(x)), Vx € X, we deduce that [C(x) —x] N Tyx)(g(x)) # 0,
Vx e X.

We now show that function ¥ satisfies condition 5.3) of Theorem 2.1. Let x € X
and y € X, ¢ = 1 and u = y. We then have y = ou + (I — o)x, therefore
Y(x,y) = ¥(x,qu+ (1 —a)x) and Vp € X*, (p,y) = (p,au+ (1 — a)x) .

We can then conclude that all conditions in Theorem 2.1 are satisfied and conse-
quently 3x € X such that X € C(X) and sup ¥(x,y) = ¥(x,x). O

yeC(x)

From the proof of Theorem 2.1, we deduce following g-maximum equality theo-

rem and g -fixed-point Theorem [12].

COROLLARY 2.2. [12] (g-maximum equality Theorem) Let :
1) X is a non empty, compact subset of a metrical space E

2) Y is a non empty, convex and compact subset of a separated locally convex space
F

3) g:X — Y is afunction continuous over X such that:
3.1) g(X) isconvexin Y
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4) Let function ¥ : X x Y — R be such that
4.1) function (x,y) — ¥(x,y) is continuous over X x Y
4.2) forany x € X, function y — W(x,y) is quasi-concave over Y

4.3) Vg(x) € 0g(X) and ¥y € Y, 3z € Zyx)(g(x)) such that ¥(x,y) < ¥(x,z).
Then there is an X € X such that
sup¥'(x,y) = ¥(x, ¢(x)).
yey
REMARK 2.5. Corollary 2.2 ( g -maximum equality Theorem) is a generalization
of the minimax inequality (Ky fan [9]).

COROLLARY 2.3. ( g-fixed-point Theorem) Let X and Y be a nonempty compact
subset of a metrical space E and a nonempty, convex and compact subset of a separated
locally convex space F, respectively. Let g : X — Y be a continuous function over
X and C a correspondence upper hemi-continuous over X into 2¥ with nonempty,
convex and closed values and satisfying:

1) g(X) isconvexin Y
2) forany g(x) € 9g(X), [C(x) — g(x)] N Tyx)(g(x)) # 0.
Then there is an X € X such that g(x) € C(X).

REMARK 2.6. The corollary 2.3. ( g-fixed-point Theorem) generalize the fixed
point theorems of Kakutani and Browder [18].

3. Application

In this section, we examine the existence of the generalized Berge strong equilib-
rium for a constrained non cooperative game.

Let I = {1,2,...,n} be the finite set of players, X = [[X; the set of issues,

icl

X; the strategy set of player i; X; C E;. Consider the fOHOWiIelg correspondences of
constraints: S;_; : X; — 2%1-i; [ —i =1 — {i} and vector f = (f1,f2,....f») Where
fi : X — R is the payoff function of player i. Let x and x;_; be elements of X and
Xj—_;, respectively.

We then obtain the following constrained non cooperative game:

G = (Xi, Si—i, fi)ier- (3.1)
NOTATION3.1. I—i=1—{i}={1,...i—1i+1,..n}, Ximi= [ X;,
jEI—i
X=TIT1X_,, E=T] [I E where X} ,=X; ;, E;=E, Viel,Yjel—i,

i€ljer—i i€ljer—i
Xi—i € Xj—i, X € X and |I| is the cardinal of set I.

DEFINITION 3.1. An issue X € X is said to be generalized Berge strong equilib-
rium(GBSE) of game G (3.1) if

Vi e I, V] cl— i, fj(f,‘,y[_,') <fj(f), vyl—i c Sl_i(f,'). (32)



QUASI-VARIATIONAL EQUATION 159

REMARK 3.1. If S;_i(x;) = X;—;, Vi € I then game G is a game in normal form
G = (Xi.fi)ier ([6], [10], [12]).

Consider the following functions

~

g:X—-X

[I]—1 times [I]—1 times

defined by x — g(x) = (%=1 eees Xi—1 )y e (Xi—ny ey X1—1))

C:XHZQ

|I]—1 times [I]—1 times

defined by X = C(x) = ((Slfl(xl), ...7S1,1(X1) )7 ceey (SI,,,(X,,), ...,S],n(xn) ))

F:XxX—R
defined by (x,y) — F(x,5) =3 3 fi(xi, ;)
, _i€ljel—i
where X =[] [[ X_,, ye X.
i€ljel—i
LEMMA 3.1. The following propositions are true:
1) function g is sequentially continuous over X,
2)ifforany i € 1, X; is convex and compact, then g(X) also is convex and compact.

Proof. By construction of function g and set X, the first proposition is straight-
forward. The compactness of set g(X) stems from the compactness of X (Tychonoff
theorem). Concerning the convexity of g(X), it is sufficient to verify that function g
is linear. OJ

On the basis of Theorem 2.1, we establish conditions on sets X and X , function
fi and correspondence C to make sure of at least one GBSE for the game (3.1) .

THEOREM 3.1. Assume that Vi € I, X; is a nonempty, convex and compact part
of a separated locally convex space E; and the following conditions are satisfied:

1) function (x,5) — F(x,3) is continuous over X x X

2) Vx € X, function y — F(x,3) is quasi-concave over X

3) Vg(x) € 9g(X), VW e X, Vpe X*, Tz e Zyx)(g(x)) such that F(x,y) < F(x,z)
and (p,y—7) <0

4) correspondence C is upper hemi-continuous with non empty, convex, and closed
values satisfying:

Ve(x) € 0g(X), [C(x) —g()] N Tyx)(8(x)) # 0
5) set {x € X such that a(x) = sup F(x,y) < F(x,g(x))} is closed.

yEC()
Then, game G possesses at least one GBSE.
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Proof. Taking into account Lemma 3.1 and conditions 1)-5) in Theorem 3.1, we
can conclude that all conditions of Theorem are satisfied. Therefore, according to
Theorem 2.1, there is an x € X such that
g(x) € C(X) and sup F(x,y) = F(x,g(X)) and as a consequence, Vi € I, Vj €

yecm
I—i, fi(Xi,yi—i) <fi(x) , Vyi—i € Si—i(X;);ie., X is an GBSE of game G. O
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