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Abstract. The main result proved in this article is the following. There is an x ∈ X such that
g(x) ∈ C(x) and sup

y∈C(x)
Ψ(x, y) = Ψ(x, g(x)) where C : X → 2Y is a correspondence; ( g is

a function defined over X in Y ) and a function Ψ defined over X × Y in R ; X and Y are
different sets. This results generalizes the quasi-variational inequation. According to this result,
we show the existence of generalized Berge strong equilibrium for a constrained non cooperative
game.

1. Introduction and preliminary results

Considering the importance of the quasi-variational inequation in different areas
such as mathematics, optimal control theory, mathematical economics and more gen-
erally non linear optimization, cited in Arrow and Debreu [1], Aubin [3], Aubin and
Ekeland [5], Mosco [11], Shafer and Sonnenshein [14], etc.

Many researchers attempted to generalize this inequality by weakening the condi-
tions for the existence of at least one solution. Among these researchers, one can cite
the papers of Shih and Tan [13], Tian and Zhou ([15], [16]) and Zhou and Chen [17].

Given two nonempty subsets X , Y of a space E and F respectively, a function
Ψ defined over X × Y in R , a function g defined over X in Y and a correspondence
C defined over X in 2Y .

We study in this article the existence of x ∈ X such that:

g(x) ∈ C(x) and sup
y∈C(x)

Ψ(x, y) = Ψ(x, g(x)). (1.1)

This paper is organized as follows. Section 2 derives a theorem about the quasi-
variational equation. In Section 3, we show how to apply this result.

Let us first introduce some notation and definitions.
Consider X a nonempty subset of a metrical space E , Y a nonempty subset of a lo-

cally convex space F . Let 2Y be the set of all the parts of Y . A correspondence C : X →
2Y is said to be upper semi-continuous over X if the set {x ∈ X such that C(x) ∩ A �= ∅}
is closed in X , for all closed set A in Y [18], it is said to be closed if the corresponding
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graph is closed in X × Y ; i.e., set {(x, y) ∈ X × Y such that y ∈ C(x)} is closed in
X × Y [2]. A function f : Y → R is said to be upper semi-continuous over Y if
∀y0 ∈ Y , ∀λ > f (y0) , there is a neighborhood v of y0 such that ∀y ∈ v , λ � f (y) ; f
is said to be continuous over Y if f and −f are upper semi-continuousover Y . We say
that f is quasi-concave (resp. quasi-convex) over Y if for any y1 , y2 in Y and for any
θ ∈ [0, 1] , we have min {f (y1), f (y2)} � f (θy1 +(1− θ)y2) (−f is quasi-concave).
We say that correspondence C : Y → 2Y is upper hemi-continuous over Y if for any
p ∈ Y∗ , function x �→ σ(C(x), p) = sup

y∈C(x)
〈 p, y〉 is upper semi-continuous Y , where

〈 p, y〉 = p(y) and Y∗ is the set of continuous linear forms of Y .
We denote by A the closure of set A and by ∂A its border. Given Y0 a nonempty

subset of Y and y ∈ Y0 , we denote by HY0(y) , ZY0(y) , TY0(y) and NY0(y) the following
subsets: HY0(y) = ∪

h>0
[Y0 − y] /h , TY0(y) = HY0(y) , ZY0(y) = [TY0(y) + y] ∩ Y and

NY0(y) = {p ∈ Y∗ such that 〈 p, v〉 � 0, ∀v ∈ TY0(y)} .

DEFINITION 1.1. A quasi-variational equation is the following system (1.1).

DEFINITION 1.2. We say that correspondence C : X → 2E satisfies ( X is assumed
to be convex) :

1) the tangential condition if

∀x ∈ X, C(x) ∩ TX(x) �= ∅ (1.2)

2) the dual tangential condition if

∀x ∈ X, ∀p ∈ NX(x), then σ(C(x),−p) � 0. (1.3)

We will use the following results :

LEMMA 1.1. [4]The tangential condition (1.2) implies the dual tangential condition
(1.3).

LEMMA 1.2. [7] Let C : E → 2F be a correspondence where E and F are
metrical spaces. If the graph of C is compact, then C is upper semi-continuous over
E .

LEMMA1.3. [18] (SeparationTheorem)Consider K anonempty convex and closed
subset of a locally convex space X . If x0 does not belong to K , there is a continuous
linear form p ∈ X∗ such that 〈−p, x0〉 > σ(K,−p) .

2. The results

In the following theorem, we establish a sufficient condition for the existence of a
solution of the quasi-variational equation (1.1).

THEOREM 2.1. If :
1) X is a nonempty compact subset of a metrical space E
2) Y is a nonempty convex and compact subset of a locally convex separated space

F
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3) g : X → Y is a continuous function over X such that:
3.1) g(X) is convex over Y

4) C is an upper hemi-continuous correspondence over X in 2Y with nonempty,
convex and closed values such that for any g(x) ∈ ∂g(X) , [C(x) − g(x)] ∩
Tg(X)(g(x)) �= ∅

5) function Ψ : X × Y → R satisfies:
5.1) function (x, y) �→ Ψ(x, y) is continuous over X × Y
5.2) for any x ∈ X , function y �→ Ψ(x, y) is quasi-concave over Y
5.3) for any g(x) ∈ ∂g(X) , for any y ∈ Y and for any p ∈ Y∗ , there is a

w ∈ Zg(X)(g(x)) such that

{
5.3.1) Ψ(x, y) � Ψ(x, w)
5.3.2) 〈 p, y〉 � 〈 p, w〉

6) set

{
x ∈ X such that α(x) = sup

y∈C(x)
Ψ(x, y) � Ψ(x, g(x))

}
is closed.

Than there is an x ∈ X such that

g(x) ∈ C(x) and sup
y∈C(x)

Ψ(x, y) = Ψ(x, g(x)).

REMARK 2.1. Condition 5.3) in Theorem 2.1 implies ∀g(x) ∈ ∂g(X), ∀p ∈ Y∗ ,
we have sup

y∈Y
[Ψ(x, y) + 〈 p, y〉 ] � sup

z∈Zg(X)(g(x))
[Ψ(x, z) + 〈 p, z〉 ].

REMARK 2.2. Condition 5.3) in Theorem 2.1 is sufficient if g is surjective.

REMARK 2.3. Condition 6) in Theorem 2.1 is true if we assume furthermore that
correspondence C is lower semi-continuous over X .

Proof. Assume that the conclusion of Theorem 2.1 is false; i.e. ∀x ∈ X, we have

g(x) /∈ C(x) or sup
y∈C(x)

Ψ(x, y) > Ψ(x, g(x)). (2.1)

Let

V0 =

{
x ∈ X such that sup

y∈C(x)
Ψ(x, y) > Ψ(x, g(x))

}
.

According to Separation Theorem and considering the fact that C(x) is nonempty,
convex and closed, g(x) /∈ C(x) implies ∀g(x) ∈ g(X) , ∃p ∈ Y∗ such that

〈−p, g(x)〉 − σ(C(x),−p) > 0

where σ(C(x), p) = sup
y∈C(x)

〈 p, y〉 is a supporting function of C(x) .

Let
Vp = {x ∈ X such that 〈−p, g(x)〉 − σ(C(x),−p) > 0} .

Assumptions 3), 4), 5.1) and 6) of Theorem 2.1 implies that sets V0 , Vp and
p ∈ Y∗ are open.
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Claim (2.1) implies that X ⊂ V0 ∪
⋃

p∈Y∗
Vp . Since X is compact, it is possible to

cover it by a finite number n of its subsets. Let {hi}i=0,n be a partition unity subordinate

to {V0, Vp1 , ..., Vpn} ; i.e., we have

⎧⎨⎩ ∀x ∈ X,
n∑

i=0
hi(x) = 1

∀i = 1, n, supp hi ⊂ Vpi and supp h0 ⊂ V0.
Introduce the following function

Φ : X × Y → R

defined by (x, y) �−→ Φ(x, y) = h0(x)Ψ(x, y) +
n∑

i=1
hi(x)〈 pi, y − g(x)〉 .

Function (x, y) �−→ Φ(x, y) is continuous over X × Y . We now show that there is
an x ∈ X such that

sup
y∈Y

Φ(x, y) = Φ(x, g(x)).

Assume
∀x ∈ X, ∃y ∈ Y such that Φ(x, y) > Φ(x, g(x)). (2.2)

Construct the following sets :

θy = {x ∈ X such that Φ(x, y) > Φ(x, g(x))} , y ∈ Y.

Then, ∀y ∈ Y, θy is open, X ⊂ ⋃
y∈Y

θy . Since X is compact, it can covered by a finite

number r of its subsets. Let {lj}j=1,r be a partition unity subordinate to {θy1 , ..., θyr} ;

i.e. we have ∀x ∈ X ,
r∑

j=1
lj(x) = 1 and ∀j = 1, r, supp lj ⊂ θyj .

Consider the following correspondence :

M : X → 2Y

defined by x �−→ M(x) =
{

y ∈ Y such that max
λ∈S

r∑
i=1
λiΦ(x, yi) � Φ(x, y)

}
where S ={

λ = (λ1, ..., λn) ∈ R
r such that

r∑
i=1
λi = 1, λi � 0 ∀i = 1, r

}
.

We now show that correspondence M is upper semi-continuous over X , with
nonempty, convex and closed values in Y and satisfying: ∀g(x) ∈ ∂g(X) , ∃u ∈ X,
∃α > 0 such that αg(u) + (1 − α)g(x) ∈ M(x).

1. ∀x ∈ X, M(x) �= ∅.
Consider an x ∈ X , function λ �→

r∑
i=1
λiΦ(x, yi)) is linear over R

r. Therefore, it

is continuous over the compact set S and according to the Theorem of Weierstrass [2],

∃λ ∈ S such that max
λ∈S

r∑
i=1
λiΦ(x, yi) =

r∑
i=1
λ iΦ(x, yi) �

r∑
i=1
λ imax

i=1,r
Φ(x, yi) = Φ(x, yi0) .

Therefore, yi0 ∈ M(x), which implies M(x) �= ∅ .
2. ∀x ∈ X, M(x) is closed in Y .
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Consider x ∈ X and z ∈ M(x) . There is a sequence {zk}k�1 of elements of M(x)
which converges towards z .
As a consequence, the fact that ∀k � 1, zk ∈ M(x) implies

∀k � 1, max
λ∈S

r∑
i=1

λiΦ(x, yi) � Φ(x, zk) (2.3)

Taking into account condition 5.1) of Theorem 2.1 and the fact that pi ∈ Y∗ , i = 1, r
with k → +∞ , we obtain

max
λ∈S

r∑
i=1

λiΦ(x, yi) � Φ(x, z)

Therefore, z ∈ M(x) ; i.e. M(x) is closed.
3. ∀x ∈ X, M(x) is convex in Y .
Let x ∈ X and z, z be elements of M(x) and θ ∈ [0, 1] . We now show that

θz + (1 − θ)z ∈ M(x) .
Since z and z are elements of M(x) , we have

max
λ∈S

r∑
i=1

λiΦ(x, yi) � Φ(x, z) and max
λ∈S

r∑
i=1

λiΦ(x, yi) � Φ(x, z).

Therefore,

max
λ∈S

r∑
i=1

λiΦ(x, yi) � min
{
Φ(x, z), Φ(x, z)

}
. (2.4)

Taking into account condition 5.2) of Theorem 2.1 and the fact that pi ∈ Y∗ , i = 1, r
and the inequality (2.4), we obtain

max
λ∈S

r∑
i=1

λiΦ(x, yi) � Φ(x, θz + (1 − θ)z), ∀θ ∈ [0, 1] ,

i.e., θz + (1 − θ)z ∈ M(x) .
4. M is upper semi-continuous over X .
According to Lemma 1.2, it is sufficient to show that the graph of M is closed in

the compact set X × Y . Let (x, z) ∈ Graph(M) . There is a sequence {(xk, zk)}k�1
of elements of Graph(M) which converges toward (x, z) . Therefore, ∀k � 1, zk ∈
M(xk) ; i.e., ∀k � 1, max

λ∈S

r∑
i=1
λiΦ(xk, yi) � Φ(xk, zk) .

Taking into account condition 5.1) of Theorem2.1 and pi ∈ Y∗ , i = 1, r with k →
∞ , we obtain max

λ∈S

r∑
i=1
λiΦ(x, yi) � Φ(x, z) ; i.e., z ∈ M(x) , then (x, z) ∈ Graph(M) ;

in other words, Graph(M) is closed.
5. ∀g(x) ∈ ∂g(X) , ∃α > 0, ∃u ∈ X such that αg(u) + (1 − α)g(x) ∈ M(x).
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Let g(x) ∈ ∂g(X) . It is shown in 1 that ∀x ∈ X , ∃yi0 ∈ Y such that

max
λ∈S

r∑
i=1

λiΦ(x, yi) � Φ(x, yi0) (2.5)

(In particular, (2.5) remains true for any x ∈ X such that g(x) ∈ ∂g(X) ).
Condition 5.3) of Theorem 2.1, implies ∃α > 0 , ∃u ∈ X such that Φ(x, yi0) �
Φ(x,αg(u) + (1 − α)g(x)) with αg(u) + (1 − α)g(x) ∈ Y . Therefore,

max
λ∈S

r∑
i=1

λiΦ(x, yi) � Φ(x,αg(u) + (1 − α)g(x)),

i.e., αg(u) + (1 − α)g(x) ∈ M(x) .
We now show that x ∈ X such that g(x) ∈ M(x) .
Assume that the conclusion is not true; i.e., ∀x ∈ X, g(x) /∈ M(x) .
We have ∀x ∈ X, g(x) /∈ M(x) , which implies, according to Lemma 1.3 and the

fact that M(x) is nonempty, convex and closed, ∀x ∈ X , there is a q ∈ Y∗ such that

〈−q, g(x)〉 > σ(M(x),−q).

Define

Δq = {x ∈ X such that 〈−q, g(x)〉 − σ(M(x),−q) > 0}.
The continuity of function g and the upper semi-continuity of M implies that

subsets Δq are open, ∀q ∈ Y∗ .
We have X ⊂ ⋃

q∈Y∗
Δq . Furthermore, since X is compact, it can be covered by a

finite number m of its subsets. Let {f j}j=1,m be a partition unity subordinate to this
cover.

Consider the following function

Σ : g(X) × g(X) → R

defined by (g(u), g(v)) �→ Σ(g(u), g(v)) =
m∑

j=1
f j(u)〈 qj, g(v) − g(u)〉 .

Function Σ is continuous with respect to the first variable, and quasi-concave with
respect to the second variable. Since g(X) is compact and convex. According to the
inequality of Ky Fan [9], there is a g(u) ∈ g(X) such that

∀g(v) ∈ g(X),
m∑

j=1

f j(u)〈 qj, g(v) − g(u)〉 � 0,

which implies q =
m∑

j=1
f j(u)qj belongs to cône normal Ng(X)(g(u)) . According to

Lemma 1.1 and taking into account 5, we derive

σ(M(u),−q) � 〈−q, g(u)〉 .
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If f j(u) > 0, then j ∈ supp f j ⊂ Δqj ; i.e., 〈−qj, g(u)〉 > σ(M(u),−qj) ,
therefore,

〈−q, g(u)〉 � σ(M(u),−q) = σ(M(u),−
m∑

j=1

f j(u)qj)

�
m∑

j=1

f j(u)σ(M(u),−qj) <

m∑
j=1

f j(u)〈−qj, g(u)〉 = 〈−q, g(u)〉 ,

which is impossible.
As a consequence, there is an x̃ ∈ X such that g(x̃) ∈ M(x̃) ; i.e.,

max
λ∈S

r∑
i=1

λiΦ(x̃, yi) � Φ(x̃, g(x̃)).

Thus ∀λ ∈ S,
r∑

i=1
λiΦ(x̃, yi) � Φ(x̃, g(x̃)) .

Let λ̃ = (l1(x̃), ..., lr(x̃)) . We have λ̃ ∈ S since li(x̃) � 0 and
r∑

i=1
li(x̃) = 1 . We

have
r∑

i=1

li(x̃)Φ(x̃, yi) � Φ(x̃, g(x̃)) (2.6)

Consider set J = {i = 1, ..., r such that li(x̃) > 0} . By construction, J �= ∅ . Note that
r∑

i=1
li(x̃)Φ(x̃, yi) =

∑
i∈J

li(x̃)Φ(x̃, yi) .

We have ∀i ∈ J , li(x̃) > 0 , therefore x̃ ∈ supp li ⊂ θyi , i.e. ∀i ∈ J, Φ(x̃, yi) >
Φ(x̃, g(x̃)) . We then have

∑
i∈J

li(x̃)Φ(x̃, yi) >
∑
i∈J

li(x̃)Φ(x̃, g(x̃)) = Φ(x̃, g(x̃)) , i.e.

Φ(x̃, g(x̃)) < Φ(x̃, g(x̃)) , which is impossible. We can thus conclude that there is an
x̂ ∈ X such that

sup
y∈Y

Φ(x̂, y) = Φ(x̂, g(x̂))

or ∀y ∈ Y ,

h0(x̂)Ψ(x̂, y) +
n∑

i=1

hi(x̂)〈 pi, y − g(x̂)〉 � h0(x̂)Ψ(x̂, g(x̂)). (2.7)

If h0(x̂) = 0, we have
n∑

i=1
hi(x̂) = 1 . Therefore, (2.7) becomes

n∑
i=1

hi(x̂)〈 pi, y − g(x̂)〉 � 0, ∀y ∈ Y. (2.8)

Inequality (2.8) implies p =
n∑

i=1
hi(x̂)pi belongs to normal cone Ng(X)(g(x̂)) .

According to Lemma 1.1 and condition 4) of Theorem 2.1, we have

σ(C(x̂),−p) � 〈−p, g(x̂)〉 . (2.9)
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The fact that hi(x̂) > 0 , i = 1, n , implies x̂ ∈ supp hi ⊂ Vpi ; i.e.,

〈−pi, g(x̂)〉 > σ(C(x̂),−pi)

We have

σ(C(x̂),−p) = σ(C(x̂),−
n∑

i=1

hi(x̂)pi) �
n∑

i=1

hi(x̂)σ(C(x̂),−pi)

<
n∑

i=1

hi(x̂)〈−pi, g(x̂)〉 = 〈−p, g(x̂)〉 ,

which is in contradiction with inequality (2.9). We can then conclude h0(x̂) > 0 .
Relation h0(x̂) > 0 implies that x̂ ∈ supp h0 ⊂ V0 . Therefore,

sup
y∈C(̂x)

Ψ(x̂, y) > Ψ(x̂, g(x̂)).

Since function y �→ Ψ(x̂, y) is continuous over the compact C(x̂), it follows that,
according to Theorem of Weierstrass [3], there is a ŷ ∈ C(x̂) such that sup

y∈C(̂x)

Ψ(x̂, y) =

Ψ(x̂, ŷ) . Therefore:
h0(x̂)Ψ(x̂, ŷ) > h0(x̂)Ψ(x̂, g(x̂)). (2.10)

If
n∑

i=1
hi(x̂) = 0 , (2.7) becomes h0(x̂)Ψ(x̂, y) � h0(x̂)Ψ(x̂, g(x̂)), ∀y ∈ Y ,

which is in contradiction with inequality (2.10). Therefore
n∑

i=1
hi(x̂) > 0 . Let

K = {i = 1, ..., n such that hi(x̂) > 0} . We have K �= ∅ . In fact,
n∑

i=1
hi(x̂) > 0 .

If i ∈ K, we have x̂ ∈ supp hi ⊂ Vpi ; i.e.,

〈−pi, g(x̂)〉 > σ(C(x̂),−pi)

We have

〈−p, ŷ〉 � σ(C(x̂),−p) = σ(C(x̂),−
n∑

i=1

hi(x̂)pi)

�
n∑

i=1

hi(x̂)σ(C(x̂),−pi) <
n∑

i=1

hi(x̂)〈−pi, g(x̂)〉 = 〈−p, g(x̂)〉 ,

thus
n∑

i=1

hi(x̂)〈 pi, ŷ − g(x̂)〉 > 0. (2.11)

Inequalities (2.10) and (2.11) imply

h0(x̂)Ψ(x̂, ŷ) +
n∑

i=1

hi(x̂)〈 pi, ŷ − g(x̂)〉 > h0(x̂)Ψ(x̂, g(x̂)),
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which is in contradiction with (2.7).
We can then conclude that there is an x ∈ X such that

g(x) ∈ C(x) and sup
y∈C(x)

Ψ(x, y) = Ψ(x, g(x)).

�

REMARK 2.4. If F is finished dimension, condition Y is compact in Theorem 2.1
can be replaced with Y is bounded.

The quasi-variational inequality [3] is straightforward from Theorem 2.1.

COROLLARY 2.1. [3] (Quasi-variational inequality Theorem) Let
1) E = F : separated locally convex space
2) X = Y : a non empty, convex and compact part of E
3) C is a upper hemi-continuous correspondence from X to 2X with nonempty,

convex and closed values.
4) Consider function Ψ : X × X → R such that

4.1) function (x, y) �→ Ψ(x, y) is continuous over X × X
4.2) for any x ∈ X, function y �→ Ψ(x, y) is quasi-concave over X

5) set

{
x ∈ X such that α(x) = sup

y∈C(x)
Ψ(x, y) � Ψ(x, x)

}
is closed in X .

Then there is an x ∈ X such that

x ∈ C(x) and sup
y∈C(x)

Ψ(x, y) = Ψ(x, x).

Proof. Let us introduce the following identity function x �→ g(x) = x , ∀x ∈ X .
Function g is continuous and satisfies condition 3.1) of Theorem 2.1.

Let us show that correspondence C satisfies condition 4) of Theorem 2.1. Since
C(x) ⊂ X and X ⊂ Tg(X)(g(x)) , ∀x ∈ X , we deduce that [C(x)− x]∩Tg(X)(g(x)) �= ∅ ,
∀x ∈ X .

We now show that function Ψ satisfies condition 5.3) of Theorem 2.1. Let x ∈ X
and y ∈ X , α = 1 and u = y . We then have y = αu + (1 − α)x , therefore
Ψ(x, y) = Ψ(x,αu + (1 − α)x) and ∀p ∈ X∗, 〈 p, y〉 = 〈 p,αu + (1 − α)x〉 .

We can then conclude that all conditions in Theorem 2.1 are satisfied and conse-
quently ∃x ∈ X such that x ∈ C(x) and sup

y∈C(x)
Ψ(x, y) = Ψ(x, x) . �

From the proof of Theorem 2.1, we deduce following g -maximum equality theo-
rem and g -fixed-point Theorem [12].

COROLLARY 2.2. [12] (g -maximum equality Theorem) Let :
1) X is a non empty, compact subset of a metrical space E
2) Y is a non empty, convex and compact subset of a separated locally convex space

F
3) g : X → Y is a function continuous over X such that:

3.1) g(X) is convex in Y



158 RABIA NESSAH AND CHENGBIN CHU

4) Let function Ψ : X × Y → R be such that
4.1) function (x, y) �→ Ψ(x, y) is continuous over X × Y
4.2) for any x ∈ X , function y �→ Ψ(x, y) is quasi-concave over Y

4.3) ∀g(x) ∈ ∂g(X) and ∀y ∈ Y , ∃z ∈ Zg(X)(g(x)) such that Ψ(x, y) � Ψ(x, z).
Then there is an x ∈ X such that

sup
y∈Y

Ψ(x, y) = Ψ(x, g(x)).

REMARK 2.5. Corollary 2.2 ( g -maximum equality Theorem) is a generalization
of the minimax inequality (Ky fan [9]).

COROLLARY 2.3. (g -fixed-point Theorem) Let X and Y be a nonempty compact
subset of a metrical space E and a nonempty, convex and compact subset of a separated
locally convex space F , respectively. Let g : X → Y be a continuous function over
X and C a correspondence upper hemi-continuous over X into 2Y with nonempty,
convex and closed values and satisfying:
1) g(X) is convex in Y
2) for any g(x) ∈ ∂g(X), [C(x) − g(x)] ∩ Tg(X)(g(x)) �= ∅ .

Then there is an x ∈ X such that g(x) ∈ C(x) .

REMARK 2.6. The corollary 2.3. ( g -fixed-point Theorem) generalize the fixed
point theorems of Kakutani and Browder [18].

3. Application

In this section, we examine the existence of the generalized Berge strong equilib-
rium for a constrained non cooperative game.

Let I = {1, 2, ..., n} be the finite set of players, X =
∏
i∈I

Xi the set of issues,

Xi the strategy set of player i ; Xi ⊂ Ei . Consider the following correspondences of
constraints: SI−i : Xi → 2XI−i ; I − i = I − {i} and vector f = (f 1, f 2, ..., f n) where
f i : X −→ R is the payoff function of player i . Let x and xI−i be elements of X and
XI−i , respectively.

We then obtain the following constrained non cooperative game:

G = (Xi, SI−i, f i)i∈I . (3.1)

NOTATION 3.1. I − i = I − {i} = {1, ..., i − 1, i + 1, ..., n} , XI−i =
∏

j∈I−i
Xj ,

X̂ =
∏
i∈I

∏
j∈I−i

Xj
I−i, E =

∏
i∈I

∏
j∈I−i

Ej
i where Xj

I−i = XI−i , Ei = Ej
i, ∀i ∈ I, ∀j ∈ I − i ,

xI−i ∈ XI−i , x̂ ∈ X̂ and |I| is the cardinal of set I .

DEFINITION 3.1. An issue x ∈ X is said to be generalized Berge strong equilib-
rium(GBSE) of game G (3.1) if

∀i ∈ I, ∀j ∈ I − i, f j(xi, yI−i) � f j(x), ∀yI−i ∈ SI−i(xi). (3.2)
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REMARK 3.1. If SI−i(xi) ≡ XI−i, ∀i ∈ I then game G is a game in normal form
G = (Xi, f i)i∈I ([6], [10], [12]).

Consider the following functions

g : X → X̂

defined by x �→ g(x) = ((
|I|−1 times︷ ︸︸ ︷

xI−1, ..., xI−1 ), ..., (
|I|−1 times︷ ︸︸ ︷

xI−n, ..., xI−n ))

C : X → 2X̂

defined by x �→ C(x) = ((

|I|−1 times︷ ︸︸ ︷
SI−1(x1), ..., SI−1(x1) ), ..., (

|I|−1 times︷ ︸︸ ︷
SI−n(xn), ..., SI−n(xn) ))

F : X × X̂ −→ R

defined by (x, ŷ) −→ F(x, ŷ) =
∑
i∈I

∑
j∈I−i

f j(xi, y
j
I−i)

where X̂ =
∏
i∈I

∏
j∈I−i

Xj
I−i , ŷ ∈ X̂ .

LEMMA 3.1. The following propositions are true:
1) function g is sequentially continuous over X ,
2) if for any i ∈ I , Xi is convex and compact, then g(X) also is convex and compact.

Proof. By construction of function g and set X̂ , the first proposition is straight-
forward. The compactness of set g(X) stems from the compactness of X̂ (Tychonoff
theorem). Concerning the convexity of g(X) , it is sufficient to verify that function g
is linear. �

On the basis of Theorem 2.1, we establish conditions on sets X and X̂ , function
f i and correspondence C to make sure of at least one GBSE for the game (3.1) .

THEOREM 3.1. Assume that ∀i ∈ I, Xi is a nonempty, convex and compact part
of a separated locally convex space Ei and the following conditions are satisfied:
1) function (x, ŷ) → F(x, ŷ) is continuous over X × X̂
2) ∀x ∈ X, function ŷ �→ F(x, ŷ) is quasi-concave over X̂
3) ∀g(x) ∈ ∂g(X) , ∀ŷ ∈ X̂ , ∀p̂ ∈ X̂∗, ∃ẑ ∈ Zg(X)(g(x)) such that F(x, ŷ) � F(x, ẑ)

and 〈 p̂, ŷ − ẑ〉 � 0
4) correspondence C is upper hemi-continuous with non empty, convex, and closed

values satisfying:

∀g(x) ∈ ∂g(X), [C(x) − g(x)] ∩ Tg(X)(g(x)) �= ∅

5) set

{
x ∈ X such that α(x) = sup

ŷ∈C(x)

F(x, ŷ) � F(x, g(x))

}
is closed.

Then, game G possesses at least one GBSE.
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Proof. Taking into account Lemma 3.1 and conditions 1)-5) in Theorem 3.1, we
can conclude that all conditions of Theorem are satisfied. Therefore, according to
Theorem 2.1, there is an x ∈ X such that
g(x) ∈ C(x) and sup

ŷ∈C(x)

F(x, ŷ) = F(x, g(x)) and as a consequence, ∀i ∈ I, ∀j ∈

I − i, f j(xi, yI−i) � f j(x) , ∀yI−i ∈ SI−i(xi) ; i.e., x is an GBSE of game G. �
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