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COUNTEREXAMPLES TO A MATRIX EXPONENTIAL INEQUALITY

WASIN SO

(communicated by R. Horn)

Abstract. Counterexamples are constructed for a matrix exponential inequality conjectured in
[Linear and Multilinear Algebra 47 (2000) 249-258].

1. Main Result

The following inequality is well-known for the exponential function
o] < e

where |z| denotes the absolute value of a complex number z. In [2], So and Thompson
generalized this scalar inequality to the matrix inequality in Theorem 1.1 with the
absolute value of a matrix |X| definedas (X*X)!/2, and the partial ordering of Hermitian
matrices X > Y defined as X — Y being positive semi-definite.

THEOREM 1.1. For each n x n complex matrix A, there exist unitary matrices
Uy, ..., U, such that

I R Y
le”| < n;Uie U;.

Of course, the U;s depend on A. For instance, if A is normal then all the U;s
can be taken to be the identity matrix, and so we have \eA| < e/l However this matrix
inequality is not true in general. Nonetheless, So and Thompson [2] conjectured that
the sum in Theorem 1.1 can be reduced to only two terms instead of n terms. In this
paper we construct counterexamples to this conjecture. Indeed, we show the following.

THEOREM 1.2. Foreach n > 3 andeach k = 1,2,...n— 1, there exists an n X n
complex matrix A such that

k
1 .
let] < . > Uil
i=1

is false for all unitary matrices Uy, ..., Uy.
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2. Proofs

Given an n x n matrix X, let s;(X) > s2(X) > - -+ > 5,(X) denote the ordered
singular values of X. Let ||X|| = s1(X) denote the spectral norm of a matrix X. If X
has real eigenvalues only, order them so that A;(X) > A,(X) > - -+ > A,(X) . Note that
Ai(|X|) = si(X) for i = 1,2,...,n. Also note that if X > Y then A;(X) > A;(Y) for
all i =1,2,...,n. For proofs of these basic results and more, see [1]. To avoid trivial
discussion, we assume that » is a fixed positive integer greater than 2 for the rest of the

paper.

LEMMA 2.1. Let A be an n x n matrix and let k € {1,2,...,n— 1}. If there
exist unitary matrices Uy, . .., Uy such that

k
1 *
et < T E Urelu;,
i=1

then sii1(e?) < €W, Consequently, s,(e*) < €™,
Proof. Weyl’s inequality [1, Theorem 4.3.7] ensures that

k
At (Z U,-*eAUi> = /1k+1<

k—1

> urely;

i=1

k—1
A (Z Urell U,-) + A (U,je"" Uk)

i=1

k—1
= M (Z Ui*eAUi> T R

i=1

i=1

+ U,jelAlUk>

N

Now, by induction, we have

k
Ak+1 (Z Ul-*elAlU,) < k €SZ(A>.

i=1

Hence,

(Ie*])
Mest (Zk: U;‘elAlU,)

i=1

>~
<
T

Sk+1(€A) =

N

N
= =
—
»
)
S
>
-

)
5
Z

Consequently, s,(e?) < sgy1(e?) < e, O

Let N be the n x n upper triangular part of J —1, where J is the n x n matrix with
all entries equal to 1, and [ is the n x n identity matrix. Since N is upper triangular
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with all diagonal entries equal to 0, e~ is upper triangular with all diagonal entries
equal to 1. Hence the spectral radius of e N, p(e’N) ,is 1. Moreover N+ N* =J—1,
so My(N+N*)=n—1and L(N+N*)=---=A,(N+N*)=—1.

LEMMA 2.2. There exists a positive integer ro such that s,(e"N) > e="/2.

Proof. Gelfand’s Theorem [1, Corollary 5.7.10] ensures that lim, . ||(e=")"||"/"
= p(e™™) = 1. Since e!/2 > 1, there exists an integer o such that ||e =70V ||!/70 < ¢!/2.

Hence
[sn(e®M)] " =si(e7N) = [le V| < e O

LEMMA 2.3. Let ry be the positive integer in Lemma 2.2. Then there exists a
positive real number ty such that

[to + Ins,(e"™)]? > 13 + toAa(roN + roN*) + A (rANN™).
Proof. By Lemma 2.2, s2(e"™V) > e~ = ¢?(0N+10N") gince ), (N* 4+ N) = —1.

It follows that
21ns,(e™Y) > Ay (roN + roN*).

Hence there exists a positive real number #, such that
219 In s, (") + [Ins, (€"™))* > t0Aa(roN 4 roN*) + A (rNN*).
Consequently,

[t() + lns,,(e”’N)]z > t(% + toﬂ,z(roN + I‘ON*) + A](I‘%NN*) O

THEOREM 2.4. For each n > 3, there exists an n X n matrix A such that
su(e?) > e, (1)

Proof. Let ry and ty be the positive integer and the real positive number obtained
in Lemmas 2.2 and 2.3 respectively, and take A = o/ + roN . Then

[In(su(¢*))]” = |
= [In(su(e"e™) ]
[In(es, (e™))]*

2
ln(Sn to]+rgN

2

In(e”s,,(
2

[to + ln(s,,(er"N))]
b+ toda(roN + roN*) + A (F;NN*) by Lemma 2.3

15+ 22 (fo(roN + roN*) + rJNN*) by Weyl’s inequality
= X (1 + to(roN + roN*) + rgNN*)

A2 ((tol + roN) (tol + roN)*)

A2(AAT)

= 53(4)

VoV
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Hence s,(e!) > 2. O

Proof of Theorem 1.2. Let A satisfy the inequality (1). Then Lemma 2.1 ensures
that A is a matrix with the property asserted in Theorem 1.2. [

Acknowledgement. The author thanks Professor Harm Bart for suggesting the
investigation of Theorem 1.2, and Professor Jane Day for her constructive comments
throughout the preparation of this paper.
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