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COUNTEREXAMPLES TO A MATRIX EXPONENTIAL INEQUALITY

WASIN SO

(communicated by R. Horn)

Abstract. Counterexamples are constructed for a matrix exponential inequality conjectured in
[Linear and Multilinear Algebra 47 (2000) 249–258].

1. Main Result

The following inequality is well-known for the exponential function

|ez| � e|z|

where |z| denotes the absolute value of a complex number z . In [2], So and Thompson
generalized this scalar inequality to the matrix inequality in Theorem 1.1 with the
absolute value of amatrix |X| defined as (X∗X)1/2 , and the partial ordering ofHermitian
matrices X � Y defined as X − Y being positive semi-definite.

THEOREM 1.1. For each n × n complex matrix A , there exist unitary matrices
U1, . . . , Un such that

|eA| � 1
n

n∑
i=1

U∗
i e|A|Ui.

Of course, the Ui s depend on A . For instance, if A is normal then all the Ui s
can be taken to be the identity matrix, and so we have |eA| � e|A| . However this matrix
inequality is not true in general. Nonetheless, So and Thompson [2] conjectured that
the sum in Theorem 1.1 can be reduced to only two terms instead of n terms. In this
paper we construct counterexamples to this conjecture. Indeed, we show the following.

THEOREM 1.2. For each n � 3 and each k = 1, 2, . . . n− 1 , there exists an n× n
complex matrix A such that

|eA| � 1
k

k∑
i=1

U∗
i e|A|Ui

is false for all unitary matrices U1, . . . , Uk .
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2. Proofs

Given an n × n matrix X , let s1(X) � s2(X) � · · · � sn(X) denote the ordered
singular values of X . Let ‖X‖ ≡ s1(X) denote the spectral norm of a matrix X . If X
has real eigenvalues only, order them so that λ1(X) � λ2(X) � · · · � λn(X) . Note that
λi(|X|) = si(X) for i = 1, 2, . . . , n. Also note that if X � Y then λi(X) � λi(Y) for
all i = 1, 2, . . . , n . For proofs of these basic results and more, see [1]. To avoid trivial
discussion, we assume that n is a fixed positive integer greater than 2 for the rest of the
paper.

LEMMA 2.1. Let A be an n × n matrix and let k ∈ {1, 2, . . . , n − 1} . If there
exist unitary matrices U1, . . . , Uk such that

|eA| � 1
k

k∑
i=1

U∗
i e|A|Ui,

then sk+1(eA) � es2(A). Consequently, sn(eA) � es2(A) .

Proof. Weyl’s inequality [1, Theorem 4.3.7] ensures that

λk+1

(
k∑

i=1

U∗
i e|A|Ui

)
= λk+1

([
k−1∑
i=1

U∗
i e|A|Ui

]
+ U∗

k e|A|Uk

)

� λk

(
k−1∑
i=1

U∗
i e|A|Ui

)
+ λ2

(
U∗

k e|A|Uk

)

= λk

(
k−1∑
i=1

U∗
i e|A|Ui

)
+ es2(A).

Now, by induction, we have

λk+1

(
k∑

i=1

U∗
i e|A|Ui

)
� k es2(A).

Hence,

sk+1(eA) = λk+1
(|eA|)

� 1
k

λk+1

(
k∑

i=1

U∗
i e|A|Ui

)

� 1
k

[
k es2(A)

]
= es2(A)

Consequently, sn(eA) � sk+1(eA) � es2(A). �
Let N be the n×n upper triangular part of J− I , where J is the n×n matrix with

all entries equal to 1, and I is the n × n identity matrix. Since N is upper triangular



COUNTEREXAMPLES TO A MATRIX EXPONENTIAL INEQUALITY 167

with all diagonal entries equal to 0, e−N is upper triangular with all diagonal entries
equal to 1. Hence the spectral radius of e−N , ρ(e−N) , is 1. Moreover N +N∗ = J− I ,
so λ1(N + N∗) = n − 1 and λ2(N + N∗) = · · · = λn(N + N∗) = −1 .

LEMMA 2.2. There exists a positive integer r0 such that sn(er0N) > e−r0/2 .

Proof. Gelfand’s Theorem [1, Corollary 5.7.10] ensures that limr→∞ ‖(e−N)r‖1/r

= ρ(e−N) = 1 . Since e1/2 > 1 , there exists an integer r0 such that‖e−r0N‖1/r0 < e1/2 .
Hence

[sn(er0N)]−1 = s1(e−r0N) = ‖e−r0N‖ < er0/2. �

LEMMA 2.3. Let r0 be the positive integer in Lemma 2.2. Then there exists a
positive real number t0 such that

[t0 + ln sn(er0N)]2 > t20 + t0λ2(r0N + r0N
∗) + λ1(r2

0NN∗).

Proof. By Lemma 2.2, s2
n(e

r0N) > e−r0 = eλ2(r0N+r0N
∗) since λ2(N∗ + N) = −1 .

It follows that
2 ln sn(er0N) > λ2(r0N + r0N

∗).

Hence there exists a positive real number t0 such that

2t0 ln sn(er0N) + [ln sn(er0N)]2 > t0λ2(r0N + r0N
∗) + λ1(r2

0NN∗).

Consequently,

[t0 + ln sn(er0N)]2 > t20 + t0λ2(r0N + r0N
∗) + λ1(r2

0NN∗). �

THEOREM 2.4. For each n � 3 , there exists an n × n matrix A such that

sn(eA) > es2(A). (1)

Proof. Let r0 and t0 be the positive integer and the real positive number obtained
in Lemmas 2.2 and 2.3 respectively, and take A = t0I + r0N . Then[

ln(sn(eA))
]2

=
[
ln(sn(et0I+r0N))

]2
=
[
ln(sn(et0er0N))

]2
=
[
ln(et0sn(er0N))

]2
=
[
t0 + ln(sn(er0N))

]2
> t20 + t0λ2(r0N + r0N

∗) + λ1(r2
0NN∗) by Lemma 2.3

� t20 + λ2
(
t0(r0N + r0N

∗) + r2
0NN∗) by Weyl’s inequality

= λ2
(
t20I + t0(r0N + r0N

∗) + r2
0NN∗)

= λ2 ((t0I + r0N)(t0I + r0N)∗)
= λ2(AA∗)

= s2
2(A)
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Hence sn(eA) > es2(A) . �

Proof of Theorem 1.2. Let A satisfy the inequality (1). Then Lemma 2.1 ensures
that A is a matrix with the property asserted in Theorem 1.2. �
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