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BERNSTEIN–DOETSCH TYPE RESULTS

FOR QUASICONVEX FUNCTIONS

ATTILA GILÁNYI, KAZIMIERZ NIKODEM AND ZSOLT PÁLES

(communicated by Z. Daróczy)

Abstract. In this paper various quasiconvexity notions are considered and compared. The main
goal is to show that, under the assumption of upper semicontinuity, Jensen-type quasiconvexity
properties are equivalent to the corresponding ordinary quasiconvexity property. The results thus
obtained are analogous to the classical theorem of Bernstein and Doetsch for convex functions.

Finally, the connection between approximate Jensen quasiconvexity and approximate qua-
siconvexity is investigated.

1. Introduction

A real valued function f defined on an interval I ⊆ R is called Jensen-convex
(cf. eg. [5], [9]) if it satisfies the inequality

f

(
x + y

2

)
� f (x) + f (y)

2
(x, y ∈ I).

It is said to be convex if it fulfils

f (λx + (1 − λ )y) � λ f (x) + (1 − λ )f (y) (x, y ∈ I, λ ∈ [0, 1]).

Obviously, a convex function f : I → R is also Jensen-convex. The classical theorem
of F. Bernstein and G. Doetsch [1] states that if a Jensen-convex function f : I → R is
locally bounded above at a point in I , then it is also convex (cf. [8], too). In connection
with the stability theory of functional equations, C. T. Ng and K. Nikodem [6] extended
this result showing that if ε is a nonnegative real number and a function f : I → R is
ε -Jensen-convex, that is, it satisfies

f

(
x + y

2

)
� f (x) + f (y)

2
+ ε (x, y ∈ I)
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and is locally bounded above at a point in I then it is also 2ε -convex, that is, it fulfils

f (λx + (1 − λ )y) � λ f (x) + (1 − λ )f (y) + 2ε (x, y ∈ I, λ ∈ [0, 1]).

The aim of the present paper is to investigate similar properties for quasiconvex func-
tions.

Throughout the paper we call a function f : I → R quasiconvex, strictly quasi-
convex, Jensen-quasiconvex or strictly Jensen-quasiconvex if it satisfies

f (u) � max{f (x), f (y)} (x, y, u ∈ I, x � u � y),
f (u) < max{f (x), f (y)} (x, y, u ∈ I, x < u < y),

f

(
x + y

2

)
� max{f (x), f (y)} (x, y ∈ I),

f

(
x + y

2

)
< max{f (x), f (y)} (x, y ∈ I),

respectively (cf. [2], [9]). It is a trivial consequence of these definitions that quasicon-
vexity implies Jensen-quasiconvexity and strict quasiconvexity implies strict Jensen-
quasiconvexity. On the other hand, (differing from the Bernstein-Doetsch theorem), it
is easy to see that Jensen-quasiconvexity and local boundedness (even boundedness) do
not imply quasiconvexity. Indeed, the function f : [0, 1] → {0, 1} , defined by

f (x) =
{

0, if x ∈ Q ∩ [0, 1],
1, if x ∈ [0, 1] \ Q,

is Jensen-quasiconvex and bounded on [0, 1] but it is not quasiconvex.
In the second part of the paper we prove that under the assumption of upper

semicontinuity (instead of boundedness), Bernstein-Doetsch type results are valid for
quasiconvexand strictly quasiconvex functions, too. More generally, using strict means,
that is functions M : I × I → R satisfying

min{x, y} < M(x, y) < max{x, y} (x, y ∈ I, x �= y),

and
M(x, x) = x (x ∈ I),

we will be able to show that if I is an interval, M : I × I → R is a strict mean,
continuous in both variables and f : I → R is an upper semicontinuous function, then
the quasiconvexity of f is equivalent to

f (M(x, y)) � max{f (x), f (y)} (x, y ∈ I),

furthermore, its strict quasiconvexity is equivalent to

f (M(x, y)) < sup
[x,y]

f (x, y ∈ I, x �= y).

In the third part of the paper, giving some (counter)examples, we verify that there
are no analogous results for ε -Jensen-quasiconvex functions. Our examples given there
also show that the Jensen-quasiconvexity inequality is not stable in the sense introduced
by Hyers and Ulam ([4]), different from the quasiconvexity setting (cf. [7]).
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2. Characterizations of quasiconvexity

In our first result, we characterize strict quasiconvexity.

THEOREM 1. Let I ⊆ R be an interval, M : I × I → R be a strict mean which is
continuous in both variables. An upper semicontinuous function f : I → R is strictly
quasiconvex if and only if

f (M(x, y)) < sup
[x,y]

f (x, y ∈ I, x �= y). (1)

Proof. If f : I → R is strictly quasiconvex then, using the fact that u = M(x, y) ∈
]x, y[ , we have

f (M(x, y)) < max{f (x), f (y)} � sup
[x,y]

f ,

that is, (1) holds.
To prove the other part of our statement, suppose that f satisfies (1) but it is not

strictly quasiconvex. Then there exist x0, y0, u0 ∈ I such that x0 < u0 < y0 and

f (u0) � max{f (x0), f (y0)}. (2)

Since f is upper semicontinuous, it attains its supremum in [x0, y0] . Obviously, we
may assume that this supremum is attained at u0 . We have now two cases:

u0 ∈ ]x0, M(x0, y0)]

or
u0 ∈ [M(x0, y0), y0[ .

In the first case, the continuity of M in the second variable implies the existence of
y∗ ∈ ]x0, y0] such that u0 = M(x0, y∗) . Then

f (u0) = f (M(x0, y
∗)) < sup

[x0,y∗]
f � sup

[x0,y0]
f = f (u0),

which is a contradiction. In the second case, using the continuity of M in the second
variable, a contradiction can be obtained similarly. �

It is immediate to derive the following consequence of Theorem 1.

COROLLARY 1. Let I ⊆ R be an interval, f : I → R be an upper semicontinuous
function n be a positive integer and 0 = λ0 � . . . � λn = 1 . Then f is strictly
quasiconvex if and only if

f

(
x + y

2

)
< max

0�i�n
f (λix + (1 − λi)y) (x, y ∈ I, x �= y).

Now we offer a characterization of quasiconvexity. Clearly, (1) automatically
holds with nonstrict inequality sign. Therefore, the right hand side of (1) has to be
replaced by a smaller expression.
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THEOREM 2. Let I ⊆ R be an interval, M : I × I → R be a strict mean which
is continuous in both variables. An upper semicontinuous function f : I → R is
quasiconvex if and only if

f (M(x, y)) � max{f (x), f (y)} (x, y ∈ I). (3)

Proof. Obviously, the quasiconvexity of f implies (3).
To prove the other part of the statement, suppose that f satisfies (3) but it is not

quasiconvex, that is, there exist x0, y0, u0 ∈ I , such that x0 < u0 < y0 and

f (u0) > max{f (x0), f (y0)}.
The function f is upper semicontinuous, therefore, it attains its supremum in [x0, y0] .
We may assume that u0 is the smallest element in [x0, y0] where this supremum is
attained. Let us consider the set

H = {u ∈ [x0, y0] | f (u) < sup
[x0,y0]

f }.

It is easy to see, that H is open in [x0, y0] , [x0, u0[⊆ H and y0 ∈ H . Moreover,
inequality (3) implies that M(x, y) ∈ H for x, y ∈ H . In the following we show that H
is dense in [x0, y0] . If not then there exists an open interval ]α, β [⊂ [x0, y0] which does
not intersect H . We may assume that ]α, β [ is a maximal subintervalwith this property.
Then there exist sequences xn, yn ∈ H such that xn ↗ α , yn ↘ β as n → ∞ . Since
M is a strict mean, we have α < M(α, β) < β , so, α < M(α, yn) < β , if n is
large enough. Similarly, for some k , α < M(xk, yn) < β , that is, ]α, β [∩H �= ∅ ,
which is a contradiction. Thus, H is dense in [x0, y0] . Due to this property, there is
a sequence yn ∈ H such that yn ↘ u0 . We have x0 < M(x0, u0) < u0 , therefore,
x0 < M(x0, yn) < u0 , if n is large enough. On the other hand,

M(x0, yn) < u0 < M(u0, yn) < yn,

thus, by the continuity of M in its first variable, there exists an x∗ ∈ [x0, u0[ for which
M(x∗, yn) = u0 . We have [x0, u0[⊆ H , so, x∗ ∈ H , therefore, u0 = M(x∗, yn) ∈
H , which contradicts the choice of u0 . The contradiction obtained yields that f is
quasiconvex. �

The above theorem directly yields the following results.

COROLLARY 2. A real valued, upper semicontinuous function f defined on an
interval I is quasiconvex if and only if it is Jensen-quasiconvex.

COROLLARY 3. Let I ⊆ R be an interval and λ : I × I → ]0, 1[ be continuous in
both variables. If a function f : I → R is upper semicontinuous and satisfies

f (λ (x, y)x + (1 − λ (x, y)y)) � max{f (x), f (y)} (x, y ∈ I),

then it is quasiconvex.
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3. Approximate Jensen-quasiconvexity

THEOREM 3. Let I ⊆ R be an interval, ε > 0 and δ � 0 be real numbers. There
exists an upper semicontinuous function f : I → R which is ε -Jensen-quasiconvex,
that is, it fulfils the inequality

f

(
x + y

2

)
� max{f (x), f (y)} + ε (x, y ∈ I) (4)

but it is not δ -quasiconvex, i.e., it does not satisfy

f (u) � max{f (x), f (y)} + δ (x, y, u ∈ I, x < u < y).

Proof. To prove our statement, we construct a function satisfying the properties
above. Without loss of generality, wemay assume that I = [0, 1] , ε = 1 and δ = n−1 ,
where n is a positive integer. We show that the function f : [0, 1] → R defined by

f (x) =

⎧⎪⎨
⎪⎩

0, if x ∈ ]0, 1
2n+1 [ or x ∈ ] 2n

2n+1 , 1[ ,

n, if (2n + 1)x is an integer,

n − p, otherwise, where p is the greatest integer for which 2p | [(2n + 1)x]

is upper semicontinuous on [0, 1] , fulfils the inequality

f

(
x + y

2

)
� max{f (x), f (y)} + 1 (x, y ∈ [0, 1]) (5)

but it does not satisfy

f (u) � max{f (x), f (y)} + n − 1 (x, y, u ∈ [0, 1], x < u < y). (6)

(Here [a] denotes the integer part of the real number a .)
Obviously, f is upper semicontinuous on [0, 1] and does not satisfy (6). In order

to prove the validity of (5), we consider three cases.
I. If x, y ∈ [0, 1] and (2n+1)x or (2n+1)y is an integer, then max{f (x), f (y)} =

n , which implies (5).
II. In the case when x, y ∈ ]

0, 1
2n+1

[
or x, y ∈

]
2n

2n+1 , 1
[

, we have f
( x+y

2

)
= 0 ;

if x ∈ ]
0, 1

2n+1

[
or y ∈

]
2n

2n+1 , 1
[

, then f
( x+y

2

)
= 1 , that is, in these cases, (5) holds.

Let now x ∈ ]
0, 1

2n+1

[
, y ∈

]
1

2n+1 ,
2n

2n+1

[
and suppose that (2n + 1)y is not an

integer. There exists a non-negative integer p and a positive, odd integer q such that
[(2n + 1)y] = 2pq , and, by the definition of f , f (y) = n − p . If p = 0 , then (5) is
valid. If p > 0 , we get[

(2n + 1)
x + y

2

]
=

[
2pq + {(2n + 1)y} + (2n + 1)x

2

]
= 2p−1q,

thus, f
( x+y

2

)
= n − p + 1 , which implies (5). In the case when x ∈

]
2n

2n+1 , 1
[

,

y ∈
]

1
2n+1 ,

2n

2n+1

[
, we can argue similarly.
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III. Finally, let x, y ∈
]

1
2n+1 , 2n

2n+1

[
such that (2n + 1)x and (2n + 1)y are

not integers. There exist non-negative integers p, p̄ and positive, odd integers q, q̄
for which (2n + 1)x = 2pq and (2n + 1)y = 2p̄q̄ . By the definition of f , we have
f (x) = n − p and f (y) = n − p̄ . In the case when p = 0 or q = 0 inequality (5)
holds trivially, therefore, we may assume, that p and p̄ are positive, furthermore, that
p̄ � p . We have[

(2n + 1)
x + y

2

]
=

[
2pq + {(2n + 1)x} + 2p̄q̄ + {(2n + 1)y}

2

]
= 2p−1(q + 2p̄−pq̄),

therefore, f
( x+y

2

)
� n− p + 1 , which implies that (5) is valid in this case as well. �

REMARK. Using the functions defined in Theorem 3, it can be easily verified that
the Jensen-quasiconvexity inequality is not stable in the sense of Hyers-Ulam ([3], [4]),
that is, if I ⊆ R is an interval and ε > 0 and δ � 0 are real numbers then there exists
a function f : I → R which satisfies (4), but for every Jensen-quasiconvex function
g : I → R , there exists an x ∈ I such that |f (x) − g(x)| � δ . In fact, assuming also
here that I = [0, 1] , ε = 1 and δ = n − 1 , the function defined in the proof above
satisfies inequality (5), but, it is easy to see that, for every Jensen-quasiconvex function
g : [0, 1] → R , there exists an x ∈ [0, 1] for which |f (x) − g(x)| � n − 1 .
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