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HARDY’S DISCRETE INEQUALITY

G. D. HANDLEY, J. J. KOLIHA AND J. PECARIC

(communicated by B. Mond)

Abstract. Copson’s extension of Hardy’s discrete inequality has been generalised in different
directions by Hwang, Hwang—Yang and Pachpatte. In this paper we obtain inequalities which
subsume and extend results of Pachpatte (Libertas Math. 14 (1994), 151-157) and Hwang—Yang
(Tamkang J. Math. 27 (1996), 125-132).

1. Introduction

In [1] Copson established the following Hardy type inequalities involving a series
of positive terms (see [3, Inequality 326] and [6, p. 145]).

THEOREM 1.1 pr > 1, )Ln > O>an >0, Ay = Z?:] Ai’ Ay, = er-;l )tiai and
o2, Andh converges, then

S (ﬁ-) < (ﬁ) 3 hud, (1.1)
n=1 " n=1

The constant is the best possible.

THEOREM 1.2. Let p,, Ay, a,, A, and A, be as in Theorem 1.1 and let H(u) be
a real-valued positive convex function defined for u > 0. If Z:il AHP (ay) converges,

then
imp (f\-) < (le),, imp(an). (1.2)

n=1 n=1
The constant is the best possible.
Generalizations of these theorems were given by Pachpatte [7] and Hwang and

Yang [5]. We establish inequalities which subsume and extend those results. We also
correct a proof of [5, Theorem 1].
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2. Main results

Our first result extends Copson’s inequality stated in our Theorem 1.1 and the
inequality of Hwang and Yang [5, Theorem 1].

THEOREM 2.1. Let p>1, ¢>0, B,>0, 4, >0, a, >0 forall n € N, and
define

NG A =S Baa. o = Bt = B)A
A"_;“” A"_,;B’A’“” o= B, TN @

Suppose that Y, | Aydy(A,/An)? converges and that ¢ = inf, p, > 1 — p — q. Then
0 A rtq p+q P A q

I | = < | — I (2 2.2

Sa(y) < (i) pra(R) e

Proof. The first step is to show that the series on the left in 2.2 converges. This
will fill in the gap in the proof of [5, Theorem 1]. Set @, = A,/A, . Following the first
part of the proof of [5, Theorem 1] with p replaced by p + ¢, we obtain

N—-1
Z([) +q—= DM@+ Y dpaof ™ < (p+ g Z A7 (2.3)
n=1 n=1

Let k =(p+¢q)/(p+qg+0—1) and u = max{k,(p+¢q)/(p+qg—1)}. We
find a lower estimate of the left hand side of this inequality:

N N—1
S +q— DAL+ 3 pe
n=1 n=1
N—1

=(P+q— Do "+ (p+q— 1+ pa)Anl ™

n=1

Ptax
2 T anwﬁJrq;

n=1

combining this with 2.3, we have

N N

~1
E APt < E Ay @l
n=1 n=1

Applying Holder’s inequality with indices p and p/(p — 1), we get

N Up ¢ N (P=1)/p
S hof <Y b {ZA} {Z’“} |
n=1 n=1

n=1
(2.4)
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Dividing by the last factor on the right and raising to the power of p, we get

Z/l RIS u”Z/l adwl.

n=1

This proves that the series Z;Z 1 ?Lna)ﬁw converges. In view of 2.4, the series
> Ay P41 also converges. Returning to 2.3 and observing that the term
(p + g — 1)Aywy is nonnegative, we see that

N—1

Y (p+q—1+4p)Aol™ < (p+q) Z/lanww !

n=1 n=1
that is,

N—1 N

+ +q—1
E An@? ‘1<K§ AnGn @
n=1

n=1

Since the series on both sides converge, we have

oo oo

+ +g—1
E M@ < K E AnGn @V
n=1 n=1

Applying Holder’s inequality to the right hand side in a similar way we did above for
the finite sums, we obtain 2.2. [

Setting ¢ = 0 in the preceding theorem, we get a version of [5, Theorem 1] with
the constant x given explicitly as k = p/(p — 1+ 0).

COROLLARY 2.2. Letp>1, 3, >0, 4, >0, a, >0 forall n € N, and define

- - (ﬁnJrl - Bn)An
An = § iki is An = E iki, n = 5 o 1 € N. 2.5
i=1 B ‘ i=1 B P (B”Jrlﬁn)xn " ( )

Suppose that > | A,d, converges and that ¢ = inf, p, > 1 — p. Then

ZA( ) << 1+o) Z/lap (2.6)

n=1 n=1

REMARK 2.3. In the proof of [5, Theorem 1], Hwang and Yang use the inequality

N—1 N
> Aol KK Aanl!, NEN, (2.7)

n=1 n=1

(for a positive k) to prove the desired inequality by taking the limit as N — oo.
Hovewer, the convergence of the two series is not established in [5]. This fact is
nontrivial and depends on the relation between the two series.
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From Theorem 2.1 we can deduce the following more general result.

THEOREM 2.4. Letp > 1, ¢g> 0, r >0, a, >0, 4, > 0, B, > 0 forall
n €N, and let A,, A, and p, be as in 2.1. Suppose that 3> Audh (A, A,)"
converges and that ¢ = inf,, p, > 1 —p —q—r. Then

= AN\ p+qg+r 1 & A\
I il < ApdPT =2 ) . 2.8
; a"(An> (p+q+r—l+6> ; n <An) 28)

Proof. Set w, = A,/A, and Kk = (p+q+71)/(p+q+7r—1+0). We apply
Holder’s inequality with indices (p + ¢)/p and (p + ¢)/q (for this reason we need
to assume ¢ > O rather than ¢ > 0 as we did in Theorem 2.1), and then we apply
Theorem 2.1 with ¢ replaced by g + r:

i/lnaﬁw,?ﬂ _ i (Anaﬁqw}:)w(pw) (Anwgﬂﬂ)q/(pw)
n=1 n=1

oo r/P+4) s oo q/(p+q)
<(Saarar)  (Saer)
n=1

n=1
o p/(p+q) o a/(p+q)
<(Srawr)  (vSraur)
n=1 n=1
that is,

s p/(p+a) s p/(p+a)
(Z I wg“) < kP 0+a) (Z )L,,al;ﬂw;) . (2.9)
n=1

n=1

Raising both sides of 2.9 to the power (p + g)/p yields 2.8. O
Setting r = 0 in the preceding theorem, we get

COROLLARY 2.5. Let p > 1, ¢ >0, a, >0, 4, >0, B, >0 forall n € N,
and let A,, A, and p, be as in 2.1. Suppose that 3 o> | Audh™ converges and that
o=inf,p, >1—p—gq. Then

c- An\! N
S ud (-) < (&) S hualt, (2.10)
n=1 An p+q—1+0' n=1

Proof. Inequality 2.10 follows from 2.8 by setting r = 0. [

We now present a multilevel version of Corollary 2.2.

THEOREM 2.6. Let p > 1, meN, a; >0, B; >0, 4; >0 fori e {1,...,m}
andall je N. Fori € {1,...,m} and n € N define

Ao = n,  Aip = BiriAi-1j,  Ain = Bidis  Pin =
j:zl " ! j_zl o (ﬁi,nJrlﬁin)An
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Suppose that "% | A,dy converges and o©; = inf, p;, > 1 —p, i € {1,...,m}. Then

= AWH’! p - p p = p
Z/ln(Amn) ([l ) She 2.11)
n=1

i=1 n=1

Proof. Let wy = Ap/Ain, Ki = p/lp—1+0), i€ {0,1,....m}, n € N,
Applying Corollary 2.2, we conclude that >, A,@!, converges, and

n=1

o0 o0
Z)L,,wfn < kY Z/lnwgn.
n=1 n=1
Continuing this way, we show that

oo oo

D dnef, <k Aol i€ {l,... m}.

n=1 n=1
Applying this inequality m times starting with i = m, we obtain 2.11. [

REMARK 2.7. Setting Bj =1, A;=1forie {1,...,m},j€ N,wehave 0, =0
for all i in the preceding theorem, and recover Pachpatte’s result [7, Theorem 1].

THEOREM 2.8. Let H be a real-valued positive convex function defined on (0, 00)

andlet p>1,q>0, B; >0, A; >0, a; >0 forall i € N. Let A,, A, and p, be
asin 2.1, and let

Fy = ZﬁiAiH(ai)y neN. (2.12)
i=1

Suppose that zsil AnHP (ay)(Fy/Ay)? converges and that o = inf,p, > 1—p —gq.
Then

ptgq—1+o

iAnHW(An/A,,) < (&)p i/lnH”(an)(Fn I (2.13)
n=1 n=1

Proof. Write ®, = F,/A,, n € N, k. = (p+q)/(p+q9—1+ o). We apply
Theorem 2.1 with a; replaced by H(a;). Then A, isreplacedby F,,and w, = A, /A,
by @, . Inequality 2.2 then becomes

D> M@ < kP> AH (a,) D4 (2.14)
n=1 n=1
Since H is convex, we can apply Jensen’s inequality to obtain
Ay ~ Bili ~ Bili
H(w,) =H|-=)=H i] < H(aj) = ©y.
o= (i) (S ee) <5 e

Substituting this in 2.14, we get 2.13. I




192 G. D. HANDLEY, J. J. KOLIHA AND J. PECARIC

The choice H(u) = u in the preceding theorem yields Theorem 2.1. Setting
q = 0, we recover [5, Theorem A]. If ¢ = 0, ; = 1 and o = 0, the preceding
theorem reduces to Copson’s result in [1] (see our Theorem 1.2).

The next result generalizes Theorem 2.8 in the same way that Theorem 2.4 gener-
alizes Theorem 2.1. The proof is left to the reader.

THEOREM 2.9. Let H be a real-valued positive convex function defined on (0, c0)
andletp>1,g>0,r>20, 5;>0, 4; >0, a; >0 forall i € N. Let A,, A, and
Pn beasin2.1, and F, asin 2.12. Suppose that Zsil AnH’(a,l)(Fn/An)ﬁw converges
and that ¢ = inf,, p, > 1 —p —q —r. Then

> +q+r "
S A (A /M) (Faf )P < ( P ) S AH a0) (Fa /A
ptqtr—1+o0) =
(2.15)

n=1

3. Further inequalities

In this section we obtain extensions of Pachpatte’s results from [7].

THEOREM 3.1. Let p > 1,q >0, by, > 0 for m,n € N and let

m n

By = ZZ o ZZZ]U fOI‘ m,n,i,j € N. (31)

i=1 j=1

o0 o0
If Y > VB converges, then

Sy () ) S e 62

m=1 n=1 p+q7 m=1 n=1

Proof. The proof is an adaptation of the proof of [7, Theorem 2], and extends an
idea used by Elliott in [2].
Let L,M € N and define

“
~

m

11
Wy = man = - Z ? bij7 (33)

=1 " s=1" i=l j=1

S
© | =

and

L
Su =3 S B =S S ap, (3.4)
m=1 n=1

m=1 n=1

Thus the left hand side of 3.2 may be written as

Zm P qu};;ff. (3.5)

m=1
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By a procedure similar to the one used in [7], we obtain

L p+q L 1 m 1 K t
S ot () S D ki
n=1 ptq—1 Pl
1 L (3.6)
()l )
n=1

— () ey <o,
ptq—1 ’

This is [7, Equation (24)] with p replaced by p+¢q . From 3.6, using Holder’s inequality
with indices p and p/(p — 1), we obtain

Zwﬂq\<ﬂ)z izm: ZZbU e

n=1 p+q n=1 s=1 i=1 j=1

py U/p

<<_£ii_) i: wilP iﬁfi}:}:% (3.7)

p+q71 n=1 = =1 j=1

(p=1)/
{i{wﬁq 1= q/p}p/(pl)} p.

n=1

Dividing both sides of 3.7 by the last term on the right and raising to the p th power, we
have

Supir < (ﬂ) o fi5iysn )

n=1 = i=1 j=1 (38)
If we define

then from 3.4 and 3.8,

L
+
SML < <u> Z sz qw;]m fnn

; = (3.10)
Z ‘1 Zn P, B,
and

man_(m_l Bm In = ZZbU (311)
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so that mf3,,, is an increasing function of m. We note that

Wpp — Op—10 = Z mt Z szj (312)

i=1 j=1

1 m
mn — Pmn—1 = — by, = 0. 3.13
B Bin—1 = ; (3.13)
From 3.9 and using the inequality

W 4 T > (kD u,v=0,k>1, (3.14)

we deduce that

n
_ p _ 1
m qwgm }{)71}’1 - (pj) m qwgm m Zblj ﬁmn

i=1 j=1

=0 () o 0~ On = DB B

e e
p—1

# (S5 ) o oo (3.15)

< {lm <;>m}m Tl B
p—1
1

_qwgm (( - 1) 'm—1,n -—m 51;1) <0

Il
A~
=

|-
-
~

3

by 3.11. Keeping n fixed in 3.15 and letting m = 1,2, ..., M and adding the inequal-
ities we have

M M

Zmiqwgm }{)71}’1 - (ppj> Zm ‘o i;]m Zzbl] ﬁmn

m=1 m=1 i=1 j=1

<(;% )Zm 0 ((m~ DBy, —mBl) <0

m=1

(3.16)

(the sum of negative terms, by 3.11). Let

n m

Ymn = 1 Z bl]
-

i=
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so that
NYmn — (I’l - 1)'}/171,11—1 = Zbin 2 0. (317)

Following similar procedures as used to derive 3.16 from 3.6 with a further application
of Holder’s inequality we arrive at

p
SMLg(p[—yl) ( o ) Z’”” ‘12 O Vi (3.18)

p+q m=1

and

L m p
D O, < (Ll) szn{zbm} : (3.19)

p
n=1
From 3.18 and 3.19 we observe that

2p L M
SML<( pl) ( qu)zzzm "m0, 65,
p— ptq-— —

DNT gt et (3.20)
N (p— 1) <p+q— 1> Z;:m q;w'z"%’
where .
1
Omn = pm ; bin,
and

m5mn - (m - 1)Smfl,n = bmn 2 0 (321)

Repeating the procedure above (but without a further application of Holder’s inequality),
we get

M
Zm qwigm&l;m ~ ( ) Zm_qw:gm mn* (322)
m=1

m=1

From 3.20 and 3.22 we observe that

» \"(_pta_ .
SML < ] Zm Z mnwmn

p P + 9= 1 m=1 n=1
(3.23)

3p n p M L
) (e S

p+q7 m=1 n=1

By letting L, M tend to infinity in 3.23 we get the desired inequality 3.2. The proof is
complete. [J

If we set ¢ = 0 in Theorem 3.1, we recover [7, Theorem 2].
The following result extends the preceding theorem in a similar way that Theo-
rem 2.4 extends Theorem 2.1.
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THEOREM 3.2. Letp>1,4q >0, r>0, by, >0 for mn € N and let B,,, be
givenby 3.1. If 300 S°°° bhuIBr, converges, then

> 3(p+q) ptq 00 0
SN mmn < (2 PEATT NN S gy (3.204)
p—1 pt+qg+r—1

m=1 n=1

Proof. Using Holder’s inequality with indices (p + ¢)/p and (p + q)/q, we get
e Sihs +a) /p+a)
>ty = S () (o)

n=1 m=1 n=1 (m=1
p/p+a) ¢y q/(p+4q)
o) (]
m=1

3p p L M p/(p+q)
<( P ) ( pratr ) SO wiem,
p—1 ptg+r—1

q/(p+q)
» B} |

mn—mn

-
NE

Then

(3.26)

3p p L M p/(p+q)
(P ptq+r Z Z g '
~ P + q + r— 1 mn mn

n=1 m=1

Raising both sides of 3.26 to the power (p + gq)/p yields 3.24. O
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