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MAXIMAL FUNCTION ON GENERALIZED LEBESGUE SPACES Lp(·)

L. DIENING

(communicated by L. Pick)

Abstract. We prove the boundedness of the Hardy–Littlewood maximal function on the general-
ized Lebesgue space Lp(·)(Rd) under a continuity assumption on p that is weaker than uniform
Hölder continuity. We deduce continuity of mollifying sequences and density of C∞(Ω)
in W1,p(·)(Ω) .

1. Introduction

In the last years there has been an increasing interest in the study of complex ma-
terials, where the underlying energy cannot be expressed in terms of classical Lebesgue
spaces. One example of such materials are electrorheological fluids. These are spe-
cial fluids that undergo a significant change when disposed to an electric field. For
fluids of this type the viscosity may vary by a factor of 1000 . (See Růžička [13] for
a model of electrorheological fluids.) In such a case the underlying energy is given
by
∫ |Dup(x)| dx , where Du denotes the symmetric part of the gradient of the velocity

field u and p is a material function which depends on the electric field. The same type
of energy also appears in a model proposed by Zhikov [18] for another type of fluids,
where the stress tensor depends on a distribution of temperature T . The right spaces for
the underlying energy of such materials are the so called generalized Lebesgue spaces
Lp(·) (also known as Lp(x) spaces) which are a special case of generalized Orlicz spaces.
These spaces and the generalized Sobolev spaces Wk,p(·) have been studied among oth-
ers by Hudzik [7], Musiełak [11], Kováčik, Rákosnı́k [8] and Růžička [13]. The above
energies also appear in the investigations of variational integrals with non–standard
growth (see e.g. Zhikov [17] and Marcellini [9]).

While many results for the classical Lebesgue Spaces (like separability, uniform
convexity, and embeddings of type Lp(·)(Ω) ↪→ Lq(·)(Ω) ) also hold in the generalized
case, there are some results which fail to hold (translation is discontinuous on Lp(·) , see
also below). Unfortunately there are still a good deal of conjectured propositions, of
which it is not known whether they are true or not (like continuity of singular integrals).
Most of the results of this category do only exist in a slightly weaker form, that is, with
an ε -defect. For example, for a long time it has only been known that W1,p(·)(Ω) ↪→
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Lp∗(·)−ε(Ω) continuously for all ε > 0 with 1
p∗(x) = 1

p(x) − 1
d . Only recently it has been

proved in [5] that W1,p(·)(Ω) ↪→ Lp∗(·)(Ω) continuously if p is Lipschitz continuous.
In order to employ more sophisticated methods regarding questions of existence and
regularity of solutions to the fluid models above, it is important to provide optimal
results also in the case of generalized Lebesgue and Sobolev spaces. In this context the
Hardy–Littlewood maximal operator is quite an essential tool. In this article we will
prove that if p satisfies the uniform local continuity condition

|p(x) − p(y)| � C
− ln |x − y| (1)

and is constant outside some large ball, then the Hardy–Littlewood maximal operator
is continuous on Lp(·)(Rd) . To demonstrate the strength of this result we will deduce
continuity of mollifying sequences in W1,p(·)(Rd) although the convolution with an
L1 function is in general not continuous on Lp(·) . Furthermore, we deduce density
of C∞(Ω) in W1,p(·)(Ω) for Lipschitz domains. Note that the modulus of continuity
in 1 also appears when examining functionals of p(x)–growth, i.e.

∫
f (x,∇u) dx with

|z|p(x) � f (x, z) � L(1 + |z|p(x)) for some L � 1 . See for example Zhikov [19] on
Lavrentiev’s phenomenon and Acerbi and Mingione [1] on regularity of minimizers.
Moreover, L. Pick and M. Růžička [12] have recently presented a counterexample for
the boundedness of M on Lp(·) for general p . They show: If p has a point x0 of very
rapid increase, i.e. −|p(x) − p(x0)| · ln |x − x0| → ∞ for x → x0 (so the continuity
condition above is just violated), then M cannot be bounded on Lp(·) . In this sense the
modulus of continuity for p as chosen above is the limiting one for the maximal operator.
Nevertheless it remained an open question if the uniform local continuity condition 1 is
sufficient for the boundedness of the Hardy–Littlewood maximal operator. The positive
answer to this question is given in this paper assuming that p is constant outside some
large ball. The mentioned results regarding functionals with p(x)–growth strongly
indicate that the considered modulus of continuity is the inherent one for systems with
p(x)–growth.

2. Notation and Basic Facts

We will now introduce the spaces Lp(·)(Ω) and W1,p(·)(Ω) and state their funda-
mental properties (see e.g. [3, 7, 10, 13]). Hereby Ω denotes a measurable subset of Rd .
For a measurable function p : Rd → [1,∞) (called the exponent or exponent on Rd )
we define Lp(·)(Ω) to consist of measurable functions f : Ω → R such that the modular
ρp(f ) :=

∫
Ω |f (x)|p(x) dx is finite. If p+ := sup p < ∞ then we call p a bounded

exponent. In this case the expression ||f ||p(·) := inf λ > 0 : ρp(f /λ ) < 1 defines a
norm on Lp(·)(Ω) . This makes Lp(·)(Ω) a Banach space. Moreover, ||f ||p(·) � 1 if and
only if ρp(f ) � 1 . If p is constant, then Lp(·)(Ω) coincides with the classical Lebesgue
space Lp . If p− := inf p > 1 , then Lp(·)(Ω) is uniformly convex and its dual space is
isomorphic to Lp′(·)(Ω) , where 1

p + 1
p′ = 1 . Further let W1,p(·)(Ω) denote the space of

measurable functions f : Ω → R such that f and the distributional derivative ∇f are
in Lp(·)(Ω) . The norm ||f ||1,p(·) := ||f ||p(·) + ||∇f ||p(·) makes W1,p(·) a Banach space.
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By W1,p(·)
0 (Ω) we denote the closure of C∞

0 (Ω) in W1,p(·)(Ω) . By B we denote an
arbitrary ball in Rd . We write B(x) for a ball centered at x and Br for a ball with
radius r . For f ∈ L1

loc(R
d) we denote

MBf := −
∫

B
|f (y)| dy,

where −∫B is the mean value integral over B . By Mf we denote the Hardy–Littlewood
maximal function of f , i.e.

Mf (x) := sup
B(x)

MB(x)f ,

where the supremum is taken over all balls centered at x . Moreover, we will use C as
a generic constant, i.e. its value may change from line to line.

The spaces Lp(·) share even more properties with the classical Lebesgue spaces:
separability, modified versions of Hölder’s inequality, embeddings (Lp(·) ↪→ Lq(·) for
p � q on bounded domains) and complex interpolation hold. But Lp(·) lacks other
fundamental properties. So for every non–constant exponent p a function f ∈ Lp(·)

and a null sequence of translations τhn exist, such that τhn f �∈ Lp(·) . For p continuous
this result has been proved in [8]. Nevertheless we remark that it remains true for all
bounded exponents. This will be proven in Lemma 2.3 below.

DEFINITION 2.1. Let p and q be exponents on Ω we say that p is non-weaker
than q if and only if φp(x, z) := zp(x) is non-weaker than φq(x, z) := zq(x) in the sense
of Musiełak [11], i.e. there exist constants K1, K2 > 0 and h ∈ L1(Ω) , h � 0 , such
that for a.a. x ∈ Ω and all z � 0

φq(x, z) � K1φp(x, K2z) + h(x). (2)

We write q�p and φq�φp .

LEMMA 2.2. Let p, q be bounded exponents on Ω , then the following conditions
are equivalent

(a) Lp(·) ↪→ Lq(·) ,
(b) q�p ,

(c) q � p a.e. and lim sup
λ→0+

∫
Ω λ

p(x)q(x)
p(x)−q(x) dx = 0 ,

where λ
p(x)q(x)

p(x)−q(x) := 0 for p(x) = q(x) and 0 � λ < 1 .

Proof. 2.2 ⇔ 2.2 : This follows directly from Theorem 8.5 of [11].
2.2 ⇒ 2.2 : Let K1, K2 > 0 and h ∈ L1(Ω) , h � 0 be such that

zq(x) � K1(K2z)p(x) + h(x). (3)

Let x ∈ Ω with h(x) < ∞ , then the limit z → ∞ implies q(x) � p(x) . Since h is
finite a.e. it follows that q � p a.e.
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Define r : Ω → R by 1
r := 1

q − 1
p , then r := pq

p−q , where r(x) = ∞ if
p(x) = q(x) . Moreover, r is measurable and r : Ω → [1,∞] . Since p � 1 there
exists R � 1 such that

zq(x) � 1
2 (Rz)p(x) + h(x). (4)

Let λ := 1/R , then 0 < λ < 1 . For all x ∈ Ω with p(x) = q(x) by convention

λ
p(x)q(x)

p(x)−q(x) := 0.

Now assume x ∈ Ω with p(x) > q(x) . From 4 there follows with z = R
p(x)

q(x)−p(x)

R
p(x)q(x)

q(x)−p(x) � 1
2

(
RR

p(x)
q(x)−p(x)

)p(x)
+ h(x) = 1

2R
p(x)q(x)

q(x)−p(x) + h(x).

Hence R
p(x)q(x)

q(x)−p(x) � 2h(x) . Thus for all x ∈ Ω with p(x) > q(x) there follows

λ
p(x)q(x)

p(x)−q(x) = R
p(x)q(x)

q(x)−p(x) � 2h(x) < ∞.

Overall we have shown for all x ∈ Ω that∫
Ω
λ

p(x)q(x)
p(x)−q(x) dx � 2

∫
Ω
|h(x)| dx.

This proves (c).
2.2 ⇒ 2.2 : From q � p it follows that zq(x) � zp(x) for all z � 1 . So 2 is

satisfied for all z � 1 as long as K1, K2 � 1 and h � 0 . Now fix 0 < λ < 1 such

that
∫
Ω λ

p(x)q(x)
p(x)−q(x) dx < ∞ . Let 0 � z � 1 , then

zq(x) = (z/λ )q(x)λ q(x)

� (z/λ )p(x) + λ
p(x)q(x)

p(x)−q(x)

=
(

1
λ z
)p(x)

+ λ
p(x)q(x)

p(x)−q(x) ,

where we have used Young’s inequality pointwise, i.e. ab � aδ + bδ
′
, with δ = p/q

and δ = p/(p − q) . Let K1 := 1 , K2 := 1/λ , h(x) := λ
p(x)q(x)

p(x)−q(x) , then h ∈ L1(Ω)
and 3 is fulfilled. This proves 2.2. �

LEMMA 2.3. Let p be a bounded exponent on Lp(·)(Rd) , which is non–constant.
Then there exists h ∈ Rd \ 0 such that the translation operator (τhf )(x) := f (x− h) is
not continuous on Lp(·)(Rd) . Moreover, there exists f ∈ Lp(·)(Rd) with τhf �∈ Lp(·)(Rd) .

Proof. We prove the first part by contradiction. Assume that τh is continuous
on Lp(·) for every h ∈ Rd . Then ||τhf ||p(·) = ||f ||τ−hp(·) . This implies that we

have the embeddings Lp(·)(Rd) ↪→ Lτ−hp(·)(Rd) . From Lemma 2.2 we deduce that
p � τhp almost everywhere. Since h is arbitrary, this implies p is constant. This is a
contradiction.

The construction of an f ∈ Lp(·)(Rd) with τhf �∈ Lp(·)(Rd) is now standard:
Assume that τh is not continuous on Lp(·) . Choose f j ∈ Lp(·) with f j � 0 , ||f j||p(·) �
2−j and ||τhf j||p(·) = 1 . Define f :=

∑∞
j=1 f j , then ||f ||p(·) � 1 and ||τhf ||p(·) =

∞ . �
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3. Results

We begin with the (dis-)continuity of the convoluting operator.

THEOREM 3.1. Let Ω ⊂ Rd be a bounded, measurable set. Let Let p, r be
bounded exponents (on Ω ) with p− > 1 and r− > 1 . Then the convolution ∗ :
(f , g) �→ f ∗ g is continuous as a mapping Lp(·)(Ω) × L1(Rd) → Lr(·)(Ω) if and only
if p− � r+ .

Proof. “⇐ ”: Use Lp+
(Ω) ↪→ Lp(·)(Ω) ↪→ Lp−(Ω) and the theory for classical

Lebesgue spaces.

“⇒ ”: Assume p− < r+ , then there exists f ∈ Lp(·) and a translation τh such
that τhf �∈ Lr(·) (see Lemma 2.3). For φ ∈ C∞

0 (Rd) , φ � 0 , and
∫
φ dx = 1 define

φε by φε(x) := ε−dφ((x − h)/ε) , then f ∗ φε → τhf in L1(Rd) . By assumption on
the convolution holds ||f ∗ φε||r(·) � C . Since Lp(·)(Ω) is reflexive, there exists a
subsequence converging Lp(·)(Ω)–weakly to τhf . This contradicts τhf �∈ Lr(·) . �

Let p : Rd → [1,∞) be a bounded exponent. For all balls B ⊂ Rd define
p−B := essinf Bp(x) and p+

B := esssupBp(x) .

LEMMA 3.2. Let p : Rd → R be continuous. The following conditions are
equivalent:

(i) p is uniformly continuouswith |p(x)−p(y)| � C0
− ln |x−y| for all 0 < |x−y| �

1
2 .

(ii) For all open balls B we have |B|p−B −p+
B � C1 .

Proof. (i) ⇒ (ii) : Note that there exists r0 with 0 < r0 < 1
2 , such that

d
2

� (ln |Br|)/(ln(2r)) = ln(Crd)/(ln(2r)) � 2 d. (5)

for all 0 < r < r0 . Now let r > 0 and x, y ∈ Br . If 0 < r � r0 , then r < r0 < 1
2

implies |Br| � |Br0 | � 1 and |p−Br
− p+

Br
| � C0

− ln(2r) . Therefore

|Br|p
−
Br

−p+
Br � |Br|

C0
ln(2r) = exp

(
C0 ln |Br|

ln(2r)

) 5
� exp (2 C0 d) .

If r � r0 , then |Br|p
−
Br

−p+
Br � |Br0(0)|p−−p+

.
(ii) ⇒ (i) : Let x, y ∈ Rd with 0 < |x − y| < 1

2 . Then there exists Br with x, y ∈ Br

and |x−y|
2 < r < |x − y| .

Since |Br| � (2r)d ,

(4|x−y|)−|p(x)−p(y)| � (2r)−|p(x)−p(y)| � |Br|
−|p(x)−p(y)|

d � |Br|
p−
B

−p+
B

d � C
1
d
1 .

Since p+ < ∞ , this proves |x − y|−|p(x)−p(y)| � C for some C > 1 . We take the
logarithm of this inequality to deduce |p(x) − p(y)| � ln C

− ln |x−y| . �
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In the following lemma we make use of the Lorentz space L1,∞(Rd) (see e.g. [2]
for a definition).

LEMMA 3.3. Let p be a bounded exponent on Rd which satisfies one of the
conditions of Lemma 3.2. Then there exists a constant C(p) > 0 such that, for
all ||f ||p(·) � 1 ,

(Mf (x))
p(x)

p− � C(p)
(

M

(
|f |

p
p−
)

(x) + 1

)
for all x ∈ Rd.

Proof. Let q := p/p− , then q is also a bounded exponent which satisfies one of
the conditions of Lemma 3.2. Let ||f ||p(·) � 1 , then ρp(f ) � 1 . If r � 1

2 , then

(MBf )q(x) �
(
−
∫

B

(
|f (y)|p(y)+1

)
dy

)q(x)

�
(|B|−1ρp(f )+1

)q(x) �
(
|B 1

2
(0)|−1+1

)q+

.

If 0 < r < 1
2 , then |B| � (2r)d < 1 and

(MBf )q(x) �
(
−
∫

B
|f (y)|q−B dy

) q(x)

q−
B

�
(
−
∫

B

(
|f (y)|q(y) + 1

)
dy

) q(x)

q−
B

� |B|
− q(x)

q−
B 3q+

(
1
3

∫
B

(
|f (y)|q(y) + 1

)
dy

) q(x)

q−
B .

Since 1
3

∫
B
(|f (y)|q(y) + 1) dy � 1

3

∫
B
(|f (y)|p(y) + 2) dy � 1

3ρp(f ) + 2
3 |B| < 1 , we have

the inequalities

(MBf )q(x) � |B|−
q(x)

q−B 3q+

⎛
⎝ 1

3

∫
B

|f (y)|q(y) dy + 2
3 |B|

⎞
⎠

� |B|
q−
B

−q+
B

q−
B 3q+−1

(
−
∫

B
|f (y)|q(y) dy + 2

)
Lemma 3.2

� C0 3q+−1 (MB (|f |q) + 2) .

Taking the supremum over all balls B(x) proves the lemma. �

LEMMA 3.4. Let p be a bounded exponent on Rd which satisfies one of the
conditions of Lemma 3.2 and is constant outside some ball BR(0) . Then there exist a
constant C(p) > 0 and h ∈ L1,∞(Rd) ∩ L∞(Rd) such that, for all ||f ||p(·) � 1 ,

(Mf (x))
p(x)

p− � C(p) M

(
|f |

p
p−
)

(x) + h(x) for a.a. x ∈ Rd.
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Proof. Let ||f ||p(·) � 1 , then ρp(f ) � 1 . Split f into f 0 := χBRf and f 1 :=
χRd\BR

. Let p∞ denote the value of p on the complement of BR := BR(0) . Further, let
q := p/p− and q∞ := p∞/p− , then q satisfies the equivalent conditions of Lemma
3.2 and hence also the assumptions of Lemma 3.3. Thus, for all x ∈ B2R := B2R(0)

(Mf (x))q(x) � C(q)M (|f |q) + C(q). (6)

Now let x ∈ Rd \ B2R , then |x| − R � 1
2 |x| and |B|x|−R| � C |x|d . So

(Mf 0(x))
q(x) �

(
sup

r>|x|−R

1
|Br|

∫
Br(x)

|f 0(y)| dy

)q(x)

�
(

1
|B|x|−R|

∫
BR

|f (y)| dy

)q(x)

�
(

C
|x|d

∫
BR

|f (y)| dy

)q(x)

�
(

C
|x|d

∫
BR

|f (y)|p(y) + 1 dy

)q(x)

� C(q)
|x|d , (7)

where we have used that supp f 0 ⊂ BR . Furthermore for x ∈ Rd \ B2R

(Mf 1(x))
q(x) = (Mf 1(x))

q∞ � M(|f 1|q∞)(x) � M(|f |q)(x). (8)

Overall, there holds for all x ∈ Rd ,

(Mf (x))q(x) � χB2R (Mf (x))q(x) + χRd\B2R
(M(f 0)(x) + M(f 1)(x))

q(x)

� χB2R (Mf (x))q(x) + C(q) χRd\B2R

(
(Mf 0(x))

q(x)+(Mf 1(x))
q(x)
)

6,7,8
� C(q) M (|f |q) (x) + χB2RC(q) + χRd\B2R

C(q) |x|−d︸ ︷︷ ︸
=:h

.

The fact that h ∈ L1,∞(Rd) ∩ L∞(Rd) proves the lemma. �

THEOREM 3.5. Let p be as in Lemma 3.4 with p− > 1 . Then M is bounded on
Lp(·)(Rd) , i.e.

||Mf ||p(·) � C(p) ||f ||p(·).

Proof. Since Mf is positive homogenous, i.e. M(λ f ) = ||λ ||Mf , it suffices to
show ||Mf ||p(·) � C for all f with ||f ||p(·) � 1 . Since p+ < ∞ , it is also sufficient
to prove ρp(Mf ) � C for all ||f ||p(·) � 1 . Let f ∈ Lp(·) with ||f ||p(·) � 1 , then
ρp(f ) � 1 . Let q := p/p− . By Lemma 3.4 there exists h ∈ L1,∞(Rd)∩ L∞(Rd) such
that (Mf )q � C(p)M(||f ||q) + h . Thus,

ρp(Mf ) = ||(Mf )q||p−
p− �

(
C(p) ||M(|f |q)||p− + ||h||p−

)p−
.

Since p− > 1 the mapping f �→ Mf is continuous on Lp−(Rd) . Hence

ρp(Mf ) �
(
C(p) |||f |q||p− + ||h||p−

)p−
=
(

C(p)ρp(f )
1

p− + ||h||p−
)p−

� C(p).
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This proves the theorem. �

COROLLARY 3.6. Let p be a bounded exponent on Rd such that M is bounded on
Lp(·)(Rd) (e.g. let p be as in Theorem 3.5). Let φ : Rd → R be an integrable function
and set φε(x) := ε−dφ(x/ε) for all ε > 0 . Assume that the least decreasing radial
majorant ψ of φ is integrable, i.e. A :=

∫
Rd sup|y|�|x| |ψ(y)| dx < ∞ . Then

(i) supε>0 |(f ∗ φε)(x)| � 2A Mf (x) for all f ∈ Lp(·)(Rd) .

(ii) If
∫

Rd φ(x) dx = 1 , then, for f ∈ Lp(·)(Rd) , we have f ∗ φε
ε→ f almost

everywhere and in Lp(·)(Rd) . Furthermore,

||f ∗ φε||p(·) � C(A, p)||Mf ||p(·) � C(A, p)||f ||p(·).

Proof. Split f ∈ Lp(·)(Rd) into f = f 0 + f 1 with f 0 = f χ|f |>1 and f 1 = f χ|f |�1 .
Then f 0 ∈ L1(Rd) , f 1 ∈ L∞(Rd) , and |f j| � |f | for j = 0, 1 . Then from [16],
Theorem 2, p. 62 we immediately deduce that

sup
ε>0

|(f j ∗ φε)(x)| � A Mf j(x) � A Mf (x) for j = 0, 1.

This proves (3.6). Now assume
∫

Rd φ(x) dx = 1 . Then from the same theorem in [16]
we deduce φε ∗ f j → f j almost everywhere, j = 0, 1 . This proves φε ∗ f → f almost
everywhere. By assumption on p there holds ||Mf ||p(·) � C||f ||p(·) which implies
ρp(Mf ) < ∞ . So by (3.6) and dominated convergence limε→0 ρp(ϕε ∗ f − f ) = 0 .
Since p+ < ∞ , this implies limε→0 ||ϕε∗f −f ||p(·) = 0 . This proves the corollary. �

See [14] for a similar result on mollifiers φ ∈ C∞
0 (Rd) on bounded domains Ω ,

i.e. f ∈ Lp(·)(Ω) , without the use of the Hardy–Littlewood maximal function. As an
application of Corollary 3.6, we deduce

THEOREM 3.7. Let Ω be a bounded domain with Lipschitz boundary and let p be
as in Corollary 3.6. Then C∞(Ω) is dense in W1,p(·)(Ω) .

Proof. Using the results of Corollary 3.6 one can follow exactly the proof in [6],
where the case of classical Sobolev spaces is treated. �

This generalizes the result of [4] which was stated for p uniformly Lipschitz.
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