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MAXIMAL FUNCTION ON GENERALIZED LEBESGUE SPACES /(")
L. DIENING

(communicated by L. Pick)

Abstract. We prove the boundedness of the Hardy-Littlewood maximal function on the general-
ized Lebesgue space 1/ ) (Rd) under a continuity assumption on p that is weaker than uniform

Holder continuity. We deduce continuity of mollifying sequences and density of C°°(Q)
in Whr()(Q).

1. Introduction

In the last years there has been an increasing interest in the study of complex ma-
terials, where the underlying energy cannot be expressed in terms of classical Lebesgue
spaces. One example of such materials are electrorheological fluids. These are spe-
cial fluids that undergo a significant change when disposed to an electric field. For
fluids of this type the viscosity may vary by a factor of 1000. (See Ruzi¢ka [13] for
a model of electrorheological fluids.) In such a case the underlying energy is given
by [ |Du’ ™| dx, where Du denotes the symmetric part of the gradient of the velocity
field u and p is a material function which depends on the electric field. The same type
of energy also appears in a model proposed by Zhikov [18] for another type of fluids,
where the stress tensor depends on a distribution of temperature 7". The right spaces for
the underlying energy of such materials are the so called generalized Lebesgue spaces
I70) (also knownas I7¥) spaces) which are a special case of generalized Orlicz spaces.
These spaces and the generalized Sobolev spaces W*?(") have been studied among oth-
ers by Hudzik [7], Musietak [11], Kovacik, Rdkosnik [8] and Ruzi¢ka [13]. The above
energies also appear in the investigations of variational integrals with non—standard
growth (see e.g. Zhikov [17] and Marcellini [9]).

While many results for the classical Lebesgue Spaces (like separability, uniform
convexity, and embeddings of type L) (Q) — L)(Q)) also hold in the generalized
case, there are some results which fail to hold (translation is discontinuous on L” ) , see
also below). Unfortunately there are still a good deal of conjectured propositions, of
which it is not known whether they are true or not (like continuity of singular integrals).
Most of the results of this category do only exist in a slightly weaker form, that is, with
an e-defect. For example, for a long time it has only been known that Wl”’(‘)(Q) —
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17"0)=¢(Q) continuously forall € > 0 with p%(x) = ﬁ — L. Only recently it has been

proved in [5] that W'?()(Q) < 17" ()(Q) continuously if p is Lipschitz continuous.
In order to employ more sophisticated methods regarding questions of existence and
regularity of solutions to the fluid models above, it is important to provide optimal
results also in the case of generalized Lebesgue and Sobolev spaces. In this context the
Hardy-Littlewood maximal operator is quite an essential tool. In this article we will
prove that if p satisfies the uniform local continuity condition

C
Ip(x) —p(y)| < Tinpr—y]

(1)

and is constant outside some large ball, then the Hardy—Littlewood maximal operator
is continuous on I”()(R?). To demonstrate the strength of this result we will deduce
continuity of mollifying sequences in Wl”’(‘)(Rd) although the convolution with an
L' function is in general not continuous on (). Furthermore, we deduce density
of C*(Q) in W'»()(Q) for Lipschitz domains. Note that the modulus of continuity
in 1 also appears when examining functionals of p(x)—growth, i.e. [ f (x, Vu)dx with
2| < f(x,2) < L(1 + [z]P™)) for some L > 1. See for example Zhikov [19] on
Lavrentiev’s phenomenon and Acerbi and Mingione [1] on regularity of minimizers.
Moreover, L. Pick and M. Razicka [12] have recently presented a counterexample for
the boundedness of M on L’() for general p. They show: If p has a point xo of very
rapid increase, i.e. —|p(x) — p(x0)| - In]x — x9| — oo for x — xp (so the continuity
condition above is just violated), then M cannot be bounded on 17C) | In this sense the
modulus of continuity for p as chosen above is the limiting one for the maximal operator.
Nevertheless it remained an open question if the uniform local continuity condition 1 is
sufficient for the boundedness of the Hardy-Littlewood maximal operator. The positive
answer to this question is given in this paper assuming that p is constant outside some
large ball. The mentioned results regarding functionals with p(x)—growth strongly
indicate that the considered modulus of continuity is the inherent one for systems with
p(x)—growth.

2. Notation and Basic Facts

We will now introduce the spaces [7()(Q) and W'?()(Q) and state their funda-
mental properties (see e.g. [3,7, 10, 13]). Hereby Q denotes a measurable subsetof R? .
For a measurable function p : R? — [1,00) (called the exponent or exponent on R¢)
we define 17()(Q) to consist of measurable functions f : Q — R such that the modular
op(f) = [ If (x)|P®) dx is finite. If p* := supp < oo then we call p a bounded
exponent. In this case the expression ||f||,.) := infA >0 : p,(f/A) < 1 defines a
normon L) (Q). This makes L/(")(Q) a Banach space. Moreover, ||f ||,..) < 1 if and
onlyif p,(f) < 1. If p is constant, then /(") (Q) coincides with the classical Lebesgue
space 7. If p~ :=infp > 1, then L”“(Q) is uniformly convex and its dual space is
isomorphic to 17 ()(Q), where zlﬂ + p—l, = 1. Further let W'*()(Q) denote the space of
measurable functions f : Q — R such that f and the distributional derivative Vf are
in /0)(Q). The norm [|f ||y () := [|f|lp(.) + ||Vf ||p(.) makes W'#() a Banach space.
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By Wé’p(')(g) we denote the closure of C°(Q) in W'»()(Q). By B we denote an
arbitrary ball in R?. We write B(x) for a ball centered at x and B, for a ball with
radius r. For f € L} (RY) we denote

loc
Myf = ][ £ )l dy.

where J% is the mean value integral over B. By Mf we denote the Hardy-Littlewood
maximal function of f , i.e.

Mf (x) := Sl(II; Mgf
B(x

where the supremum is taken over all balls centered at x. Moreover, we will use C as
a generic constant, i.e. its value may change from line to line.

The spaces L") share even more properties with the classical Lebesgue spaces:
separability, modified versions of Holder’s inequality, embeddings (L”<‘> «— L40) for
p = ¢ on bounded domains) and complex interpolation hold. But 17%) lacks other
fundamental properties. So for every non—constant exponent p a function f € LP(")
and a null sequence of translations 75, exist, such that 7, f ¢ I”") . For p continuous
this result has been proved in [8]. Nevertheless we remark that it remains true for all
bounded exponents. This will be proven in Lemma 2.3 below.

DEFINITION 2.1. Let p and g be exponents on Q we say that p is non-weaker
than ¢ if and only if @, (x,z) := 2" is non-weaker than ¢,(x,z) := z%® in the sense
of Musietak [11], i.e. there exist constants K;,K> > 0 and h € L'(Q), h > 0, such
that fora.a. x € Q andall z >0

¢f1(x7 Z) < K1¢P(x7 K2Z) + h(x) (2)
We write g<p and ¢,<¢, .

LEMMA 2.2. Let p,q be bounded exponents on Q, then the following conditions
are equivalent
(a) LP0) — a0
(b) q=p.
p(x)g(x)

(c) gq<pae and limsup fg/lf’mfffm dx =0,
A—0+

(900
where AF9-am 1= 0 for p(x) = q(x) and 0 < A < 1.

Proof. 2.2 < 2.2: This follows directly from Theorem 8.5 of [11].
22=22:Let K;,K; >0 and h € L'(Q), h > 0 be such that

2% < K, (Kzz)p(") + h(x). (3)

Let x € Q with h(x) < oo, then the limit z — oo implies g(x) < p(x). Since & is
finite a.e. it follows that ¢ < p a.e.
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Define r : Q — R by 1 := é—%,then ro= ppq, where r(x) = oo if
p(x) = g(x). Moreover, r is measurable and r : Q — [1,00]. Since p > 1 there
exists R > 1 such that
) < LR + ), @
Let A :=1/R,then 0 <A < 1. Forall x € Q with p(x) = ¢g(x) by convention

P)g()
AP@=q = (.

®
Now assume x € Q with p(x) > g(x). From 4 there follows with z = RT-7m

PX)gX)

Px) PX)q(x)
Rax— ’r)< (RRq(x

p(x)
)*pm) + h(x) = $RIO= + h(x).

PX)q(x)

Hence R4®—r,% < 2h(x). Thus for all x € Q with p(x) > g(x) there follows

p)g x)

AT — RIS < 2h(x) <

Overall we have shown for all x € Q that

//1 P dx < /\h ) dx.
Q
This proves (c).

2.2 = 2.2 : From g < p it follows that z9% < 7™ forall z > 1. So 2 is
satisfied for all z>1aslongas K;,K; > 1 and h > 0. Now fix 0 < A < 1 such
P

that [, AP dx < 00. Let 0< 2 < 1, then
— (z//l)q('”)ﬂt‘1< )
< (Z/A)PW + A

PX)qx)

:(1) -|-)Lrﬂr) a0

where we have used Young’s inequality pointwise, i.e. ab < a + b, with § = p/q

and 6 =p/(p—¢q). Let K, :=1, K :=1/A, h(x) = A Foats , then h € L1(Q)
and 3 is fulfilled. This proves 2.2. O

LEMMA 2.3. Let p be a bounded exponent on [’")(RY), which is non—constant.
Then there exists h € R*\ O such that the translation operator (Tyf )(x) := f (x — h) is
not continuous on I’)(R?). Moreover, there exists f € L'")(R?) with tf ¢ [P)(RY).

Proof. We prove the first part by contradiction. Assume that 7, is continuous
on [P for every h € RY. Then ||Tf||p.) = |If|lc_p()- This implies that we
have the embeddings I()(R?) «— L™#()(R?). From Lemma 2.2 we deduce that
p = Tp,p almost everywhere. Since # is arbitrary, this implies p is constant. This is a
contradiction.

The construction of an f € IP)(R?) with 7f ¢ [’)(RY) is now standard:
Assume that 7, is not continuous on L") . Choose f; € LP") with f; > 0, [|fj[|,() <

27 and [|nfill,) = 1. Define f := 3°%,f;, then [[f[[,) < 1 and [|5f ||y
co. O
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3. Results

We begin with the (dis-)continuity of the convoluting operator.

THEOREM 3.1. Let Q C R? be a bounded, measurable set. Let Let p,r be
bounded exponents (on Q) with p~ > 1 and r— > 1. Then the convolutlon * 1
(f,g) — f * g is continuous as a mapping [’")(Q) x L'(R?) — L"")(Q) if and only
ifp~=>r".

Proof. “<": Use IV (Q) — I’)(Q) — L[ (Q) and the theory for classical
Lebesgue spaces.

‘= Assume p~ < rT, then there exists f € I”(") and a translation 7, such
that 7,/ ¢L’ (see Lemma 2.3). For ¢ € C5°(R?), ¢ > 0,and [¢dx =1 define
dc by ¢c(x) := e ¢((x — h)/e), then f * ¢ — 7f in L'(RY). By assumption on
the convolution holds ||f * ¢c|,, < C. Since L')(Q) is reflexive, there exists a
subsequence converging /(") (Q) -weakly to 7,f . This contradicts 7,f ¢ L'). O

Let p : RY — [I, oo) be a bounded exponent. For all balls B C R? define
pp = essinfgp(x) and pj := esssuppp(x).

LEMMA 3.2. Let p : R? — R be continuous. The following conditions are
equivalent:
(i) p isuniformly continuous with |p(x) —p(y)| <
1

3
(ii) For all open balls B we have |B|Ps 75 < (.

forall 0 < |x—y| <

—InJx—y]

Proof. (i) = (ii) : Note that there exists ry with 0 < ry < 1, such that

N

7 < (In|B,])/(In(2r)) = In(Cr?")/(In(2r)) < 2d. (5)

forall 0 < r < rp. Nowletr>0andxyeB If0<r<ry, thenr<ry<3
implies [B,| < |B,,| <1 and |py — pp | < 1n(2r) Therefore

5
B 7 < 18,17 — exp (S84 2 exp (2 o)
If r > ro, then |B,["5 "5 < |B,, (0))P 7" .
(ii) = (i): Let x,y € R? with 0 < |x — y| < 1. Then there exists B, with x,y € B,
and @ <r<lx—yl.
Since |B,| < (2r)¢,
Ip(x PO

—Ip(x)—p(y B L
(=) < ) < B <ci.

Since pt < oo, this proves |x — y|~PW—POl < € for some C > 1. We take the
logarithm of this inequality to deduce |p(x) — p(y )\ < O

ln |x v
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In the following lemma we make use of the Lorentz space L''>°(R?) (see e.g. [2]
for a definition).

LEMMA 3.3. Let p be a bounded exponent on R? which satisfies one of the
conditions of Lemma 3.2. Then there exists a constant C(p) > 0 such that, for

al [[f |y <1
(Mf () < C(p) <M (yf) (x)+1) forall x € RC.

Proof. Let q := p/p—, then q is also a bounded exponent which satisfies one of
the conditions of Lemma 3.2. Let ||f [|,() < 1, then p,(f) < 1.1f r > 1, then

+

o) < ([ ro 1) )" < (800" < (B0 1)’

If 0 <r <1, then |B]<(2r)! <1 and

qx)
0 < ( o)l dy) E
B
q(x)

<(f(rome 1y as)e

<18 3 ( / (Ir o)1)+ 1 )dy)%.

Since %g(v(y)\qm < %Bf +2)dy < 3p,(f) + 2|B| < 1, we have

the inequalities

(Maf Y™ < B 753 / F )1 dy + 218

qB*"B
< |B| 3%*—1< If (v dy+2)
Lemma 3.2 1

< G3 T (Mp(If|*) +2).

Taking the supremum over all balls B(x) proves the lemma. [

LEMMA 3.4. Let p be a bounded exponent on R? which satisfies one of the
conditions of Lemma 3.2 and is constant outside some ball Bg(0). Then there exist a
constant C(p) >0 and h € L (R*) N L>®(R?) such that, for all ||f ||, < 1

Juiti)

(Mf(x)7 < Cp)M (ypi> () +h(x)  foraaxe R
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Proof. Let [[f ||,y < 1, then p,(f) < 1. Split f into fo := xg,f and f| :=
Xra\g - Let poc denote the value of p on the complement of By := Bg(0) . Further, let

q:=p/p~ and go := poo/p~ , then q satisfies the equivalent conditions of Lemma
3.2 and hence also the assumptions of Lemma 3.3. Thus, for all x € Bag := Bag(0)

(Mf(x))q(x) < ClgM (If ) + C(a)- (6)
Now let x € R?\ Byg, then |x| — R > 1|x| and |Bj,_g| > C|x|.
9(x) q(x)
)4 u 1
MIbO) < (SMPR 1 oo VO(”'””) s (|B|x| eI AL
q(x) q(x)
(7 [ roras) < (57 [ roreia)
.o

where we have used that supp fo C Bg . Furthermore for x € R \ Bar

(Mf1(x))"Y = (Mf1(x)) < M(If1]7)(x) < M([f]9)(x). (8)
Overall, there holds for all x € R?,
(M ()" < gy (MF <x>>q<x> + gty (M (o) (x) + M(f1) (x)) ")
< A (MF ()" + C(0) 2oy ((MF0l0)"+ (411 ()"

6.7,8
Clg) M (If 1) (%) + 28,5 C(@) + Xparp,, C(a) ¥~ .

=:h

The fact that h € L>°(R?) N L>°(R?) proves the lemma. [

THEOREM 3.5. Let p be as in Lemma 3.4 with p~ > 1. Then M is bounded on
LPO(RY), e

[IMf lpey < CP) I llpe)-

Proof. Since Mf is positive homogenous, i.e. M(Af) = ||A||Mf , it suffices to
show ||Mf ||y < C forall f with ||f]|,) < 1. Since p* < oo, it is also sufficient
to prove p,(Mf) < C forall |[f|[,) < 1. Let f € L) with [|f||,) < 1, then
pp(f) < 1.Let g:=p/p~. By Lemma 3.4 there exists h € L'>°(R?) N L>(R) such
that (Mf)? < C(p)M(||f||9) + h. Thus,

P (MF) = I(MF )2 < (Cp) MU 1) ]~ + I1All,-)"

Since p~ > 1 the mapping f + Mf is continuouson I (R?). Hence

1) < (Pl + 1) = (O™ +11l, ) < Co



252 L. DIENING
This proves the theorem. [

COROLLARY 3.6. Let p be a bounded exponent on R® such that M is bounded on
Lp('>(Rd) (e.g. let p be as in Theorem 3.5). Let ¢ : R — R be an integrable function
and set ¢.(x) := e 9¢(x/e) for all € > 0. Assume that the least decreasing radial
majorant \y of ¢ is integrable, i.e. A:= [, SUp|y >y (W) dx < 0o. Then

(i) supg|(f * 00)(x)| < 2AMf (x) forall f € IPV)(RY).

(ii) If [pa ¢(x)dx = 1, then, for f € LPO(RY), we have f * ¢ = f almost

everywhere and in 17)(R?). Furthermore,

[ 0oy < CA,P)IMS [|p(y < CA DI o)

Proof. Split f € IPV)(R?) into f = fo+/f1 with fo = f xr>1 and f1 = f x| (<1 -
Then fo € L'(RY), fi € L*®(R?), and |fj| < |f| for j = 0,1. Then from [16],
Theorem 2, p. 62 we immediately deduce that

supl £+ 0)(x)| < AMF, () SAMF(x)  forj=0.1.

This proves (3.6). Now assume [, ¢(x) dx = 1. Then from the same theorem in [16]
we deduce ¢ * f; — f; almost everywhere, j = 0, 1. This proves ¢, * f — f almost
everywhere. By assumption on p there holds ||Mf||,.) < C||f||,.) which implies
Pp(Mf) < co. So by (3.6) and dominated convergence lim._.o p,(@c *f —f) = 0.
Since p* < oo, this implies lim o ||@c *f —f||,(.) = 0. This proves the corollary. [

See [14] for a similar result on mollifiers ¢ € C5°(R?) on bounded domains Q,
ie. f € ’')(Q), without the use of the Hardy-Littlewood maximal function. As an
application of Corollary 3.6, we deduce

THEOREM 3.7. Let € be a bounded domain with Lipschitz boundary and let p be
as in Corollary 3.6. Then C*=(Q) is dense in W'*()(Q).

Proof. Using the results of Corollary 3.6 one can follow exactly the proof in [6],
where the case of classical Sobolev spaces is treated. [J

This generalizes the result of [4] which was stated for p uniformly Lipschitz.
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