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HARDY-LITTLEWOOD MAXIMAL OPERATOR ON [7¥)(R)

ALES NEKVINDA

(communicated by L. Pick)

Abstract. We consider Hardy-Littlewood maximal operator on the general Lebesgue space
LPX)(R™) with variable exponent. A sufficient condition on the function p is known for

the boundedness of the maximal operator on LP® (Q) with an open bounded € . Our main aim
is to find an additional condition to p to guarantee the boundedness of the maximal operator on

28 (R™). From this point of view we put an emphasis on the behavior of functions p near
the infinity. We find a sufficient condition on p such that the maximal operator is bounded on

LX) (R™) . We also construct a function p for which the maximal operator is unbounded.

1. Introduction

The generalized Lebesgue space L”¥) and the corresponding Sobolev space W'#()
have attracted more and more interest in recent years. We refer to [8] for the establish-
ment of the fundamental properties of these spaces, to [3] for some properties of the
norm on 7", and to [6] for inequalities of Sobolev type. Further motivation for the
study of these spaces is provided in [11, 12] by means of mathematical models of elec-
trorheological fluids which involve nonlinear systems of partial differential equations
with coefficients of variable rate of growth.

A crucial difference between L) and the classical Lebesgue spaces is that L)
is not, in general, invariant under translation(see [8], Ex. 2.9). Because of this, serious
problems arise with regard to convolutions, the density of smooth functions in W'#()
(see [5] and [13]) and the boundedness of the Hardy-Littlewood maximal operator.

In [4] and [9] a discrete version ¢’ of [”() is introduced and some interesting
properties of these spaces are proved. Especially, a necessary and sufficient condition
to bounded sequences {p,}, {g,} is found to guarantee the equivalence of norms in
spaces (P» and (9.

In [2] L.Diening proved that the maximal operator is bounded on I7)(Q) for a
bounded Q provided —|p(x) — p(y)|In|x —y| < C for [x —y| < i, x,y € Q. In[10]
the authors showed that the maximal operator can be unbounded if there exists x € Q
such that —lim,_, [p(x) — p(y)|In|x — y| = o0.

We will investigate in this paper the Hardy-Littlewood maximal operator on
LP(">(R") . It is not difficult to prove the boundedness of maximal operator provided
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p(x) isconstanton {x € R"; |x| > R} for some positive R and p satisfies the condition
from [2] on {x € R"; |x| < R}. We find a more general condition to the behavior of p(x)
then constancy near the infinity to guarantee the boundedness of maximal operator on
L™ (R") . We show that the class of functions p(x) satisfying this sufficient condition
is contained in a wider class of functions which have a finite limit at the infinity in the
sense of Lebesgue measure. Moreover, we construct an example of a function p(x)
from this wider class such that the maximal operator is unbounded on 17 (R).

DEFINITION 1.1. Let f € L} .(R"). Define the Hardy-Littlewood maximal func-
tion Mf by
R AL
x€Q ‘Q|
where Q are cubes which sides are parallel to the coordinates.

Remind the well-known theorem on the maximal operator. The proof can be found
for instance in [7], Theorem 21.76.

PROPOSITION 1.2. Let r e R, 1 < r < o0, then there exists M, > 0 such that

| s yas <, [ e

Let B C R" be a measurable set. Denote by 2t(B) the set of all measurable
functions on B and adopt the notation |B| for the Lebesgue measure. Let B(B) denote
the set of all functions p € M(B) such that 1 < p(x), ess sup{x € B;p(x) < co}.

DEFINITION 1.3. We say that a normed linear subspace X of 2i(B) is a Banach

function space if the following five axioms are satisfied:

(i) thenorm ||f||x is defined forall f € M(B),and f € X ifand only if ||f||x < oo;
i) [l = || ] llx forall £ € M(B):
(iif) 0<fy, /' f ae. in B, then ||fullx ./ IIfllx;:
(iv) if |E|] < oo, then xg € X where xg denotes the characteristic function of E;

(v) forevery E C B with |E| < oo there existsaconstant Cg suchthat [, f (z) )dt <
Cellf ||x forall f € X(B).

DEFINITION 1.4. Let p(x) € M(B), 1 < p(x) < co. Denote for f € M(B) the
Luxemburg norm by

*)
. fx)[r
Wl = inf(2 > 0 [ [E2 0y
B
Define a space I’¥)(B) by
L9 (B) = {f € MB): |If llp < 00}

In [4], the following lemma is proved.

LEMMA 1.5. The space [’ (B) is a Banach function space.
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The following lemma is proved in [8] (see Theorem 2.4).

LEMMA 1.6. Let p € B(R"). Then
LPORY) = {f € M(R"); / If (x)PWox < oo}
Rn

To prove the next lemma we used the idea of the proof of Theorem 1.8 in [1].

LEMMA 1.7. Let p € B(R") and let X = [PY(R"). Then the following
statements are equivalent.

(i) Then there exists a constant C > 0 such that ||Mf ||x < C||f ||x forall f € X.
(ii)  [on |IMf (x)PYdx < oo provided Jan If (x)P¥dx < 1.

Proof. Theimplication (i) = (ii) is an easy consequence of Lemma 1.6. Prove the
opposite implication. Assume the contrary. Then there exists a sequence of functions
fu =0 with [[f,]lx < 1 and [[Mfy|[x > n’. Set f = &322, & Clearly, |[f[lx < 1
and as an easy consequence of the boundedness of p we obtain [, |f (x) POdx < 1.
On the other hand, we obtain ||Mf |x > & Wnllx > % foreach n. Thus, [|Mf||x = oo
and [p, |[Mf (x)]P®¥dx = oo by Lemma 1.6. O

2. Boundedness of maximal operator

Adopt in the next the notation Bg(x) = {y € R";|x —y| < R}, Bg := Bg(0),
B = R"\ Bg and set p, = inf{p(x);x € R"}, p* = sup{p(x);x € R"}.

DEFINITION 2.1. Let p € B(R"). Say that p € L if there is a constant K > 0
such that

K
Ip(x) —p(y)| < Py P—

for x,y e R", 0 < [x —y[ < 3.

Given Q C R” and p : R” — R we adopt the notation p,, o = ess inf{p(x);x €
Q} and py o = ess sup{p(x);x € Q}.
In [2] (see Lemma 3.2) the following lemma is proved.

LEMMA 2.2. Let p € L. Then there exists a constant C > 0 such that the
estimate

|B|PmB=PME < C
holds for any ball.

By an easy modification we obtain the following lemma.

LEMMA 2.3. Let p € L. Then there exists a constant C > 0 such that the
estimate
|B,(x) |[PmBrn =P < €

holds for any ball.
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Proof. 1f |B,(x)| > 1 then the fact p,, 5,y — p(x) < 0 clearly gives
| B, (x) [PmBr P <1,
If |B,;(x)| < 1 then by Lemma 2.2 we obtain

| B, (x) [P —pl¥) — | B, (x) [Pr8r0) PMBr ) | B, (x) [PMBr o —px)

< |Br(_x)‘pm.By(x)prABr(x) < C

which finishes the proof. [

Define a centered maximal operator by

(M(e)f ) (x) = sup

R>0 BR(X) Jip(x) F Dl

Lars Diening proved in [2] (see Lemma 3.3) the following lemma.

LEMMA 2.4. Let p € L. Then there is a constant C(p) > O such that for each
x € R" and for each function f with [, |f (1) IPdr < 1 the inequality

(M ()™ < o) M (If (P () +1)
holds.

Itis not difficult to observe that there is a constant D > 0 such that the inequalities
D™'Mf (x) < Moyf (x) < DM () (2.1)

hold for each f € L} . and x € R".

loc

DEFINITION 2.5. Let p € £. Say that a function f belongs to a class G, (write
p€G,)if f(x) =0 or |[f(x)| > 1 foreach x € R" and

If (x)PWdx < 1.
Rn

Using the analogous idea as in the proof of Lemma 3.2 in [2] we obtain the following
lemma which is similar to Lemma 2.4.

LEMMA 2.6. Let p € L. Then there exists a constant C, > 0 such that the
inequality
Mf (P < GM(If ()P (x)
holds for all f € G, and x € R".

Proof. Set for r > 0

1

I = g [, POl
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Suppose f € G, and x € R". By Jensen’s inequality we obtain

(Mrf<x>)”‘ (G L, o)™ 2)

)
/ ‘Pm By (x) dy) Pm,Br(x) =]

Since f € G,y and py, ) < p(y) for y € B.(x) we have [f (y)[Pm5® < {f(y)|”(”
which gives

P 2)

1 < |B,(x)| Pmbri ( lf( )\p(y)dy) PmBro)
Br(x

Using again the assumption f* € G,() we have

U‘( )Wy < 5 Fo)PVdy < 1
Br n

and since % > 1 we obtain

m,Br(x)

_
1 < |B,(x)| Pmbr fBr(x> If ) [PY)d
Pm,By(x) —PX)

:\B,(x)| P Br ) (\B, \fB, ‘p dy)

By Lemma 2.3 we have

Pm,By(x) “P&) 1 L

‘Br(x)| Pm,By(x) < CPm.Br(x) < max{l, C}PmABr(x)

< max{l,C}.

Thus, I < max{1, C}M,(|f (.)["))(x) which gives with 2.2

Mf () < max{1, CHML(IF OV ().

Taking supremum on both sides we obtain

Mof (0) " < max{1, C}M o) (If ()P ().

which gives with 2.1 the assertion of our lemma. [
LEMMA2.7. Letpe L, 1 <p, and f € G,. Then

|Mf (x)[PYdx < oo.
R’l

Proof. Set q(x) = ’% and h(x) = |[f (x)|?™. Then h € IP* and according to
Theorem 1.2 we have

/ M) dx < M, / ()P dx < oo,
R~n R
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It follows with the easy fact g € £ and with Lemma 2.6

Jeo MF (P = fo (1MF (0)190)dx < € () fi (M(F ()2 ()
< O (q) fin (M(F (Y1) (0))" dx < O (q) [ (MA())" d
< O (@M. fi ()" dx < o0

which finishes the proof. [J

Now, we will find a condition to the behavior of p(x) near to infinity to guarantee
the boundedness of M .

DEFINITION 2.8. Let € € M(R"). Denote P(e) = {x € R"; e(x) > 0} . Say that
€ € & if there exists a positive real number ¢ such that

/ e(x)c/#M¥dx < oo. (2.3)
P(e)

REMARK 2.9. Itis easy to see that |¢| € P ifandonlyif € € P and —g € P.

LEMMA 2.10. Let K > 0 and o € M(R") satisfy 0 < a(x) < K for x € R".
Let e € P. Then oe € P.

Proof. Let ¢ satisfy (2.3). Without loss of generality we can assume ¢ < 1. Set
d = cX . Let us estimate

/ a(x)s(x)dl/(o‘(x)g(x)>dx.
P(oe)

Since 0 < ax) < K, we have d = X < ¢ and using the simple fact that
P(ae) C P(e) we obtain

1/(o(x)e(x
fIP(ae) 06( ) ( )dl/ IIP (e) ( K) /(o(x)e( ))dx
S K Jp(ae) £@)( x>)l/ W ax Kfn» el /e dx < oo,

which finishes the proof. [J

LEMMA 2.11. Let M C R", g(x) < 1 and € € &. Assume 0 < g(x) < 1,
Jyy 8(x)dx < 0. Then fMg(x)lfg(x)dx < 0.

Proof. Denote F| = {x € M;e(x) < 0}, F» = {x € M\ Fy; g(x) > g(x)c'/¢®)}

and F3 = {x € M\ Fi;g(x) < €(x)c'/¢W}. Since F,F,,F3 are pair-wise disjoint
and M = F{ U F, U F3 we have

/?w“mm: ngMM+/ngMM+/gw“Mm.<M>
M F, F F;3
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Let x € F;. Since £(x) < 0 we have g(x)~¢™ < 1 and so,
/ g(x)lfg()‘)dxé/ g(x)dx < co. (2.5)
F1 Fl

Let x € F,. Since €(x) > 0 we have e(x)~¢®) < e!'/¢ which gives with
g(x) > e(x)c'/e™ that g(x)!—¢W < g(x)(s(x)cl/g("))_g(x) < clel/eg(x) and

el/e

/ (0 dr< / sy < oo (2.6)

Let x € F3. Then 0 < g(x) < &(x)c'/¢™ and since € € P we have by (2.3)

/g(x)lfg()‘)dxé/ S(x)cl/g(x)(E(X)CI/E(X>)_£(x>dX<
F3 F3

which proves with (2.4), (2.5) and (2.6) the lemma. O

el/e

c

/ e(x)c/Wdx < oo
F3

LEMMA 2.12. Let p g€ BR") and |p—q| € P. Assume that 0 < f(x) < 1
a.e. in R". Then fR,, YW dx < oo if and only if fR,, 1) dx < 0.

Proof. Assume [p, f (x)P®dx < oo and set g(x) = f(x)P™¥), g(x) = L (x;(_x‘)’(x).

By Lemma 2.10 we obtain |5\ € P and by Remark 2.9 we have € € P. Since £(x) < 1
and fR” x)dx < co we obtain by Lemma 2.11

FOMde= | ()" Wdr < 00
R R
and the proof follows. [

Let us introduce a class of functions p which describes a behavior of p at the
infinity.

DEFINITION 2.13. Let p € B(R"). Say that p € N if there is a real number
Poo > 1 suchthat [p — po| € P.

The following theorem is the main result of this paper.

THEOREM 2.14. Let p € LNN, 1 < p.. Then M is bounded on 840 (R").

Proof. Assume fR,, \P < 1. By Lemma 1.7 it suffices to prove

IMf (x)[PWdx < oc.
Rn

Set f1 = [z f2 = [ X{ulrwl<1y- Then f = fi 4 f> and so, Mf(x) <
Mf(x) + Mf2(x). It gives

/R M ()P < 277 /R f ()P + /R MA@IY). (2)
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Since f1 € G,(,) we obtain by Lemma 2.6
M (x)[PPdx < oo. (2.8)
Rn
Now, let us estimate [, [Mf>(x)|’ (dx . Remark that

f2(x)PWdx < 1.
Rn

Since |f2(x)] < 1 forall x € R" and |p(x) — pso| € P we obtain by Lemma 2.12

If2(x) [P dx < oo.
R}l

By Proposition 1.2 we have

|Mf>(x) [P dx < oo.
R}l

Now, the fact |[f2(x)| < I for all x € R" immediately yields |Mf2(x)| < 1 for all
x € R” and thus, we can use again Lemma 2.12 to obtain

|Mf2(x) PP dx < co.
Rn

which finishes with (2.7) and (2.8) the proof. [

3. Counter-example

Let us define a wider class of functions p than A/ .

DEFINITION 3.1. Let p € B(R"). Say that p € A if there exists a real number
Poo > 1 such that

{x € R" |p(x) — poo| = 0} NBL| — 0 provided r — oo
foreach 6 > 0.
LEMMA 3.2. The inclusion N C A holds.

Proof. Assume p € N andset €(x) = |p(x) — poo|. Then we can find 0 < ¢ < 1
such that

/ e(x)c"/EWdx < oo. (3.1)

Assume € ¢ A. Then there exist 6 > 0, n > 0 such that |[{x € R"; ¢ (x) >
0} NBS| = n for each r > 0 and consequently, setting M = {x € R";e(x) > 8} w
obtain |[M| = co. Since ¢ < 1 we have ¢'/® < ¢!/¢® forall x € M and so,

/ e(x)c/E¥dx > / e(x)c!/E¥dx > 601/5/ dx = 0
n M M
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which is a contradiction with (3.1). O

It is not so difficult to find a Lipschitz function p € B(R) with 1 < p, such that
M is unbounded on /™) (R). In [4] the example of a bounded Lipschitz function p,
1 < p., is found such that average operators T, given by Tf (x) = 5 fxxﬂ f(¢)dt are
unbounded on 1™ ([0, 00)) forall @ > 0. Extending p to (—oc0, 0] by p(—x) = p(x)
we immediately obtain that M is unbounded on L’®)(R). But this function p from
[4] satisfies p ¢ A. From this point of view it would be interesting to find a function
p € AN L such that M is unbounded on I7¥(R). So, the rest is devoted to a
construction of such p which is even Lipschitz.

Let ¢ > 1 and {m}°, be a fixed increasing sequence of integers, ny = 0.
Fix a sequence {&}2, of real numbers, & N\, 0, & = 1 and define a function
p:R —[1,00) by

q+ & ifx=0;
q+ g ifx e [1 +nk,1,nk}, ke N;

plx) = o . (3.2)
pis linear if x € [ng_y,np—1 + 1];

p(—x) for each x < 0.

Clearly, px = poo = q > 1, p* = g+ & < oo. Since limjy_ p(x) = g we
have p € A. Moreover, since p is continuous and

max{[p”.(x)|, [p’, (x)[} < max{e;k >0} <1

forall x € R we have that p is Lipschitz function and so, p € L. Itproves p € ANL.

LEMMA 3.3.  Let the sequence {ni}2, satisfy ny —ng > 2 and let {n; —
ng—1}32, be non-decreasing. Assume that (ny — ng_1)% %=1 is unbounded. Then M
is unbounded on '™ (R).

Proof. Set & := ny—n;_, . Since 5,;6"_6“1 isunbounded then (&, —1)(&—&-1)/(a+&)
is unbounded, too. Then there exists a sequence of positive real numbers {b;}7°, such
that

> be<1and Y (& — )&/ @ @y = oo, (3.3)
k=1 k=1

Set

oo by 1/q+&
f(x) = (5k — 1) Xlt+me—ym] ()C)
=0

k
Estimate [ = [, |f (x)["®dx. Clearly,

[ b Ve 1) > by
’:Z/l ((sk_1) > dr=> (8 —Dg= <L

k=1 v IHng—y k=1
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Now, fix k > 1 and x € [1 4 ng, ng41] . Then
VI e p—— AR
> e o ()

st (b V)
- x—nk,I—I 5k—l :

Thus, denoting J = fR Mf (x ) )dx we have

[e%e] s 6k -1 bk 1/((1+5k> (q+£k+1)
J = ( ) dx 3.4
;/l‘ﬂlk <x_nk—l -1 (Sk— 1 ) ( )
- i(&c — 1)+ < by ><q+€"“)/<q+€") /”k+1 dx
k=1 O — 1 L, (6 — ey — D)late)”

Using the assumption 2 < § < 81 we obtain
Ny dx
/1+”k (x — Mg — 1)(Q+5k+1>

1 1 1
gt & — 1 (5]3”"“_1 (Ot St — 1)q+€"+‘_1>

1 1 1
2 _
q —+ Ept+1 — 1 <6Ig+€k+l_l (25k — 1)‘1+5k+11>

1 1 l
2 _
q+&q1—1 <5q+€k+1_1 (25k )q+€k+1 1)

1 -1
2q—i—so—l(li( ) ‘1+5k+1 1

) s
q—1 q+&—1
q+£lo—1<1 <) )( ) m
)
(3

St e ___C4.a)
T g+e—1 (O — 1)7 ”k“_l (8 — 1)aea—1"
By (3.3) itis by < 1 which gives with (3.4)
oo (g+er1)/(a+e)
J > Cla.e) 2,8~ 1) (522)
C(q, )Zk 1(5k _ 1) &g— £k+1)/(q+£k)bl(:]+5k+1)/(‘1+5k>

> Clq, &) > 00, (6 — D& &)/ atedp, = oo

and the lemma is proved. [J

THEOREM 3.4. There exists p € AU L such that M is unbounded on I’ (R).
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Proof. Let g > 1 be an arbitrary. Take a sequence of integers {8 }52, such that

01 =21, 0 /oo andset g = % Define a sequence {n,}>°, by

ng = 0;

n, = n, = 226:(1671)7 72 1
k=1

. —1 . .
Since n, — n,_; = 28"V we have n, —np > 2 and n, —n,_, is non-decreasing.
Moreover,

1/r(r—1)
(1 =)o = (26100) T > 6

Thus, (n, — n,—1)% -1 is unbounded. Let p be given by (3.2). Since p is Lipschitz
we have p € AN £. By Lemma 3.3 the operator M is unbounded on 17 (R) which
finishes the proof. [J
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