
Mathematical
Inequalities

& Applications
Volume 7, Number 2 (2004), 255–265

HARDY–LITTLEWOOD MAXIMAL OPERATOR ON Lp(x)(R)

ALEŠ NEKVINDA

(communicated by L. Pick)

Abstract. We consider Hardy-Littlewood maximal operator on the general Lebesgue space
Lp(x)(Rn) with variable exponent. A sufficient condition on the function p is known for
the boundedness of the maximal operator on Lp(x)(Ω) with an open bounded Ω . Our main aim
is to find an additional condition to p to guarantee the boundedness of the maximal operator on
Lp(x)(Rn) . From this point of view we put an emphasis on the behavior of functions p near
the infinity. We find a sufficient condition on p such that the maximal operator is bounded on
Lp(x)(Rn) . We also construct a function p for which the maximal operator is unbounded.

1. Introduction

The generalized Lebesgue space Lp(x) and the corresponding Sobolev space W1,p(x)

have attracted more and more interest in recent years. We refer to [8] for the establish-
ment of the fundamental properties of these spaces, to [3] for some properties of the
norm on Lp(x) , and to [6] for inequalities of Sobolev type. Further motivation for the
study of these spaces is provided in [11, 12] by means of mathematical models of elec-
trorheological fluids which involve nonlinear systems of partial differential equations
with coefficients of variable rate of growth.

A crucial difference between Lp(x) and the classical Lebesgue spaces is that Lp(x)

is not, in general, invariant under translation(see [8], Ex. 2.9). Because of this, serious
problems arise with regard to convolutions, the density of smooth functions in W1,p(x)

(see [5] and [13]) and the boundedness of the Hardy-Littlewood maximal operator.
In [4] and [9] a discrete version �pn of Lp(x) is introduced and some interesting

properties of these spaces are proved. Especially, a necessary and sufficient condition
to bounded sequences {pn} , {qn} is found to guarantee the equivalence of norms in
spaces �pn and �qn .

In [2] L.Diening proved that the maximal operator is bounded on Lp(x)(Ω) for a
bounded Ω provided −|p(x)− p(y)| ln |x− y| � C for |x− y| � 1

2 , x, y ∈ Ω . In [10]
the authors showed that the maximal operator can be unbounded if there exists x ∈ Ω
such that − limy→x |p(x) − p(y)| ln |x − y| = ∞ .

We will investigate in this paper the Hardy-Littlewood maximal operator on
Lp(x)(Rn) . It is not difficult to prove the boundedness of maximal operator provided
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p(x) is constant on {x ∈ R
n; |x| � R} for some positive R and p satisfies the condition

from [2] on {x ∈ R
n; |x| � R} . We find a more general condition to the behavior of p(x)

then constancy near the infinity to guarantee the boundedness of maximal operator on
Lp(x)(Rn) . We show that the class of functions p(x) satisfying this sufficient condition
is contained in a wider class of functions which have a finite limit at the infinity in the
sense of Lebesgue measure. Moreover, we construct an example of a function p(x)
from this wider class such that the maximal operator is unbounded on Lp(x)(R) .

DEFINITION 1.1. Let f ∈ L1
loc(R

n) . Define the Hardy-Littlewood maximal func-
tion Mf by

(Mf )(x) = sup
x∈Q

1
|Q|
∫

Q
|f (t)|dt

where Q are cubes which sides are parallel to the coordinates.

Remind the well-known theorem on the maximal operator. The proof can be found
for instance in [7], Theorem 21.76.

PROPOSITION 1.2. Let r ∈ R , 1 < r � ∞ , then there exists Mr > 0 such that∫
Rn

(
Mf (x)

)r
dx � Mr

∫
Rn

|f (x)|rdx.

Let B ⊂ R
n be a measurable set. Denote by M(B) the set of all measurable

functions on B and adopt the notation |B| for the Lebesgue measure. Let B(B) denote
the set of all functions p ∈ M(B) such that 1 � p(x) , ess sup{x ∈ B; p(x) < ∞} .

DEFINITION 1.3. We say that a normed linear subspace X of M(B) is a Banach
function space if the following five axioms are satisfied:
(i) the norm ‖f ‖X is defined for all f ∈ M(B) , and f ∈ X if and only if ‖f ‖X < ∞ ;
(ii) ‖f ‖X = ‖ |f | ‖X for all f ∈ M(B) ;
(iii) 0 � f n ↗ f a.e. in B , then ‖f n‖X ↗ ‖f ‖X ;
(iv) if |E| < ∞ , then χE ∈ X where χE denotes the characteristic function of E ;
(v) for every E ⊂ B with |E| < ∞ there exists a constant CE such that

∫
E f (t)v(t)dt �

CE‖f ‖X for all f ∈ X(B) .

DEFINITION 1.4. Let p(x) ∈ M(B) , 1 � p(x) < ∞ . Denote for f ∈ M(B) the
Luxemburg norm by

‖f ‖p(x) = inf{λ > 0;
∫

B

∣∣∣∣ f (x)
λ

∣∣∣∣
p(x)

dx � 1}

Define a space Lp(x)(B) by

Lp(x)(B) = {f ∈ M(B); ‖f ‖p(x) < ∞}.

In [4], the following lemma is proved.

LEMMA 1.5. The space Lp(x)(B) is a Banach function space.
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The following lemma is proved in [8] (see Theorem 2.4).

LEMMA 1.6. Let p ∈ B(Rn) . Then

Lp(x)(Rn) = {f ∈ M(Rn);
∫

Rn
|f (x)|p(x)dx < ∞}.

To prove the next lemma we used the idea of the proof of Theorem 1.8 in [1].

LEMMA 1.7. Let p ∈ B(Rn) and let X = Lp(x)(Rn) . Then the following
statements are equivalent.
(i) Then there exists a constant C > 0 such that ‖Mf ‖X � C‖f ‖X for all f ∈ X .
(ii)

∫
Rn |Mf (x)|p(x)dx < ∞ provided

∫
Rn |f (x)|p(x)dx � 1 .

Proof. The implication (i) ⇒ (ii) is an easy consequence of Lemma1.6. Prove the
opposite implication. Assume the contrary. Then there exists a sequence of functions
f n � 0 with ‖f n‖X � 1 and ‖Mfn‖X � n3 . Set f = 6

π2

∑∞
k=1

f n
n2 . Clearly, ‖f ‖X � 1

and as an easy consequence of the boundedness of p we obtain
∫

Rn |f (x)|p(x)dx � 1 .

On the other hand, we obtain ‖Mf ‖X � 6
π2

‖f n‖X
n2 � 6n

π2 for each n . Thus, ‖Mf ‖X = ∞
and

∫
Rn |Mf (x)|p(x)dx = ∞ by Lemma 1.6. �

2. Boundedness of maximal operator

Adopt in the next the notation BR(x) = {y ∈ R
n; |x − y| < R} , BR := BR(0) ,

Bc
R = R

n \ BR and set p∗ = inf{p(x); x ∈ R
n} , p∗ = sup{p(x); x ∈ R

n} .

DEFINITION 2.1. Let p ∈ B(Rn) . Say that p ∈ L if there is a constant K > 0
such that

|p(x) − p(y)| � K
− ln |x − y|

for x, y ∈ R
n , 0 < |x − y| � 1

2 .

Given Ω ⊂ R
n and p : R

n → R we adopt the notation pm,Ω = ess inf{p(x); x ∈
Ω} and pM,Ω = ess sup{p(x); x ∈ Ω} .

In [2] (see Lemma 3.2) the following lemma is proved.

LEMMA 2.2. Let p ∈ L . Then there exists a constant C > 0 such that the
estimate

|B|pm,B−pM,B � C

holds for any ball.

By an easy modification we obtain the following lemma.

LEMMA 2.3. Let p ∈ L . Then there exists a constant C > 0 such that the
estimate

|Br(x)|pm,Br (x)−p(x) � C

holds for any ball.
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Proof. If |Br(x)| � 1 then the fact pm,Br(x) − p(x) � 0 clearly gives

|Br(x)|pm,Br (x)−p(x) � 1.

If |Br(x)| � 1 then by Lemma 2.2 we obtain

|Br(x)|pm,Br (x)−p(x) = |Br(x)|pm,Br (x)−pM,Br (x) |Br(x)|pM,Br (x)−p(x)

� |Br(x)|pm,Br (x)−pM,Br (x) � C

which finishes the proof. �

Define a centered maximal operator by

(M(c)f )(x) = sup
R>0

1
BR(x)

∫
BR(x)

|f (t)|dt.

Lars Diening proved in [2] (see Lemma 3.3) the following lemma.

LEMMA 2.4. Let p ∈ L . Then there is a constant C(p) > 0 such that for each
x ∈ R

n and for each function f with
∫

Rn |f (t)|p(t)dt � 1 the inequality

(
M(c)f (x)

)p(x) � C(p)
(
M(c)

(|f (.)|p(.))(x) + 1
)

holds.

It is not difficult to observe that there is a constant D > 0 such that the inequalities

D−1Mf (x) � M(c)f (x) � DMf (x) (2.1)

hold for each f ∈ L1
loc and x ∈ R

n .

DEFINITION 2.5. Let p ∈ L . Say that a function f belongs to a class Gp (write
p ∈ Gp ) if f (x) = 0 or |f (x)| � 1 for each x ∈ R

n and∫
Rn

|f (x)|p(x)dx � 1.

Using the analogous idea as in the proof of Lemma3.2 in [2] we obtain the following
lemma which is similar to Lemma 2.4.

LEMMA 2.6. Let p ∈ L . Then there exists a constant Cp > 0 such that the
inequality

|Mf (x)|p(x) � CpM(|f (.)|p(.))(x)

holds for all f ∈ Gp and x ∈ R
n .

Proof. Set for r > 0

Mrf (x) =
1

|Br(x)|
∫
|Br(x)|

|f (y)|dy.
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Suppose f ∈ Gp and x ∈ R
n . By Jensen’s inequality we obtain

(
Mrf (x)

)p(x) =
( 1
|Br(x)|

∫
|Br(x)|

|f (y)|dy
)p(x)

(2.2)

�
( 1
|Br(x)|

∫
|Br(x)|

|f (y)|pm,Br (x)dy
) p(x)

pm,Br (x) := I.

Since f ∈ Gp(.) and pm,Br(x) � p(y) for y ∈ Br(x) we have |f (y)|pm,Br (x) � |f (y)|p(y)

which gives

I � |Br(x)|−
p(x)

pm,Br (x)

(∫
Br(x)

|f (y)|p(y)dy
) p(x)

pm,Br (x) .

Using again the assumption f ∈ Gp(.) we have∫
Br(x)

|f (y)|p(y)dy �
∫

Rn
|f (y)|p(y)dy � 1

and since p(x)
pm,Br (x)

� 1 we obtain

I � |Br(x)|−
p(x)

pm,Br (x)
∫

Br(x)
|f (y)|p(y)dy

= |Br(x)|
pm,Br (x)−p(x)

pm,Br (x)

(
1

|Br(x)|
∫

Br(x)
|f (y)|p(y)dy

)
.

By Lemma 2.3 we have

|Br(x)|
pm,Br (x)−p(x)

pm,Br (x) � C
1

pm,Br(x) � max{1, C}
1

pm,Br(x) � max{1, C}.
Thus, I � max{1, C}Mr

(|f (.)|p(.)
)
(x) which gives with 2.2

∣∣Mrf (x)
∣∣p(x) � max{1, C}Mr

(|f (.)|p(.))(x).
Taking supremum on both sides we obtain∣∣M(c)f (x)

∣∣p(x) � max{1, C}M(c)
(|f (.)|p(.))(x).

which gives with 2.1 the assertion of our lemma. �

LEMMA 2.7. Let p ∈ L , 1 < p∗ and f ∈ Gp . Then∫
Rn

|Mf (x)|p(x)dx < ∞.

Proof. Set q(x) = p(x)
p∗ and h(x) = |f (x)|q(x) . Then h ∈ Lp∗ and according to

Theorem 1.2 we have∫
Rn

|Mh(x)|p∗dx � Mp∗

∫
Rn

|h(x)|p∗dx < ∞.
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It follows with the easy fact q ∈ L and with Lemma 2.6

∫
Rn |Mf (x)|p(x)dx =

∫
Rn(|Mf (x)|q(x))p∗dx � Cp∗(q)

∫
Rn

(
M
(
f (.)q(.)

)
(x)
)p∗

dx

� Cp∗(q)
∫

Rn

(
M(f (.)q(.))(x)

)p∗dx � Cp∗(q)
∫

Rn

(
Mh(x)

)p∗dx

� Cp∗(q)Mp∗
∫

Rn

(
h(x)

)p∗dx < ∞

which finishes the proof. �

Now, we will find a condition to the behavior of p(x) near to infinity to guarantee
the boundedness of M .

DEFINITION 2.8. Let ε ∈ M(Rn) . Denote P(ε) = {x ∈ R
n; ε(x) > 0} . Say that

ε ∈ P if there exists a positive real number c such that∫
P(ε)

ε(x)c1/ε(x)dx < ∞. (2.3)

REMARK 2.9. It is easy to see that |ε| ∈ P if and only if ε ∈ P and −ε ∈ P .

LEMMA 2.10. Let K > 0 and α ∈ M(Rn) satisfy 0 � α(x) � K for x ∈ R
n .

Let ε ∈ P . Then αε ∈ P .

Proof. Let c satisfy (2.3). Without loss of generality we can assume c � 1 . Set
d = cK . Let us estimate ∫

P(αε)
α(x)ε(x)d1/(α(x)ε(x))dx.

Since 0 � α(x) � K , we have d = cK � cα(x) and using the simple fact that
P(αε) ⊂ P(ε) we obtain

∫
P(αε) α(x)ε(x)d1/(α(x)ε(x)) =

∫
P(αε) α(x)ε(x)(cK)1/(α(x)ε(x))

dx

� K
∫

P(αε) ε(x)(c
α(x))

1/(α(x)ε(x))
dx � K

∫
P(ε) ε(x)c

1/ε(x)dx < ∞,

which finishes the proof. �

LEMMA 2.11. Let M ⊂ R
n , ε(x) � 1 and ε ∈ P . Assume 0 � g(x) � 1 ,∫

M g(x)dx < ∞ . Then
∫

M g(x)1−ε(x)dx < ∞ .

Proof. Denote F1 = {x ∈ M; ε(x) < 0} , F2 = {x ∈ M \ F1; g(x) > ε(x)c1/ε(x)}
and F3 = {x ∈ M \ F1; g(x) � ε(x)c1/ε(x)} . Since F1, F2, F3 are pair-wise disjoint
and M = F1 ∪ F2 ∪ F3 we have∫

M
g(x)1−ε(x)dx =

∫
F1

g(x)1−ε(x)dx +
∫

F2

g(x)1−ε(x)dx +
∫

F3

g(x)1−ε(x)dx. (2.4)
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Let x ∈ F1 . Since ε(x) < 0 we have g(x)−ε(x) � 1 and so,∫
F1

g(x)1−ε(x)dx �
∫

F1

g(x)dx < ∞. (2.5)

Let x ∈ F2 . Since ε(x) > 0 we have ε(x)−ε(x) � e1/e which gives with

g(x) > ε(x)c1/ε(x) that g(x)1−ε(x) � g(x)
(
ε(x)c1/ε(x))−ε(x)

< c−1e1/eg(x) and∫
F2

g(x)1−ε(x)dx � e1/e

c

∫
F2

g(x)dx < ∞. (2.6)

Let x ∈ F3 . Then 0 � g(x) � ε(x)c1/ε(x) and since ε ∈ P we have by (2.3)∫
F3

g(x)1−ε(x)dx �
∫

F3

ε(x)c1/ε(x)(ε(x)c1/ε(x))−ε(x)
dx � e1/e

c

∫
F3

ε(x)c1/ε(x)dx < ∞

which proves with (2.4), (2.5) and (2.6) the lemma. �

LEMMA 2.12. Let p, q ∈ B(Rn) and |p − q| ∈ P . Assume that 0 � f (x) � 1
a.e. in R

n . Then
∫

Rn f (x)p(x)dx < ∞ if and only if
∫

Rn f (x)q(x)dx < ∞ .

Proof. Assume
∫

Rn f (x)p(x)dx < ∞ and set g(x) = f (x)p(x) , ε(x) = p(x)−q(x)
p(x) .

By Lemma 2.10 we obtain |ε| ∈ P and by Remark 2.9 we have ε ∈ P . Since ε(x) < 1
and

∫
Rn g(x)dx < ∞ we obtain by Lemma 2.11∫

Rn
f (x)q(x)dx =

∫
Rn

g(x)1−ε(x)dx < ∞

and the proof follows. �
Let us introduce a class of functions p which describes a behavior of p at the

infinity.

DEFINITION 2.13. Let p ∈ B(Rn) . Say that p ∈ N if there is a real number
p∞ > 1 such that |p − p∞| ∈ P .

The following theorem is the main result of this paper.

THEOREM 2.14. Let p ∈ L ∩ N , 1 < p∗ . Then M is bounded on Lp(x)(Rn) .

Proof. Assume
∫

Rn |f (x)|p(x)dx � 1 . By Lemma 1.7 it suffices to prove∫
Rn

|Mf (x)|p(x)dx < ∞.

Set f 1 = f χ{x;|f (x)|�1} , f 2 = f χ{x;|f (x)|<1} . Then f = f 1 + f 2 and so, Mf (x) �
Mf 1(x) + Mf 2(x) . It gives∫

Rn
|Mf (x)|p(x)dx � 2p∗−1

(∫
Rn

|Mf 1(x)|p(x)dx +
∫

Rn
|Mf 2(x)|p(x)dx

)
. (2.7)
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Since f 1 ∈ Gp(.) we obtain by Lemma 2.6∫
Rn

|Mf 1(x)|p(x)dx < ∞. (2.8)

Now, let us estimate
∫

Rn |Mf 2(x)|p(x)dx . Remark that∫
Rn

|f 2(x)|p(x)dx � 1.

Since |f 2(x)| < 1 for all x ∈ R
n and |p(x) − p∞| ∈ P we obtain by Lemma 2.12∫

Rn
|f 2(x)|p∞dx < ∞.

By Proposition 1.2 we have ∫
Rn

|Mf 2(x)|p∞dx < ∞.

Now, the fact |f 2(x)| < 1 for all x ∈ R
n immediately yields |Mf 2(x)| � 1 for all

x ∈ R
n and thus, we can use again Lemma 2.12 to obtain∫

Rn
|Mf 2(x)|p(x)dx < ∞.

which finishes with (2.7) and (2.8) the proof. �

3. Counter-example

Let us define a wider class of functions p than N .

DEFINITION 3.1. Let p ∈ B(Rn) . Say that p ∈ A if there exists a real number
p∞ > 1 such that

|{x ∈ R
n; |p(x) − p∞| � δ} ∩ Bc

r | → 0 provided r → ∞
for each δ > 0 .

LEMMA 3.2. The inclusion N ⊂ A holds.

Proof. Assume p ∈ N and set ε(x) = |p(x)− p∞| . Then we can find 0 < c � 1
such that ∫

Rn
ε(x)c1/ε(x)dx < ∞. (3.1)

Assume ε /∈ A . Then there exist δ > 0, η > 0 such that |{x ∈ R
n; ε(x) �

δ} ∩ Bc
r | � η for each r > 0 and consequently, setting M = {x ∈ R

n; ε(x) � δ} we
obtain |M| = ∞ . Since c � 1 we have c1/δ � c1/ε(x) for all x ∈ M and so,∫

Rn
ε(x)c1/ε(x)dx �

∫
M
ε(x)c1/ε(x)dx � δc1/δ

∫
M

dx = ∞
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which is a contradiction with (3.1). �

It is not so difficult to find a Lipschitz function p ∈ B(R) with 1 < p∗ such that
M is unbounded on Lp(x)(R) . In [4] the example of a bounded Lipschitz function p ,
1 < p∗ , is found such that average operators Ta given by Tf (x) = 1

a

∫ x+a
x f (t)dt are

unbounded on Lp(x)([0,∞)) for all a > 0 . Extending p to (−∞, 0] by p(−x) = p(x)
we immediately obtain that M is unbounded on Lp(x)(R) . But this function p from
[4] satisfies p /∈ A . From this point of view it would be interesting to find a function
p ∈ A ∩ L such that M is unbounded on Lp(x)(R) . So, the rest is devoted to a
construction of such p which is even Lipschitz.

Let q > 1 and {nk}∞k=0 be a fixed increasing sequence of integers, n0 = 0 .
Fix a sequence {εk}∞k=0 of real numbers, εk ↘ 0 , ε0 = 1 and define a function
p : R → [1,∞) by

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q + ε0 if x = 0;

q + εk if x ∈ [1 + nk−1, nk], k ∈ N;

p is linear if x ∈ [nk−1, nk−1 + 1];
p(−x) for each x < 0.

(3.2)

Clearly, p∗ = p∞ = q > 1 , p∗ = q + ε0 < ∞ . Since lim|x|→∞ p(x) = q we
have p ∈ A . Moreover, since p is continuous and

max{|p′−(x)|, |p′+(x)|} � max{εk; k � 0} � 1

for all x ∈ R we have that p is Lipschitz function and so, p ∈ L . It proves p ∈ A∩L .

LEMMA 3.3. Let the sequence {nk}∞k=0 satisfy n1 − n0 � 2 and let {nk −
nk−1}∞k=1 be non-decreasing. Assume that (nk − nk−1)εk−εk−1 is unbounded. Then M
is unbounded on Lp(x)(R) .

Proof. Set δk := nk−nk−1 . Since δεk−εk−1

k is unbounded then (δk−1)(εk−εk−1)/(q+εk)

is unbounded, too. Then there exists a sequence of positive real numbers {bk}∞k=1 such
that

∞∑
k=1

bk � 1 and
∞∑
k=1

(δk − 1)(εk−εk−1)/(q+εk)bk = ∞. (3.3)

Set

f (x) =
∞∑
k=0

(
bk

δk − 1

)1/q+εk
χ[1+nk−1,nk ](x)

Estimate I =
∫

R
|f (x)|p(x)dx . Clearly,

I =
∞∑
k=1

∫ nk

1+nk−1

(( bk

δk − 1

)1/(q+εk)
)(q+εk)

dx =
∞∑
k=1

(δk − 1)
bk

δk − 1
� 1.
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Now, fix k � 1 and x ∈ [1 + nk, nk+1] . Then

Mf (x) � 1
(x−nk−1−1)

∫ x
nk−1+1 f (t)dt

� 1
(x−nk−1−1)

∫ nk
nk−1+1

(
bk

δk−1

)1/(q+εk)
dt

= δk−1
x−nk−1−1

(
bk

δk−1

)1/(q+εk)
.

Thus, denoting J =
∫

R
(Mf (x))p(x)dx we have

J �
∞∑
k=1

∫ nk+1

1+nk

(
δk − 1

x − nk−1 − 1

( bk

δk − 1

)1/(q+εk)
)(q+εk+1)

dx (3.4)

=
∞∑
k=1

(δk − 1)q+εk+1

(
bk

δk − 1

)(q+εk+1)/(q+εk) ∫ nk+1

1+nk

dx

(x − nk−1 − 1)(q+εk+1)
.

Using the assumption 2 � δk � δk+1 we obtain∫ nk+1

1+nk

dx

(x − nk−1 − 1)(q+εk+1)

=
1

q + εk+1 − 1

(
1

δ q+εk+1−1
k

− 1
(δk + δk+1 − 1)q+εk+1−1

)

� 1
q + εk+1 − 1

(
1

δ q+εk+1−1
k

− 1
(2δk − 1)q+εk+1−1

)

� 1
q + εk+1 − 1

(
1

δ q+εk+1−1
k

− 1

(2δk − δk
2 )q+εk+1−1

)

� 1
q + ε0 − 1

(
1 −

(2
3

)q−1) 1

δ q+εk+1−1
k

=
1

q + ε0 − 1

(
1 −

(2
3

)q−1)(δk − 1
δk

)q+εk+1−1 1
(δk − 1)q+εk+1−1

� 21−q−ε0

q + ε0 − 1

(
1 −

(2
3

)q−1) 1
(δk − 1)q+εk+1−1 =

C(q, ε0)
(δk − 1)q+εk+1−1 .

By (3.3) it is bk � 1 which gives with (3.4)

J � C(q, ε0)
∑∞

k=1(δk − 1)
(

bk
δk−1

)(q+εk+1)/(q+εk)

= C(q, ε0)
∑∞

k=1(δk − 1)(εk−εk+1)/(q+εk)b
(q+εk+1)/(q+εk)
k

� C(q, ε0)
∑∞

k=1(δk − 1)(εk−εk+1)/(q+εk)bk = ∞
and the lemma is proved. �

THEOREM 3.4. There exists p ∈ A ∪ L such that M is unbounded on Lp(x)(R) .
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Proof. Let q > 1 be an arbitrary. Take a sequence of integers {δk}∞k=1 such that
δ1 � 1 , δk ↗ ∞ and set εk = 1

k . Define a sequence {nr}∞r=1 by

nr =

⎧⎨
⎩

n0 = 0;

nr =
r∑

k=1
2δ k(k−1)

k , r � 1.

Since nr − nr−1 = 2δ r(r−1)
r we have n1 − n0 � 2 and nr − nr−1 is non-decreasing.

Moreover,

(nr − nr−1)εr−εr−1 =
(
2δ r(r−1)

r

)1/r(r−1)
� δr.

Thus, (nr − nr−1)εr−εr−1 is unbounded. Let p be given by (3.2). Since p is Lipschitz
we have p ∈ A ∩ L . By Lemma 3.3 the operator M is unbounded on Lp(x)(R) which
finishes the proof. �
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[12] M. RUŽIČKA, Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Série, I 329,
1999, 393–398

[13] S. G. SAMKO, The density of C∞
0 (Rn) in generalized Sobolev spaces Wm,p(x)(Rn) , Soviet Math.

Doklady, 60, 1999, 382–385

(Received December 20, 2003) Aleš Nekvinda
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