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Abstract. Let K be a nonempty closed convex subset of a real Hilbert space H . Approximation-
solvability of a class of relaxed γ - r -cocoercive nonlinear variational inequality (NVI) problems,
based on the convergence of projectionmethods, is discussed as follows: find an elements x∗ ∈ K
such that

〈 T(x∗), x − x∗〉 � 0 ∀x ∈ K

where T : K → H ia a nonlinear mapping on K .

1. Introduction

Recently, Nie et al. [2], based on Verma [3], introduced a new system of nonlinear
strongly monotone variational inequalities and studied, based on the convergence of a
system of iterative algorithms, the approximation-solvability of this system in a Hilbert
space setting. Iterative procedures have been applied widely to problems arising from
complementarity, convex quadratic programming, and variational problems. On the top
of that, numerous numerical computations/experiments have been carried out in the
context of the approximatino-solvability of strongly monotone variational inequalities,
especially in R

n . The author [4] introduced the class of partially relaxed monotone
mappings, which is more general than the class of strongly monotone mappings, as well
as cocoercive mappings, Zhu and Marcotte [9] studied a class of cocoercive variational
inequalities based on the convergence of an iterative scheme. For more details on the
approximation-solvabilityof general nonlinear variational inequalities, we refer to [1-9].

Here in this paper, first we intend to present the notion of the relaxed γ − r -
cocoercive nonlinear mappings, and then we consider, based on the projection method,
the approximation-solvability of a class of nonlinear relaxed γ−r -cocoercive variational
inequalities in a Hilbert space setting. The obtained results complement the results of
Verma [3, 4], He and He [1], Nie et al. [2] and others.

Let H be a real Hilbert space with the inner product <, > and norm ||.|| . Let
T : K → H be any mapping on K and K be a closed convex subset of H. We consider
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a class of nonlinear variational inequality (abbreviated as NVI) problems as follows:
determine elements x∗ ∈ K such that

〈T(x∗), x − x∗〉 � 0 ∀x ∈ K (1.1)

The NVI (1.1) problem is equivalent to the following projection formula

x∗ = PK [x∗ − ρT(x∗)] for ρ > 0,

where PK is the projection of H onto K .
Let K be a closed convex cone of H . The NVI (1.1) problem is equivalent to a

class of nonlinear complementarities (abbreviated as NC): find the elements x∗ ∈ K
such that T(x∗) ∈ K∗ and

〈 ρT(x∗), x∗〉 = 0 for ρ > 0, (1.2)

where K∗ is a polar cone to K defined by

K∗ = {f ∈ H : 〈 f , x〉 � 0 ∀x ∈ K}.
Now we need to recall the following auxiliary result, most commonly used in the

context of approximation-solvability of nonlinear variational inequality problems based
on iterative procedures.

LEMMA 1.1. For an element z ∈ H , we have

x ∈ K and 〈 x − z, y − x〉 � 0 ∀y ∈ K if and only if x = PK(z).

A mapping T : H → H is called monotone if for each x, y ∈ H , we have

〈T(x) − T(y), x − y〉 � 0.

A mapping T : H → H is called r -strongly monotone if for each x, y ∈ H , we
have

〈T(x) − T(y), x − y〉 � r||x − y||2 for a constant r > 0.

This implies that
||T(x) − T(y)|| � r||x − y||,

that is, T is r-expansive, and when r = 1, it is expansive. The mapping T is called
s-Lipschitz continuous (or Lipschitzian) if there exists a constant s � 0 such that

||T(x) − T(y)|| � s||x − y|| ∀x, y ∈ H.

T is called μ -cocoercive if for each x, y ∈ H , we have

〈T(x) − T(y), x − y〉 � μ||T(x) − T(y)||2 for a constant μ > 0.

Clearly, every μ -cocoercive mapping T is (1/μ) -Lipschitz continuous.
We can easily see that the following implications on monotonicity, strong mono-

tonicity and expansiveness hold:
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strong monotonicity ⇒ monotonicity
⇓

expansiveness

T is called relaxed γ -cocoercive if there exists a constant γ > 0 such that

〈T(x) − T(y), x − y〉 � (−γ )||T(x) − T(y)||2 ∀x, y ∈ H

T is said to be relaxed γ − r -cocoercive if there exist constants γ , r > 0 such that

〈T(x) − T(y), x − y〉 � (−γ )||T(x) − T(y)||2 + r||x − y||2 ∀x, y ∈ H.

For γ = 0 , T is r -strongly monotone. This class of mappings are more general than
the class of strongly monotone mappings since the r -strong monotonicity implies the
relaxed γ − r -cocoercivity. Based on this, we have the following implication:

strong r -monotonicity
⇓

relaxed γ − r -cocerciveness

2. Convergence of Projection Methods

In this section we present the convergence of projection methods in the context of
the approximation-solvability of the NVI (1.1) problem.

ALGORITHM 2.1. For an arbitrarily chosen initial point x 0 ∈K with compute the
sequence { x k } such that

xk+1 = (1 − ak)xk + akPK [xk − ρT(xk))],

where PK is the projection of H onto K , ρ > 0 is a constant, and

0 � ak � 1 and
∑

k=0

ak = ∞.

We now present, based on Algorithm 2.1, the approximation-solvability of the NVI
(1.1) problem involving relaxed γ -r-cocoercive and μ -Lipschitz continuous mappings
in a Hilbert space setting.

THEOREM 2.1. Let H be a real Hilbert space and K a nonempty closed convex
subset of H. Let T : K → H be relaxed γ -r-cocoercive and g-μ -Lipschitz continuous.
Suppose that x∗ ∈ K is a solution to the NVI (1.1), the sequence {xk} is generated by
Algorithm 2.1, and

0 � ak � 1 and
∞∑

k=0

ak = ∞.

Then the sequences {xk} converges to x∗ for

0 < ρ < 2(r − γ μ2)/μ2.
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Proof. Since x∗ is a solution of the NVI (1.1) problem, it follows that

x∗ = PK[x∗ − ρT(x∗)].

Applying Algorithm 2.1, we have

||xk+1 − x∗|| = ||(1 − ak)xk + akPK [xk − ρT(xk)]

− (1 − ak)x∗ − akPK [x∗ − ρT(x∗)]||
� (1 − ak)||xk − x∗||

+ ak||PK [xk − ρT(xk)] − PK [x∗ − ρT(x∗)]||
� (1 − ak)||xk − x∗||

+ ak||xk − x∗ − ρ[T(xk) − T(x∗)]||.

(2.1)

Since T is relaxed γ -r-cocoercive and μ -Lipschitz continuous, we have

||xk − x∗ − ρ[T(xk) − T(x∗)]||2
= ||xk − x∗||2 − 2ρ〈T(xk) − T(x∗), xk − x∗〉

+ ρ2||T(xk) − T(x∗)||2
� ||xk − x∗||2 + 2ργ ||T(xk) − T(x∗)||2 − 2ρr||xk − x∗||2

+ (ρ2μ2)||xk − x∗||2
� ||xk − x∗||2 + 2ργμ2||xk − x∗||2 + (ρμ)2||xk − x∗||2
− 2ρr||xk − x∗||2

= [1 − 2ρr + 2ργμ2 + (ρμ)2]||xk − x∗||2.
As a result, we have

||xk+1 − x∗|| � (1 − ak)||xk − x∗|| + akθ||xk − x∗||, (2.2)

where θ = [1 − 2ρr + 2ργμ2 + (ρμ)2]1/2 .
It follows from (2.2) that

||xk+1 − x∗|| � [1 − (1 − θ)ak]||xk − x∗||

�
k∏

j=0

[1 − (1 − θ)aj]||x0 − x∗||, (2.3)

where θ = [1 − 2ρr + 2ργμ2 + (ρμ)2]1/2 < 1 .
Since θ < 1 and

∑∞
k=0 ak is divergent, it implies in light of [7] that

lim
k→∞

k∏

j=0

[1 − (1 − θ)aj] = 0.

Hence, the sequence {xk} converges to x∗ by (2.3) for

0 < ρ < 2(r − γ μ2)/μ2.

This completes the proof. �
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COROLLARY 2.1. [3]. Let H be a real Hilbert space and K a nonempty closed
convex subset of H. Let T: K → H be r-strongly monotone and μ -Lipschitz continuous.
Suppose that x∗ ∈K is a solution to the NVI (1.1), the sequence {xk} is generated by
Algorithm 2.1, and

0 � ak � 1 and
∞∑

k=0

ak = ∞.

Then sequence {xk} converges to x∗ for

0 < ρ < 2r/μ2.
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