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A CLASS OF RELAXED y -r-COCOERCIVE NONLINEAR VARIATIONAL
INEQUALITIES AND CONVERGENCE OF PROJECTION METHODS

RAaM U. VERMA

(communicated by D. Bainov)

Abstract. Let K be a nonempty closed convex subset of a real Hilbert space H . Approximation-
solvability of a class of relaxed - r -cocoercive nonlinear variational inequality (NVI) problems,
based on the convergence of projection methods, is discussed as follows: find an elements x* € K
such that

(T(x*),x—x*) 20 Vxek

where T : K — H ia a nonlinear mapping on K .

1. Introduction

Recently, Nie et al. [2], based on Verma [3], introduced a new system of nonlinear
strongly monotone variational inequalities and studied, based on the convergence of a
system of iterative algorithms, the approximation-solvability of this system in a Hilbert
space setting. Iterative procedures have been applied widely to problems arising from
complementarity, convex quadratic programming, and variational problems. On the top
of that, numerous numerical computations/experiments have been carried out in the
context of the approximatino-solvability of strongly monotone variational inequalities,
especially in R”. The author [4] introduced the class of partially relaxed monotone
mappings, which is more general than the class of strongly monotone mappings, as well
as cocoercive mappings, Zhu and Marcotte [9] studied a class of cocoercive variational
inequalities based on the convergence of an iterative scheme. For more details on the
approximation-solvability of general nonlinear variational inequalities, we refer to [1-9].

Here in this paper, first we intend to present the notion of the relaxed y — r-
cocoercive nonlinear mappings, and then we consider, based on the projection method,
the approximation-solvability of a class of nonlinear relaxed y —r -cocoercive variational
inequalities in a Hilbert space setting. The obtained results complement the results of
Verma [3, 4], He and He [1], Nie et al. [2] and others.

Let H be a real Hilbert space with the inner product <, > and norm |[|.||. Let
T : K — H be any mapping on K and K be a closed convex subset of H. We consider
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a class of nonlinear variational inequality (abbreviated as NVI) problems as follows:
determine elements x* € K such that

(T(x"),x—x") 20 VxeKkK (1.1)
The NVI (1.1) problem is equivalent to the following projection formula
x" = Pg[x* — pT(x*)] for p>0,

where Pk is the projection of H onto K.

Let K be a closed convex cone of H. The NVI (1.1) problem is equivalent to a
class of nonlinear complementarities (abbreviated as NC): find the elements x* € K
such that T(x*) € K* and

(pT(x*),x*y =0 for p>0, (1.2)
where K* is a polar cone to K defined by
K*'={feH:{(f,x) 20 VxeK}.

Now we need to recall the following auxiliary result, most commonly used in the
context of approximation-solvability of nonlinear variational inequality problems based
on iterative procedures.

LEMMA 1.1. For an element z € H, we have
x€K and (x—z,y—x) >0 VyeK ifandonlyif x= Pg(z).
A mapping T : H — H is called monotone if for each x,y € H, we have
(T(x) = T(¥),x—) >0.

A mapping T : H — H is called r-strongly monotone if for each x,y € H, we
have

(T(x) — T(y),x —y) >r|[x—y|[* foraconstant r > 0.
This implies that
IT(G) = T = rllx =],
that is, 7T is r-expansive, and when r = 1, it is expansive. The mapping T is called
s-Lipschitz continuous (or Lipschitzian) if there exists a constant s > 0 such that

ITGx) =TI < sllx =yl Vx,y € H.
T is called u-cocoercive if for each x,y € H, we have
(T(x) = T(y),x—y) > u||T(x) —T(y)|]* foraconstantu > 0.

Clearly, every u-cocoercive mapping 7 is (1/u)-Lipschitz continuous.
We can easily see that the following implications on monotonicity, strong mono-
tonicity and expansiveness hold:
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strong monotonicity = monotonicity

I

expansiveness

T is called relaxed y -cocoercive if there exists a constant ¥ > 0 such that
(T(x) =TO),x—y) = (=NIIT&) =TI VxyeH
T is said to be relaxed y — r-cocoercive if there exist constants y,r > 0 such that
(T(x) = TO),x =) = (=NITC) = T +rllx =yI> Vx,y € H.

For y =0, T is r-strongly monotone. This class of mappings are more general than
the class of strongly monotone mappings since the r-strong monotonicity implies the
relaxed y — r-cocoercivity. Based on this, we have the following implication:

strong r-monotonicity

I

relaxed y — r-cocerciveness

2. Convergence of Projection Methods

In this section we present the convergence of projection methods in the context of
the approximation-solvability of the NVI (1.1) problem.

ALGORITHM 2.1. For an arbitrarily chosen initial point x® € K with compute the
sequence {x* } such that

At = (1- ak))d’( + akPK[,\J( - pT()d’())],
where Pk is the projection of H onto K, p > 0 is a constant, and

0

N

<1 and Zak = 0.
k=0

We now present, based on Algorithm 2.1, the approximation-solvability of the NVI
(1.1) problem involving relaxed y -r-cocoercive and u -Lipschitz continuous mappings
in a Hilbert space setting.

THEOREM 2.1. Let H be a real Hilbert space and K a nonempty closed convex
subset of H. Let T : K — H be relaxed y -r-cocoercive and g- U -Lipschitz continuous.
Suppose that x* € K is a solution to the NVI (1.1), the sequence {x*} is generated by
Algorithm 2.1, and

0

N

oo
<1 and Zak = 0.
k=0

Then the sequences {x*} convergesto x* for

0<p<2(r—yu’)/u.
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Proof. Since x* is a solution of the NVI (1.1) problem, it follows that
X" = Pglx™ — pT(x")].
Applying Algorithm 2.1, we have
W =2 = [](1 = ) + a"Pyly* — pT(x")]
= (1= d" " = d"Pyx" — pT(x")]]]
< (1= d[lx* =]

+a||Pxlé — pT()] — Pilx* — pT(x")] | .
< (1—d) |t — 7|
+aH |l — ¥ — p[T() - T()] |-
Since T is relaxed y -r-cocoercive and u -Lipschitz continuous, we have
[l —x* = p[T (") = T(x)]|?
= |l =[] = 2p(T(") = T(x"), 2 —x*)
+0*||T() — TP
< =P+ 207 IT() — TP = 2pr] | — x|
+ (07— x*[?
<R =[P+ 20712 I — 2|2+ (pp)? [ |x* — x|
—2pr|]* —x*|?
= [1—2pr +2p7u® + (pp)?][Ix* — x*| 2.
As a result, we have
W =l < (1= d) [ =] + dboll — a7, (2.2)
where 0 = [1 —2pr + 2pyu? + (pu)*/2.
It follows from (2.2) that
B =l < = (1= 0)al e — x|
(2.3)

k
<[In- || = x*]],

J=0

where 0 = [1 —2pr + 2pyu’ + (pu)*]'* < 1.
Since 6 <1 and Y7, a* is divergent, it implies in light of [7] that
k
tim T[1 - (1 - 6)d] = o.

k—o00

j=0
Hence, the sequence {x*} convergesto x* by (2.3) for
0<p<2(r—yu’)/u.
This completes the proof. [
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COROLLARY 2.1. [3]. Let H be a real Hilbert space and K a nonempty closed

convex subset of H. Let T: K — H be r-strongly monotone and L -Lipschitz continuous.
Suppose that x* €K is a solution to the NVI (1.1), the sequence {x*} is generated by
Algorithm 2.1, and

oo
Ogakgl and Zak:oo.
k=0

Then sequence {x*} convergesto x* for

1]
2]

B3]
[4]
[5]
[6]
[7]
(8]

]

0<p<2r/u’

REFERENCES

B. S. HE AND X. Z. HE, Relations of the merit functions methods and the projection-contraction methods
for variational inequalities, Advances in Nonlinear Variational Inequalities 6(2)(2003), 55-68.

H. NIE, Z. L1u, K. H. KIM AND S. M. KANG, A system of nonlinear variational inequalities involving
strongly monotone and pseudocontractive mappings, Advances in Nonlinear Variational Inequalities
6(2)(2003), 6(2)(2003), 91-99.

R. U. VERMA, Projection methods, algorithms and a new system of nonlinear variational inequalities,
Computers and Mathematics with Applications 41(2001), 1025-1031.

R. U. VERMA, Approximation solvability of nonlinear variational inequalities partially relaxed monotone
(prm) mappings, Advances in Nonlinear Variational Inequalities 2(2)(1999), 137-148.

R. U. VERMA, A class of quasivariational inequalities involving cocoercive mappings, Advances in
Nonlinear Variational Inequalities 2(2)(1999), 1-12.

R. U. VERMA, Nonlinear variational and constrained hemivariational inequalities involving relaxed
operators, ZAMM 77(5)(1997), 387-391.

R. WITTMANN, Approximation of fixed points of nonexpansive mappings, Arch. der Mathematik
58(1992), 486-491.

N. H. X1U AND J. Z. ZHANG, Local convergence analysis of projection type algorithms: unified approach,
Journal of Optimization Theory and Applications 115(1)(2002), 211-230.

D. L. ZHU AND P. MARCOTTE, Co-coertivity and its role in the convergence of iterative schemes for
solving variational inequalities, SIAM J. Optimization 6(1996), 714-726.

(Received May 28, 2003) Ram U. Verma

Department of Mathematics
University of Toledo

Toledo, Ohio 43606

USA

e-mail: rverma@pop3.utoledo.edu
e-mail: verma99@msn . com

Mathematical Inequalities & Applications



