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REFINED GEOMETRIC INEQUALITIES BETWEEN TWO

OR MORE TRIANGLES OBTAINED BY DEDUBLATION

RAZVAN ALIN SATNOIANU

(communicated by V. Volenec)

Abstract. We study a class of inequalities between two or more triangles which extend the known
metric relations between the elements of a single triangle. The common idea is that any quadratic
type inequality between the elements of one triangle can have a “dedublated form” when written
between the elements of two (or more) triangles with the optimal inequality being possible only
when the triangles are similar. For example, we extend the well known quadratic form inequalities
of Gerretsen [2, page 8] and give the new, dedublated form inequalities for the relations, which,
in the case of a single triangle, correspond to the distances between the important points of the
triangle such as circumcentre, incentre, orthocentre and the centre of mass.

1. Introduction

Let AiBiCi , i = 1, 2 be two triangles of sides (ai, bi, ci)i=1,2 and let Si , i = 1, 2
denote their areas respectively. About 30 years ago Pedoe proved that
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with equality if and only if the two triangles A1B1C1 , A2B2C2 are similar [1]. Pedoe
found (1) in 1941 when he studied the conditions that allowed for an orthogonal
projection of an arbitrary triangle to a triangle of a given shape to exist. However it was
first discovred in 1891 by Neuberg and today inequality (1) is known as the Neuberg-
Pedoe inequality [2, page 354]. Pedoe’s result has attracted a large interest, for example
up to last decade the review [2, Chapter XII, section 3] cites 38 references! Carlitz [3]
gave an interesting algebraic proof of (1) based on a classic inequality of Aczel [4].
Among other results proved in that paper there is also the following:

PROPOSITION 1 [3]. If triangles AiBiCi , i = 1, 2 have circumcentres Oi , centroids
Gi and their circumradii Ri , i = 1, 2 , then the we have that

R1R2 − 1
9
(a1a2 + b1b2 + c1c2) � O1G1 · O2G2 (2)
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with equality if and only if the two triangles are similar.

(2) extends the well known result that

OG2 = R2 − 1
9
(a2 + b2 + c2). (3)

Klamkin later shown that the Neuberg-Pedoe’s inequality can be derived via Cauchy-
Schwartz theorem [5]. He also generalized inequality (2) to the case of two n -simplexes
based on an idea from mechanics via the polar moment of inertia.

PROPOSITION 2 [5]. If
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where Wi =
∑

k=1,n
wk .

Clearly the case n = 3 , wk
1 = wk

2 = 1 , k = 1, 3 reduces (4) to inequality (2) of
Carlitz. For the triangle case relation (3) implies that

9R2 �
(
a2 + b2 + c2

)
. (5)

(5) also follows from the fact that OH2 = 9R2 − (a2 + b2 + c2) � 0 where H is the
triangle’s orthocenter. In this respect it is well known that a much finer inequality is
valid, namely [2, page 50]

8R2 + 4r2 � a2 + b2 + c2 (6)

which holds in any triangle ABC . In fact it is known [2, pages 278-283] that in every
triangle we have that 2IH2 = 8R2 + 4r2 − (a2 + b2 + c2) , where I is the incenter of
triangle ABC . In view of the Euler inequality, R � 2r , valid in every triangle ABC
we see that (6) is finer than (5). It can be shown that the coefficients in (6) are the best
for an inequality of this form. In [8] we have recently considerably extended (6) to deal
with the general power case as follows.

PROPOSITION 3 [8]. If ABC is a triangle of sides a , b , c , and R , r are the radii
of the circumscribed and inscribed circles, respectively, then the best inequality of the
form

u(n)Rn + v(n)rn � an + bn + cn (7)

for n � 0 is given by u(n) = 21+n and v(n) = 2n
(
31+ n

2 − 21+n
)
, for all n � 0 .
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2. The main results

In this paper we seek to introduce a general idea for obtaining inequalities of the
form (2) and (6) between two ormore triangles. This is based on the dedublation process
encountered in the theory of quadratic forms in linear algebra. First we shall establish an
inequality which, although similar in spirit to the Carlitz-Klamkin inequality (2,4), it is
a much finer one. In the second part we shall present three new inequalities linking the
distances between some fundamental points of two triangles: the orthocentres, centres
of mass and the incenters. The underlying theme common to all the proofs is the use of
the "Principle of Isosceles Triangle" property for triangle geometric inequalities which
was first discussed in [6] and later developed in [7].

THEOREM 1. Let AiBiCi , i = 1, 2 be two triangles of sides (ai, bi, ci)i=1,2 , areas
S1,2 and of radii (Ri, ri)i=1,2 where Ri , ri denote the lengths of the radii of the
circumscribed and inscribed circles for AiBiCi , respectively. Then we have

8R1R2 + 4r1r2 � a1a2 + b1b2 + c1c2 � 36r1r2 (8)

The equality is possible only when the two triangles are similar and either equilateral
or right angle ones.

REMARKS. Inequality (8) has appeared in somewhat modified form in [9]. We
note that the inequality from the left hand side in (8) cannot result as an application of
the Aczel result [4] as was the case with Carlitz inequality (2). This is because we have
more than one term with the same sign on each side of the inequality from the left hand
side at (8). Furthermore the polar moment of inertia idea is also not applicable. This is
partly the reason what makes the case of inequality (8) more interesting than previous
results. The current reference in the field [2, page 376] gives again result (2) without
any other improvement.

Proof. We first discuss the inequality on the right hand side of (8). We shall use
the following well known result [2].

LEMMA 1. In every triangle we have with the above notation

3
√

3R � a + b + c � 6
√

3r. (9)

First we apply the arithmetic-geometric (AM-GM) inequality to obtain that

a1a2 + b1b2 + c1c2 � 3(a1a2b1b2c1c2)
1
3 (10)

Next we apply the well known relations which connect the radii and the lengths of the
sides in a triangle [2], namely

abc = 4RS = 4Rpr (11)

where S is the triangle’s area and p is the semiperimeter for the triangle ABC . With
(11) in (10) and taking into account (9) and the well known Euler inequality R � 2r
one easily gets from (10) that

3(a1a2b1b2c1c2)
1
3 � 3 · (42R1R2p1p2r1r2

) 1
3 � 3 · 4 (27(r1r2)3

) 1
3 = 36r1r2 (12)
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which is the desired result on the right-hand side in inequality (8). For this part it is
clear that equality is only possible when all the inequality signs become equalities, that
is when both triangles are equilateral.

We now discuss the inequality on the left-hand side in (1). Consider the function

f (ai, bi, ci) = 8R1R2 + 4r1r2 − (a1a2 + b1b2 + c1c2) (13)

given by the difference between the two terms in the inequality on the left-hand side in
(8). We shall use the sines theorem and the well known relations for the inscribed radii
[2]

ri = 4Ri sin(αi/2) sin(βi/2) sin(γi/2), i = 1, 2 (14)

where αi , βi , γi are the triangle’s angles. Thus (13) becomes (cyclical quantities)

f (αi, βi, γi) = 4R1R2

(
2 + 16

∏
sin(α1/2) sin(α2/2) −

∑
sin(α1) sin(α2)

)
. (15)

The critical points for f are found from

∂f
∂t

= 0 where t ∈ {αi, βi, γi} , i = 1, 2. (16)

First notice that if at least one of the triangles is degenerate then the given inequality
is trivial. For example if α1 = 0 then this follows from the fact that the two minus
terms which are left at (15) are always (as products of sines) less than 2. Furthermore
in such cases there is equality if and only if each of the triangles have two right angles,
respectively.

If the triangles are both nondegenerate, then the conditions at (16) for t ∈ αi, i =
1, 2 give that

(1 + cos(α1)) cos(α2) = (1 + cos(α2)) cos(α1) (17)

Analogously one obtains similar relations from (16) at the critical points when consid-
ered for t ∈ βi, γi, i = 1, 2 . (17) suggests considering the function

g(t) =
cos(t)

1 + cos(t)
(18)

for 0 < t < π . g is diferentiable in this range and its derivative is g′(t) = − sin(t)
(1+cos(t))2

which is strictly negative for all 0 < t < π . Consequently g is strictly decreasing
therefore relation (17) necessarily attracts that α1 = α2 . Analogously β1 = β2 ,
γ1 = γ2 at the critical, nondegenerate points.

In effect this has reduced the problem to the study of the behaviour of f at (15)
when the two triangles are similar. However, in this case the left hand side inequality in
(8) reduces to (6) which is true. In summary the function f in (13) is positive at any
critical points of its domain and also along the boundary of the domain and consequently
the left hand side inequality (8) holds for any given pairs of triangles as in the statement
of the Theorem 1. Furthermore we have shown that the only case for equality is that
when the two triangles are equilateral and, in the case of the left-hand side inequality at
(8), the equality being possible also when the two triangles are both degenerate having
two right angles. This ends the proof of the theorem.
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REMARK. The inequality on the right-hand side in (8) can be strengthened as was
given by Tsintsifas [10] in the form a1a2 + b1b2 + c1c2 � 4

√
3
√

S1S2 � 36r1r2 . Here
equality is possible only when the two triangles are equilateral.

COROLLARY 1.1. Using the same notation as in the theorem 1 one can show that
for the case of n triangles we have

2n+1R1R2...Rn + 2n
(
31+ n

2 − 2n+1
)

r1r2...rn � a1a2...an + b1b2...bn + c1c2...cn

� 2n31+ n
2 r1r2...rn (19)

where n � 2 is an integer.

Proof. One can apply the same method of proof as in Theorem 1 using the result
of Proposition 3 and taking into account that the method of proof is not dependent on
the number n , n � 2 , of triangles.

COROLLARY 1.2. With the notation of Corollary 1 we have that, for every set of
m � 1 triangles, the double inequality

2s(m)+1Rq1
1 Rq2

2 ...Rqm
m + 2s(m)

(
31+ s(m)

2 − 2s(m)+1
)

rq1
1 rq2

2 ...rqm
m

� aq1
1 aq2

2 ...aqm
m + bq1

1 bq2
2 ...bqm

m + cq1
1 cq2

2 ...cqm
m

� 2s(m)31+ s(m)
2 rq1

1 rq2
2 ...rqm

m (20)

for all q1, q2, ..., qm � 0, m � 1 , integer and where s(m) =
m∑

k=1
qk .

Proof. We apply Corollary 1 via the well known result of Oppenheimer [11] which
states that if 0 � α � 1 and a, b, c are the lengths of the sides of a triangle then
aα , bα , cα have the same property. In turn this fact can be iterated as many times
as necessary taking into account that Corollary 1 is valid for any number of arbitrary
triangles.

COROLLARY 1.3. With the notation of Corollary 1 for every set of m � 1 triangles
we have the double inequality

2s(m)+1Rq1
1 Rq2

2 ...Rqm
m + 2s(m)

(
31+ s(m)

2 − 2s(m)+1
)

rq1
1 rq2

2 ...rqm
m

� aq1
1 ...aqt

t mwt+1
at+1

...mwn
an

+ bq1
1 ...bqt

t mwt+1
bt+1

...mwn
bn

+ cq1
1 ...cqt

t mwt+1
ct+1

...mwn
cn

� 2s(m)31+ s(m)
2 rq1

1 ...rqm
m (21)

for all q1, q2, ..., qm � 0, m � 1 , integer and where s(m) =
m∑

k=1
qk .

In (21) mak represents the length of the median corresponding to the side ak and
Rk , rk are the lengths of the radii of the circumscribed and inscribed circles in the
triangle whose sides are mak , mbk , mck for all k = t + 1, ..., n . For example, it is well
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known (and easy to check) that Rk =
mak mbk

mck
3Sk , rk = 3Sk

mak+mbk
+mck

where Sk denotes

the area of the triangle AkBkCk whose sides are ak, bk, ck, k = t + 1, ..., n [2, p. 109].

Proof. We apply Corollary 2 together with the fact that if ak, bk, ck are the lengths
of the sides of a triangle then mak , mbk , mck (the lengths of the medians in triangle
AkBkCk ) have the same property for all k = t + 1, ..., n .

APPLICATIONS. 1. Various interesting inequalities are obtained from the result of
theorem 1. The case when all triangles are similar reduces exactly to inequality (7)
above. For n = 1, 2 our result recovers known inequalities published by W.J. Blundon
in the mid 60’s, see [12-13] for details.

2. Corollary 2 considerably extends the results of G. Tsintsifas and W. Janous
quoted in [2, page 376].

3. Take m = 2 , q1 = q2 = 1
2 in (20). This gives the inequality

4
√

R1R2 + (6
√

3 − 8)
√

r1r2 � √
a1a2 +

√
b1b2 +

√
c1c2 � 6

√
3
√

r1r2 (22)

which generalizes the well known Blundon inequality [2, page 10]

2R + (3
√

3 − 4)r � p � 3
√

3r (23)

valid in every triangle.
4. By applying the Holder’s inequality on the left hand side in (19) one gets that

(
n∏

i=1

(u(n)Rn
i + v(n)rn

i )

) 1
n

� u(n)
n∏

i=1

Ri + v(n)
n∏

i=1

ri (24)

for all α � 0 . Also in view of the Euler inequality mentioned earlier one can easily
see that

31+ nα
2 (R1...Rn)α �

(
n∏

i=1

(u(nα)Rnα
i + v(nα)rnα

i )

) 1
n

(25)

Indeed this follows from the fact 31+ nα
2 =

(
n∏

i=1
(u(nα) + 2−nαv(nα))

) 1
n

and the Euler

inequality R � 2r . Therefore (8) coupled with (20-21) gives the extension to the case
of n triangles of the classical, old result at (5).

More applications can be obtained by considering various dual transformations
applied to the initial triangle. Some expressions of certain elements of the initial
triangle can also serve to play the role of the lengths of the sides of a new triangle. We
applied this idea already at Corollary 3 but other interesting examples can be given.
For example, a

1+a ,
b

1+b ,
c

1+c form a triangle whenever a, b, c are the sides of the given
triangle [2, page 18]. A detailed list of such properties is given in [2, pages 18-25].
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3. Further extensions

In this section we give a few inequalities between some important points of a trian-
gle being similar in spirit to the Carlitz-Klamkin inequalities (2,4). These inequalities
are obtained using the dedublation idea from the theory of quadratic forms and extend
the situation from a single triangle to the case of a pair of triangles.

The well known Euler relation which gives the distance between the circumcenter
O and the incenter I in any triangle reads [2, page 279]

OI2 = R2 − 2Rr. (26)

We shall prove the following extension, similar in spirit to (2,4).

THEOREM 2. Let AiBiCi , i = 1, 2 be two triangles of radii (Ri, ri)i=1,2 where
Ri , ri denote the lengths of the radii of the circumscribed and inscribed circles for
AiBiCi , respectively. Let Oi , Ii be their corresponding circumcenters and incenters,
respectively. Then we have the inequality

O1I1 · O2I2 �
√

R1R2
(√

R1R2 − 2
√

r1r2
)
. (27)

The equality is possible only when the two triangles are similar.

Proof. (27) follows easily from the simple inequality(
R2

1 − 2R1r1
) (

R2
2 − 2R2r2

)
�
(
R1R2 − 2

√
R1R2r1r2

)2
(28)

which is equivalent to the obvious relation R1r2 + R2r1 � 2
√

R1R2r1r2 .

COROLLARY 2.1. When n is an even positive integer the result of theorem 2 can
be generalized by induction as follows

O1I1 · O2I2 · ... · OnIn �
√

R1R2...Rn

(√
R1R2...Rn − 2

n
2
√

r1r2...rn

)
. (29)

In every triangle the distance between the centroid G and the incentre I is given
by [2, page 280]

9GI2 = p2 + 5r2 − 16Rr. (30)

(30) can also be extended to the dedublated form inequality for a pair of triangles as
follows.

THEOREM 3. Let AiBiCi , i = 1, 2 be two triangles of radii (Ri, ri)i=1,2 and of
semiperimeters pi , where Ri , ri denote the lengths of the radii of the circumscribed and
inscribed circles for AiBiCi , respectively. Let Gi , Ii , i = 1, 2 , be their corresponding
centroids and incenters, respectively. Then we have the inequality

9G1I1 · G2I2 � p1p2 + 5r1r2 − 16
√

R1R2r1r2. (31)

The equality is possible only when the two triangles are similar.

Proof. We have to show that(
p2

1 + 5r2
1 − 16R1r1

) (
p2

2 + 5r2
2 − 16R2r2

)
�
(
p1p2 + 5r1r2 − 16

√
R1R2r1r2

)2
. (32)
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First notice that one cannot apply Aczel’s inequality [4] in (32) because the first two
parenthesis at (32) are positive rather than negative which is what one would need for
the inequality to be applied. Therefore we will have to do the full calculations! Let us
introduce x, y, z > 0 defined by

p2 = xp1, r2 = yr1, R2 = zR1. (33)

Consider

f (x, y, z) =
(
p2

1 + 5r2
1 − 16R1r1

) (
x2p2

1 + 5y2r2
1 − 16yzR1r1

)
−
(
xp1p2 + 5yr1r2 − 16

√
yzR1R2r1r2

)2
(34)

Then f is differentiable and its partial derivatives are

f x = 2p2
1r1 (5r1(x − y) − 16R1(x −√

yz)) (35.1)

f y =
2r1√
zy

(
5p2

1r1(
√

yz − x) + 8zp2
1R1(x −√

yz) + 40
√

zyR1r
2
1(3

√
yz − 2y − z)

)
(35.2)

f z = 16

√
y
z
R1r1

(
(x −√

yz)r2
1

)
(35.3)

Using relations (35) it is easy to see that the critical points ( x0, y0, z0 ) of f satisfy

x0 = y0 = z0. (36)

We shall end the proof by showing that f attains its maximum at any point (36). Due
to the homogeneity in x, y, z in the structure of f it will be sufficient to do this for the
case when the two triangles have the same circumradius, i.e. z = 1 . Let us denote
α = x2

y , β = y and consider

f 1(α, β) =
(
p2

1 + 5r2
1 − 16R1r1

) (
α2p2

1 + 5β2r2
1 − 16R1r1

)
− (αp1 + 5βr1 − 16

√
R1r1

)2
(37)

A simple calculation gives that its partial derivatives with respect to α, β are

f 1,α = 2p2
1r1 (5(α − β)r1 + 16(1 − α)R1) (38.1)

f 1,β = 10r2
1

(
5(β − α)p2

1 + 16(1 − β)R1r1
)

(38.2)

Clearly α = β = 1 is the only critical point. For α = 1 f 1,α is strictly negative for
0 < β < 1 and strictly positive for β > 1 . Similarly at β = 1 f 1,β is strictly negative
for 0 < α < 1 and strictly positive for α > 1 . Therefore f 1 attains its maximum
at α = β = 1 . Furthermore f 1(1, 1) = 0 therefore f 1(α, β) � 0 for all α, β > 0 .
This shows that f attains its maximum at the critical points (36). In this case we have
f (x0, x0, x0) = 0 and hence

f (x, y, z) � 0 for all x, y, z > 0. (39)
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Equality in (39) can happen only at the critical point (36) in which case the two triangles
are similar and the proof is finished.

In every triangle the distance between the orthocentre H and the incentre I is
given by [2, page 280]

HI2 = 4R2 + 4Rr + 3r2 − p2. (40)

We shall extend (40) to the dedublated form inequality for a pair of triangles.

THEOREM 4. Let AiBiCi , i = 1, 2 be two triangles of radii (Ri, ri)i=1,2 and of
semiperimeters pi , where Ri , ri denote the lengths of the radii of the circumscribed and
inscribed circles for AiBiCi , respectively. Let Hi, Ii, i = 1, 2 , be their corresponding
orthocenters and incenters, respectively. Then we have the inequality

H1I1 · H2I2 � 4R1R2 + 4
√

R1R2r1r2 + 3r1r2 − p1p2 (41)

The equality is possible only when the two triangles are similar.

Proof. This is similar to the proof of Theorem 3.

By combining the results of theorems 3 and 4 we get

THEOREM 5. Under the hypothesis of theorems 3 and 4 we have the double in-
equality

16
√

R1R2r1r2 − 5r1r2 � p1p2 � 4R1R2 + 4R1R2 + 4
√

R1R2r1r2 + 3r1r2. (42)

Similar results can be established in connection to other distances between impor-
tant points of the triangle. For example the following inequality makes the connection
between the result of theorem 1 and the results in section 3.

THEOREM 6. Let AiBiCi , i = 1, 2 be two triangles of radii (Ri, ri)i=1,2 and of
semiperimeters pi , where Ri , ri denote the lengths of the radii of the circumscribed and
inscribed circles for AiBiCi , respectively. Let Hi, Oi, i = 1, 2 , be their corresponding
orthocenters and circumcenters, respectively. Then we have the inequality

H1O1 · H2O2 � 9R1R2 + 8
√

R1R2r1r2 + 2r1r2 − 2p1p2. (43)

Proof. This is similar to the proof of Theorem 3.
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