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Abstract. We discuss the phase-space of conservation laws in Lagrangian and Hamiltonian
formalism from a very general point of view deriving all the geometrical properties of this
reduced configuration space. Such a mathematical approach, based on an integration of the
system dependent on the inequality between the number of dimensions in the configuration
space and the number of conservation laws, is extremely useful in connection to the derivation
of a General Conservation Principle (from which particular conservation laws can be derived).
Properties and behaviours of general solutions are discussed in relation to the existence of first
integrals of motion.

1. Introduction

Conservation laws and symmetries have always had a fundamental role both in
physics and mathematics. For instance, their existence allows to "reduce" the problem
of evolution of systems due to the first integrals of motion which can be found. Noether
theorem is a preminent result in this sense, since it establishes a link between conserva-
tion laws and symmetries. Moreover, we think that conservation laws can play a deeper
role in the definition of physical theories and, in particular, to define space-times which
can be considered of physical interest.

The aim of this paper is to discuss the features of a configuration space and then
of the related phase-space (i.e. the space which is the union of configuration space
and momentum space) in relation to the conservation laws. More precisely, we will
discuss the Lagrangian approach to conservation laws (in this case the phase-space is
nothing else but the tangent space to the manifold of configuration space, technically
speaking, the 2n -dimensional space of configurations and generalized velocities), and
the Hamiltonian approach where a phase-space can be properly defined. The result of
such a study is the fact that a General Conservation Law Theorem can be deduced and
thus the structure of the general solution of a dynamical system directly depends on the
existence of symmetries in the various "directions" of configuration space.

The philosophy which underlies our approach is the fact that we believe that
the violation of conservation laws (and then the symmetry breaking) it is artificially
introduced in contemporary Physics. We believe that conservation laws are never
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violated and such a property allows the solution of a wide variety of phenomena such
as the Einstein-Podolsky-Rosen paradox [1], topology changes [2], and the segregation
of matter and antimatter in different universes [3]. Such results do not come from some
a priori request of the theory, but they are derived from the existence of a General
Conservation Law (in a 5-dimensional space-time) where no violation is allowed [4, 5].

In this stream of research, we analyze the mathematical properties of phase-space
in the Lagrangian and Hamiltonian approaches to investigate the deep relations among
symmetries, first integrals of motion, conservation laws and dimensionality of configu-
ration space.

The paper is organized as follows. In Section II, we develop some general consid-
erations on conservation laws and we set the mathematical machinery. Sections III and
IV are devoted to Lagrangian and Hamiltonian approaches, respectively. Discussion
and conclusions are drawn in Section V.

2. General considerations on conservation laws

General conservation laws can be discussed from a geometrical point of view by
using the Lie derivative and mathematical tools such as functions, vectors, tensors and
differential forms. As a general remark, we can say that every time the action of the Lie
derivative on a geometric object gives as result zero, the object is conserved. Such a
property is covariantby definition and specifies the numberof dimensions and the nature
of configuration space where the given (physical) system is defined. It is interesting
to note that the existence of such conserved quantities always implies a reduction of
dynamics, i.e. the degree of equations of motion is reduced due to the existence of first
integrals [6, 7].

Before taking into account specific theories, let us remind some properties of the
Lie derivative and how conservation laws are related to it. Let LX be the Lie derivative

(LXω)ξ =
d
dt
ω(gt

∗ξ) , (1)

where ω is a differential form of Rn defined on the vector field ξ , gt
∗ is the differential

of the phase flux {gt} given by the vector field X on a differential manifold M . Let
ρt = ρg−t be the action of a one–parameter group able to act on functions, vectors
and forms (in general tensors) on the vector spaces C∞(M) , D(M) , and Λ(M)
constructed starting from M . If gt takes the point m ∈ M in gt(m) , then ρt takes
back on m the vectors and the forms defined on gt(m) ; ρt is a pull back. Then the
property

ρt+s = ρtρs (2)

holds since
gt+s = gt ◦ gs . (3)

On the functions f , g ∈ C∞(M) we have

ρt(f g) = (ρtf )(ρtg) ; (4)
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on the vectors X, Y ∈ D(M) ,

ρt[X, Y] = [ρtX, ρtY] ; (5)

on the forms ω ,μ ∈ Λ(M)

ρt(ω ∧ μ) = (ρtω) ∧ (ρtμ) . (6)

LX is the infinitesimal generator of the one–parameter group ρt , and, being a derivative
on the algebras C∞(M) , D(M) , and Λ(M) , the following properties must hold

LX(f g) = (LXf )g + f (LXg) , (7)
LX [Y, Z] = [LXY, Z] + [Y, LXZ] , (8)

LX(ω ∧ μ) = (LXω) ∧ μ + ω ∧ (LXμ) , (9)

which are nothing else but the Leibniz rules for functions, vectors and differential forms,
respectively. Furthermore,

LXf = Xf , (10)
LXY = adX(Y) = [X, Y] , (11)

LXdω = dLXω , (12)

where ad is the self–adjoint operator and d is the external derivative by which a p –
form becomes a (p + 1)–form. This is the mathematics we need in order to define
the phase space of conservation laws depending on the geometrical (physical) object
we shall take into account. As a general remark, we have to say that the dimensions
of the space we are considering are those of configuration space. For example a point
on a sphere is identified by two angles {θ, φ} and a radius ρ so that its configuration
space is 3-dimensional. Considering the generalized velocities {θ̇, φ̇, ρ̇} we obtain a
6-dimensional tangent space (i.e. a phase space).

3. The Lagrangian approach to conservation laws

The discussion can be specified by considering a Lagrangian L which is a function
defined on the tangent space of configurations TQ ≡ {qi, q̇i} , that is

L : TQ −→ � . (13)

In this case, the vector field X is

X = α i(q)
∂

∂qi
+ α̇ i(q)

∂

∂q̇i
, (14)

where the dot denotes the derivative with respect to t , and because of Eq.(10), we have

LXL = XL = α i(q)
∂L
∂qi

+ α̇ i(q)
∂L
∂q̇i

. (15)
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It is important to note that t is simply a parameter which specifies the evolution of the
system. The condition

LXL = 0 (16)
implies that the phase flux is conserved along X : this means that a constant of motion
exists for L and a conservation law is associated to the vector X . In fact, by taking
into account the Euler–Lagrange equations

d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0 , (17)

it is easy to show that
d
dt

(
α i ∂L

∂q̇i

)
= LXL . (18)

If (16) holds, the relation

Σ0 = α i ∂L
∂q̇i

(19)

identifies a constant of motion. Alternatively, using a generalized differential for the
Lagrangian L , the Cartan one–form,

θL ≡ ∂L
∂q̇i

dqi (20)

and defining the inner derivative

iXθL = 〈 θL, X〉 , (21)

we get, as above,
iXθL = Σ0 (22)

if, again, condition (16) holds. This representation identifies cyclic variables. Using a
point transformation on vector field (14), it is possible to get

X̃ = (iXdQk)
∂

∂Qk
+

[
d
dt

(iXdQk)
]

∂

∂Q̇k
. (23)

From now on, Lagrangians and vector fields transformed by the non–degenerate trans-
formation

Qi = Qi(q) , Q̇i(q) =
∂Qi

∂qj
q̇j (24)

will be denoted by a tilde. However the Jacobian determinant

J =‖ ∂Qi/∂qj ‖ (25)

has to be non–zero. The Jacobian, and this fact is important for the implications
discussed in [5], indicates whether a degenerate coordinate transformation can occur or
not.

Now we have that when X is a symmetry for the Lagrangian L also X̃ is a
symmetry for the Lagrangian L̃ giving rise to a conserved quantity, thus it is always
possible to choose a coordinate transformation so that

iXdQ1 = 1 , iXdQi = 0 , i �= 1 , (26)
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and then

X̃ =
∂

∂Q1
,

∂L̃
∂Q1

= 0 . (27)

It is evident that Q1 is a cyclic coordinate because dynamics can be reduced. Specifi-
cally, the "reduction" is connected to the existence of the second of (27). However, the
change of coordinates is not unique and an opportune choice of coordinates is always
important. Furthermore, it is possible that more symmetries are existent. In this case
more cyclic variables must exist. For example, if X1, X2 are vector fields which induce
conservation laws and they commute, [X1, X2] = 0 , we obtain two cyclic coordinates
by solving the system

iX1dQ1 = 1 , iX2dQ2 = 1 , (28)
iX1dQi = 0 , i �= 1 ; iX2dQi = 0 , i �= 2 .

If they do not commute, this procedure does not work since commutation relations are
preserved by diffeomorphisms. In this case

X3 = [X1, X2] (29)

is again a symmetry since

LX3L = LX1LX2L− LX2LX1L = 0 . (30)

If X3 is independent of X1, X2 we can go on until the vector fields close the Lie algebra.
This means that the conservation laws are independent of the algebra of vector fields
and therefore symmetries are conserved in every case. This point is extremely important
from a physical point of view since it states that symmetry breakings are not requested
by the theory [4].

A reduction procedure by cyclic coordinates can be achieved in three steps: i) we
choose a symmetry and obtain new coordinates as above and after this first reduction,
we get a new Lagrangian L̃ with a cyclic coordinate; ii) we search for new symmetries
in this new space and iterate the reduction technique until it is possible; iii) the process
stops if we select a pure kinetic Lagrangianwhere all coordinates are cyclic. This case is
not common in theoretical physics but it is the ideal case in which all conservation laws
are enclosed in the same dynamics. From our point of view, the General Conservation
Principle must have such a form [4].

Going back to the development of dynamics, every symmetry selects a constant
conjugate momentum since, by the Euler–Lagrange equations we get

∂L̃
∂Qi

= 0 ⇐⇒ ∂L̃
∂Q̇i

= Σi . (31)

Vice-versa, the existence of a constant conjugatemomentummeans that a cyclic variable
has to exist. In other words, a symmetry exists.

Further remarks on the form of the Lagrangian L are necessary at this point.
We shall take into account time–independent, Lagrangians L = L(qi, q̇j) which is
non-degenerate, i.e.

∂L
∂t

= 0 , detHij ≡ det

∣∣∣∣
∣∣∣∣ ∂2L
∂q̇i∂q̇j

∣∣∣∣
∣∣∣∣ �= 0 , (32)
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where Hij is the Hessian. As it is usual in analytic mechanics, L can be set in the form

L = T(qi, q̇i) − V(qi) , (33)

where T is the kinetic energy, usually a positive–defined quadratic form in the q̇j and
V(qi) is a potential term. The energy function associated with L is

EL ≡ ∂L
∂q̇i

q̇i − L(qj, q̇j) . (34)

Considering again the symmetry, the condition (16) and the vector field X in Eq.(14)
give a homogeneous polynomial of second degree in the velocities, plus an inhomoge-
neous term in the qi . Due to (16), such a polynomial has to be identically zero and then
each coefficient must be independently zero. If n is the dimension of the configuration
space, we get {1 + n(n + 1)/2} partial differential equations whose solutions assign
the symmetry, as we shall see below. Such a symmetry is over–determined and, if a
solution exists, it is expressed in terms of integration constants which can be read as
boundary conditions, which was exactly what we were looking for.

4. The Hamiltonian approach to conservation laws

From the Lagrangian formalism, we can pass to the Hamiltonian one through the
Legendre transformations

H = πjq̇
j − L(qj, q̇j) , πj =

∂L
∂q̇j

, (35)

which define, respectively, the Hamiltonian function and the conjugate momenta.
In the Hamiltonian formalism, the conservation laws are obtained when

[Σj,H] = 0 , 1 � j � m , (36)

This is the relation for conserved momenta which is usually adopted in quantum me-
chanics and, in order to obtain a symmetry, the Hamiltonian has to satisfy the relations

LΓH = 0 , (37)

where the vector Γ is defined by

Γ = q̇i ∂

∂qi
+ q̈i ∂

∂q̇i
. (38)

Let us now go to the specific formalism of quantum mechanics. By the Dirac canonical
quantization procedure, we have

πj −→ π̂j = −i∂j , (39)

H −→ Ĥ(qj,−i∂qj) . (40)

If |Ψ〉 is a state of the system (i.e. the wave function of a particle), dynamics is given
by the Schrödinger eigenvalue equation

Ĥ|Ψ〉 = E|Ψ〉 , (41)
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where, obviously, the whole wave-function is given by |φ(t, x)〉 = eiEt/h̄|Ψ〉 .
If a symmetry exists, the reduction procedure outlined above can be applied and

then, from (31) and (35), we get

π1 ≡ ∂L
∂Q̇1

= iX1θL = Σ1 ,

π2 ≡ ∂L
∂Q̇2

= iX2θL = Σ2 , (42)
. . . . . . . . . ,

depending on the number of symmetry vectors. After Dirac quantization, we get

−i∂1|Ψ〉 = Σ1|Ψ〉 ,

−i∂2|Ψ〉 = Σ2|Ψ〉 , (43)
. . . . . . ,

which are nothing else but translations along the Qj axis singled out by the correspond-
ing symmetry. Eqs. (43) can be immediately integrated and, being Σj real constants,
we obtain oscillatory behaviours for |Ψ〉 in the directions of symmetries, i.e.

|Ψ〉 =
m∑

j=1

eiΣjQ
j |χ(Ql)〉 , m < l � n , (44)

where m is the number of symmetries, l are the directions where symmetries do not
exist and n is the number of dimensions of configuration space.

Vice-versa, dynamics given by (41) can be reduced by (43) if, and only if, it is
possible to define constant conjugate momenta as in (42), i.e. oscillatory behaviours of
a subset of solutions |Ψ〉 exist as a consequence of the fact that symmetries are present
in the dynamics.

The m symmetries give first integrals of motion and then the possibility to select
classical trajectories for particles. In one and two–dimensional configuration spaces,
the existence of a symmetry allows the complete solution of the problem. Therefore, if
m = n , the problem is completely solvable and a symmetry exists for every variable of
configuration space. In conclusion, we can set out the following theorem, coming out
from the above demonstration:

General Conservation Law Theorem: The reduction procedure of dynamics, con-
nected to the existence of symmetries, allows to select a subset of the general solution
of equations of motion, in both Lagrangian and Hamiltonian approaches, where os-
cillatory behaviours are found. This fact gives conserved momenta and trajectories
which are solutions of equations of motion. Vice-versa, if a subset of the general
solution of equations of motion has an oscillatory behaviour, due to the equations of
conjugate momenta, conserved momenta have to exist and symmetries are present. In
other words, symmetries select exact solutions and reduce dynamics. In these cases, the
general solution of a dynamical system can be split in a combination of functions each
of them depending on a given variable. As a corollary, a Lagrangian (or a Hamiltonian)
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where only kinetic terms are present always gives rise to a full integrable dynamics. The
phase-spacewhere such an object is defined is the Phase-Spaceof General Conservation
Laws.

5. Discussion and Conclusions

The above statement deserves some discussion. As a first remark the general
solution (44) can be interpreted as a superposition of particular solutions (the com-
ponents in different directions) which result the more solved (i.e. separated in every
direction of configuration space) if the more symmetries exist. Starting from such a
consideration, as a consequence, we can establish a sort of degree of solvability among
the components of a given physical system, connected to the number of symmetries: i)
a system is completely solved and separated if a symmetry exists for every direction of
configuration space (in this case, the system is fully integrable and the relations among
its parts can be exactly obtained); ii) a system is partially solved and separated if a
symmetry exists for some directions of configuration space (in this case, it is not always
possible to get a general solution); iii) a system is not separated at all and no symmetry
exists (a necessary and sufficient condition to get the general solution does not exist).
In other words, we could also obtain the general solution in the last case, but not by a
straightforward process of separation of variables induced by the reduction procedure.

A further remark deserves the fact that the eigen-functions of a given operator (in
our case the Hamiltonian Ĥ ) define a Hilbert space. The above result works also in this
case, so that we can define, for a quantum system whose eigen-functions are given by
a set of commuting Hermitian operators (e.g. the Hamiltonian, the linear and angular
momenta, the spin and so on), a Hilbert Space of General Conservation Laws. The
number of dimensions of such a space is given by the components of superposition
(44) while the number of symmetries is given by the oscillatory components. Vice-
versa, the oscillatory components are always related to the number of symmetries in the
corresponding Hilbert space.

In conclusion, we can say that the existence of symmetries, implying conservation
laws, determines also the structure of the configuration space (a vector space in the
case of Hilbert) where the physical system is set. Furthermore, the degree of solvability
and separability of a system is deeply related to the existence of conservation laws and,
vice-versa, all physical quantities are conserved in a completely separated system.
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