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A VARIATIONAL PROOF OF BIRKHOFF’S

THEOREM ON DOUBLY STOCHASTIC MATRICES

QIJI J. ZHU

(communicated by J. Borwein)

Abstract. This note provides a short variational proof of the Birkhoff’s theorem asserting that
the extreme points of the convex set of doubly stochastic matrices are the permutation matrices.

1. Introduction

An N by N square matrix A = (anm) is doubly stochastic provided that the
entries of A are all nonnegative,

∑N
n=1 anm = 1 for m = 1, . . . , N and

∑N
m=1 anm = 1

for n = 1, . . . , N . Doubly stochastic matrices naturally arise in analyzing stochastic
processes. They are also closely related to the concept of majorization which has
important applications in physics and economics. Ando’s survey paper [1], Bhatia’s
book [2] and Horn and Johnson’s book [7] are excellent sources for the background
and preliminaries for the doubly stochastic matrices. Birkhoff’s theorem provides an
important representation of the set of doubly stochastic matrices which is related to
many matrix inequalities. Denote the set of all N by N doubly stochastic matrices by
A and the set of N by N permutation matrices by P . Then we can state this result as

THEOREM 1.1. (Birkhoff)

A = conv P.

REMARK 1.2. It is easy to verify that any P ∈ P is an extreme point of A . Thus,
A = conv P is equivalent to the original statement of the Birkhoff theorem: the set
of extreme points of A is P .

The purpose of this note is to give a short variational proof of this theorem. The
existence of such a variational proof for the Birkhoff theorem is no surprising given
connection of the doubly stochastic matrices with physics and economics. The proof
here develops the method used in the proof of the Gordon alternatives by Borwein and
Lewis in [3, Theorem 2.2.6]. It can also be used to provide a characterization of the level
sets associated to the majorization. Variationalmethods have also been used in problems
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related to doubly stochastic matrices by Borwein, Lewis and Nussbaum [4]. Traditional
proofs of Birkhoff’s theorem can be found, for example, in [2, 7]. A variational method
usually refers to prove by arguing certain auxiliary function attains a minimum so that
its derivative vanishes. After the discovery of general variational principles its mean
has been extended to mathematical arguments using one of these variational principles
(e.g. those in [6, 5]) and may involve nonsmooth functions. In particular, in this note
we need the following approximate Fermat principle. This is a direct consequence of
a finite dimensional version of the Borwein-Preiss smooth variational principle in [5].
We include a proof here for completeness.

THEOREM 1.3. (Approximate Fermat Principle)
Let V be a finite dimentional Banach space and let f : V → R be a differentiable
function. Suppose that f is bounded from below. Then, for any ε > 0 , there exists
x ∈ V such that ‖f ′(x)‖ < ε .

Proof. Choose z ∈ V such that f (z) < infV f + ε/2 and define g(y) := f (y) +
(ε/2)‖y − z‖2 . Then g is continuous and coercive ( lim‖y‖→∞ g(y) = +∞ ) so that it
must attains its minimum, say, at y = x . It follows that

f (x) + (ε/2)‖x − z‖2 � f (z) < inf
V

f + ε/2

and, therefore, ‖x − z‖2 < 1 . On the other hand since g attains minimum at x , we
have

f ′(x) = −ε
2
(‖ · ‖2)′(x − z).

Clearly, the norm of the right hand side is less than ε . �

2. Level sets related to majorization

We first give a variational proof of the characterization of the level sets corre-
sponding to the majorization. This, in a simpler setting, illustrates the method we are
going to use. For a vector x = (x1, . . . , xN) ∈ R

N , we use x↓ to denote the vec-
tor derived from x by rearranging its components in a decreasing order. Recall that,
for x, y ∈ R

N , we say that x is majorized by y , denoted by x ≺ y , provided that∑N
n=1 xn =

∑N
n=1 yn and

∑k
n=1 x↓n �

∑k
n=1 y↓n for k = 1, . . . , N . The level set for

y ∈ R
N related to the majorization is defined by l(y) := {x ∈ R

N : x ≺ y} . We
will show that l(y) = conv {Py : P ∈ P} . To do so we first establish the following
alternative characterization of the majorization.

LEMMA 2.1. Let x, y ∈ R
N . Then x ≺ y if and only if, for any z ∈ R

N ,
〈 z↓, x↓〉 � 〈 z↓, y↓〉 .

Proof. Using Abel’s formula we can write

〈 z↓, y↓〉 − 〈 z↓, x↓〉 = 〈 z↓, y↓ − x↓〉

=
N−1∑
k=1

(
(z↓k − z↓k+1) ·

k∑
n=1

(y↓n − x↓n )

)
+ z↓N

N∑
n=1

(y↓n − x↓n ).
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Now to see the necessity we observe that x ≺ y implies
∑k

n=1(y
↓
n − x↓n) � 0 for

k = 1, . . . , N − 1 and
∑N

n=1(y
↓
n − x↓n) = 0 . Thus, the last term in the right hand side

of the previous equality is 0 . Moreover, in the remaining sum each term is the product
of two nonnegative factors and, therefore, is nonnegative. We now prove sufficiency.
Suppose that, for any z ∈ R

N ,

0 � 〈 z↓, y↓〉 − 〈 z↓, x↓〉 =
N−1∑
k=1

(
(z↓k − z↓k+1) ·

k∑
n=1

(y↓n − x↓n)

)
+ z↓N

N∑
n=1

(y↓n − x↓n).

Setting z =
∑k

n=1 en for k = 1, . . . , N − 1 (where {en : n = 1, . . . , N} is the standard
basis of R

N ) we have
∑k

n=1 y↓n �
∑k

n=1 x↓n , and setting z = ±∑N
n=1 en we have∑N

n=1 yn =
∑N

n=1 xn. �

THEOREM 2.2. (Representation of level sets related to the majorization)
Let y ∈ R

N . Then
l(y) = conv {Py : P ∈ P}.

Proof. It is clear that l(y) is a convex set and Py ≺ y for any P ∈ P . Thus,
conv {Py : P ∈ P} ⊂ l(y) . To proof the reversed inequality, let x ≺ y . For any
z ∈ R

N , choose P ∈ P such that

〈 z, Py〉 = 〈 z↓, y↓〉 � 〈 z↓, x↓〉 � 〈 z, x〉 . (1)

Observe that P is a finite set (with N! elements to be precise). Thus, the function

g(z) := ln

(∑
P∈P

exp〈 z, Py − x〉
)

is defined for all z ∈ R
N , is differentiable and is bounded from below (by 0 ). By the

approximate Fermat principle of Theorem 1.3 we can select a sequence zi ∈ R
N such

that

0 = lim
i→∞ f ′(zi) = lim

i→∞

∑
P∈P

λ i
P(Py − x), (2)

where

λ i
P =

exp〈 zi, Py − x〉∑
P∈P exp〈 zi, Py − x〉 .

Clearly, λ i
P > 0 and

∑
P∈P λ i

P = 1 . Thus, taking a subsequence if necessary we may
assume that, for each P ∈ P , limi→∞ λ i

P = λP � 0 and
∑

P∈P λP = 1 . Now taking
limits as i → ∞ in (2) we have∑

P∈P

λP(Py − x) = 0.

It follows that x =
∑

P∈P λPPy , as was to be shown. �
Note that unlike in the Birkhoff theorem, for P ∈ P , Py may not always be an

extreme point of l(y) .
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3. A variational proof of the Birkhoff Theorem

A similar argument can also be used to provide a variational proof of the Birkhoff
theorem. We will need the followingwell known property of doubly stochastic matrices.
Two different proofs of this fact are given in [1, 2].

LEMMA 3.1. Let A be a doubly stochastic matrix. Then for some P ∈ P , the
entries in A corresponding to the 1′s in P are all nonzero.

We now turn to the proof of Birkhoff’s theorem. It is an easy matter to verify that
A is convex and P ⊂ A . Thus, conv P ⊂ A .

To prove the reversed inclusion,we view all N×N matrices as an (n2 dimensional)
Euclidean space E with inner product

〈A, B〉 = tr(B	A) =
N∑

n,m=1

anmbnm, A, B ∈ E .

We establish the following analogue of (1).

LEMMA 3.2. Let A ∈ A . Then for any B ∈ E there exists P ∈ P such that

〈B, A − P〉 � 0.

Proof. We do an induction argument on the number of nonzero elements of A .
Since every row and column of A sum to 1 , A has at least N nonzero elements.
If A has exactly N nonzero elements then they must all be one so that A itself is a
permutation matrix and the lemma holds trivially. Suppose now that A has more than
N nonzero elements. By Lemma 3.1 there exists P ∈ P such that the entries in A
corresponding to the 1′s in P are all nonzero. Let t ∈ (0, 1) be the minimum of these
N positive elements. Then we can verify that A1 = (A − tP)/(1 − t) ∈ A and has at
least one less nonzero elements than A . Thus, by the induction hypothesis there exists
Q ∈ P such that

〈B, A1 − Q〉 � 0.

It follows that 〈B, A − tP − (1 − t)Q〉 � 0 and, therefore, at least one of 〈B, A − P〉
or 〈B, A − Q〉 is nonnegative. �

Now define a function f on E by

f (B) := ln

(∑
P∈P

exp〈B, A − P〉
)

.

Then f is defined for all B ∈ E , is differentiable and is bounded from below by 0 .
By the approximate Fermat principle of Theorem 1.3 we can select a sequence Bi ∈ E
such that

0 = lim
i→∞ f ′(Bi) = lim

i→∞

∑
P∈P

λ i
P(A − P). (3)
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where

λ i
P =

exp〈Bi, A − P〉∑
P∈P exp〈Bi, A − P〉 .

Clearly, λ i
P > 0 and

∑
P∈P λ i

P = 1 . Thus, taking a subsequence if necessary we may
assume that, for each P ∈ P , limi→∞ λ i

P = λP � 0 and
∑

P∈P λP = 1 . Now taking
limits as i → ∞ in (3) we have∑

P∈P

λP(A − P) = 0.

It follows that A =
∑

P∈P λPP , as was to be shown. �
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