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ESTIMATES OF THE DIFFERENCE BETWEEN TWO WEIGHTED
INTEGRAL MEANS VIA WEIGHTED MONTGOMERY IDENTITY

A. AGLIC ALINOVIC, J. PECARIC AND I. PERIC

(communicated by P. Bullen)

Abstract. Some new generalizations of estimates of difference between two weighted integral
means are given, by using Euler-type identities and weighted Montgomery identity

1. Introduction

In the recent paper J. Pecarié, I. Peri¢ and A. Vukeli¢ proved generalizations of the
following inequalities using the Euler-type identities (see [10]):

THEOREM 1. Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q <
00, % + é = 1. Let |f'" : [a,b] — R be an R-integrable function. Then for
a<c<d<b,wehave

e [0 [roa

(c—a)*+(b—d)? Hf/
2(b—a— d+c)

1
c—q)i+! _\a+! q
[P = el K I AR M P

) f/ELOO[Cl,b],

(oo}

N

1 (c=atb—d
2 ( b—a +

e=azbed|) )y, f € L o).

In the special case when we take ¢ = d = x, assuming - fcdf (t)dt =f (x) as
a limit case, the first inequality reduces to the Ostrowski inequality; the second reduces
to the inequality proved by A. M. Fink in [9]; and the third to the inequality proved by
Lj. Dedié, M. Mati¢ and J. PeCari¢ in [8].

Similar results also were obtained by P. Cerone and S. S. Dragomir (see [7] ) using
the Montgomery identity:
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THEOREM 2. Let f : [a,b] — R be an absolutely continous mapping as is also
u: [c,d] — R with [c,d] C [a,b]. The following inequalities are then valid. Namely

/cdu()f( dxf—/f dx/ u (x) dx

ca™ {W[@a)z (b—ay] + [ 1o |dr} f1e L lat],

1

d q q
< Il fc u(x)dx
e 3 e ()™ =)+ [lo )t dr g ST €Ly fab,

I

W0 {2 3) s 0 5up,c . 10 01} f'eLlab].
where

t—a b—t
‘f j;du(x)dx

and

0 =max{c—a,b—d} = 3 5 > 3
If we put u = 1 in the previous theorem we get the same result as in the Theorem 1.
In this paper we generalize these results and other results from [10], [7] and [5].
We will estimate the difference between two weighted integral means, each having it’s
own weight, on two different intervals [a,b] and [c,d]. This will be done for the
functions whose derivatives f’ are from L, spaces, 1 < p < oo and for both possible
cases [c,d] C [a,b] and [a,b]N[c,d] = [c, b] (other two cases, when [a, b]N[c,d] # 0
we simply get by change a <> ¢, b < d). In [10] it was done for the case [c,d] C [a, b]
without weight function, and in [7] for the same case with only one weight function.
In the Section 2 we use weighted Montgomery identity with two different methods. In
the Section 3 we generalize the result for the functions whose n-th derivatives f ) are
from L, spaces, 1 < p < oo. In Section 4 we estimate integral means via Euler type
identities for case [a,b] N [c,d] = [c, b] (generalization of results from [10] ) and also
we give the proof of the sharpness of given inequalities from [10].

b—a d-—c ’b+a d+c

2. Estimates of the difference between two weighted integral means via
weighted Montgomery identity.

In this section we will give the estimates of the difference between two weighted in-
tegral means using the weighted Montgomery identity. The first method is by subtracting
two weighted Montgomery identities (which is possible for both cases a < ¢ < d < b
and a < ¢ < b < d). The second is by integrating weighted Montgomery identity (only
for the case a < ¢ < d < b). This will be done for the functions whose derivatives f’
are from L, spaces, 1 < p < co.
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The weighted Montgomerty’s identity for Riemann-Stieltjes integrals is (see [3]):

b b
0= g | OO+ [ Pwwwor e, o

where f : [a,b] — R is continuous function of bounded variation on [a,b], W
[a,b] — R is of bounded variation such that W (a) # W (b) , x € [a,b] and

W(r)—W(a)

W)W STSY

e, x<t<b,

is a weighted Peano kernel.
Let's take W (1) = [‘w(x)dx, ¢ € [a,b] (so dW(t) = w(t)dt ), where
: la,b] — [0,00) is some nonnegative normalized weighted density function i.e.
1ntegrable function satisfying f HNdt=1. ft <a, W) =0 andif r > b,
W (¢) = 1. The weighted Peano kernel in this case reduces to:

W), a<t<x,
P(W(x),W(r) = )
W) —1, x<t<b.

THEOREM 3. Let f : [a,b] U [c,d] — R be a continuous function of bounded
variation on [a,bl U [c,d], w : [a,b] — [0,00) and u : [c,d] — [0,00) some
normalized weighted functions,

0, t<a,
W) =19 [lw(t)dt, a<t<b,
1, t>b,
0, t <c,
U =< [lu()dt c<t<d, (3)
1, t>d,
and [a,b] N [c,d] # 0. Then, for both cases [c,d] C [a,b] and [a,b] N [c,d] = [c,]],
(and also for |a,b] C [c,d] and [a,b] N [c,d] = [a, d] ) the next formula is valid

/ w0 (e~ [ uto "u( a= [ m{{}} ar (1 )

K({t)=U(t)—W(t), t € [min{a,c},max {b,d}].

where

Proof. For x € [a,b] N [c,d], we subtract identities

b b
f<x>:/ W(t)f(t)dt+/ P(W(x), W (1) df (1),
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and

Then put
K(x,0) =PUx),U(1) = P(W(x), W().
K (x,7) doesn’t depend on x, so we put K (¢) instead:

—W (1), t € la,c],
K@t)=< -We)+U(t), te{c,d)y, if [c,d]C]a,b]
1—W(), t€[d,b],
W), t € la,c],
K(t)y=9 W)+ U(t), t€{c,b), if [a,b]N]c,d]=[c,b]

Ut —1, te€[b,d.

In another way, the equality K (1) = U(t) — W(t) = [/ (u(x) —w(x))dx, t €
[a, max {b,d}] is the obvious consequnce of integration by parts of the left side of
the equality (4). O

The next corollary is the generalisation of the Theorem 2 (from [7]).

COROLLARY 1. Assume (p, q) is a pair of conjugate exponents, thatis 1 < p,q <
00, % + é = 1. Let |[f']" : [a,b] U [c,d] — R be a R-integrable function. Then we

have
max{b,d}
< / ()| dt
min{a,c}

The constant (fnrﬁﬁgbcf} K (1) dt) is sharp for 1 < p < oo and the best possible
forp=1.

b d
/wmmmf/wwwm

Q-

Proof. Use the identity (1) and apply the Holder inequality to obtain

b d
/wmmmf/wwwm

max{b,d} max{b,d} q ’
/ K (0)f' (r)dt| < (/ K(t)"dt> Hf H :
min{a,c} p

min{a,c}
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1
For the proof of the optimality of the constant ( frﬁigbc‘;} K (£)]? dt) * we will find a
function f such that

max{b,d} , max{b,d} é max{b,d} , p IL’
/ K@) f (¢r)dt] = (/ |K(t)|"dt> (/ V (t)‘ dt) :
min{a,c} min{a,c}

min{a,c}
For 1 < p < oo take f to be such that

/

£ (0 =sgn K (1) - |K (1) 77 .

For p = oo take

/7

f () =sgnK (7).

max{b,d} ,
< max K (t V t ’dt 5
IG[[l,b]U[C,d] ‘ ( )‘ [nin{a,c} ( ) ( )

is the best possible inequality. Suppose that |K (7)| attains its maximum at 7, €
[a,b] U [c,d] . First we assume that K (zp) > 0. For € small enough define f, (¢) by

For p = 1 we shall prove that

max{b,d} ,
/ K@) f (r)dt

min{a,c}

0, min {a,c} <t < 1,
fe() =4 t(t—1), fo <t < 1o+ &,
1, fo+ € <t <max{b,d}.
Then, for € small enough
max{b,d} , to+€ 1 1 to+€
/ K@) f (t)dt| = / K (1) =dt| = - K () dt.
min{a,c} 1o € € Ju

Now, from inequality (5) we have
1 fo+€ fo+€
—/ K(t)dth(to)/ —dt =K (1) .
€ Iy fo
Since,
to+€
lim — K (r)dr =K (1)
e—0 & f0

the statement follows. In case K (#) < 0, we take

1, min {a,c} <t < 1,
fe=q —z(t—tn—¢), n<t1<n+e,
0, to+¢€ <t <max{b,d}.

and the rest of proof is the same as above. [

REMARK 1. In the special case, if we take w(f) = 7~ , ¢ € [a,b] and

u(t) = ﬁ , € [c,d] the inequality from the Corollary 1, for a < ¢ < d < b reduces
to the inequality from the Theorem 1.
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COROLLARY 2. Let f : [a,d] — R be such that f' exists and is bounded on
[a,d]. Then for a < ¢ < b < d we have inequality

_a/f dt——/f
1

Proof Ifweput p=o0, g=1,and w(t) = =, t € [a,b] and u(t) = -—,
t € [c,d] in the inequality from the Corollaryl we have

/\K )| dt = /\— \dt+/|— )+ U |dt+/|U ) — 1.

Then . . . )
11:/ \—W(t)\dt:/ W(t)dt:/ Q_Zdtzz(c(b_al),
_ d B B d B B dd—t B (d—b)2
13_/b |U (2) l\dt_/b (1 U(t))dt_/b d—cdl_z(d—c)’

c—a+d-—>b
2

and
I / |-w U(t)|dt = /b a_t+t_c dt
> ¢ |b—a d-c
= /\ —a+c—d)t—bc+ad|dr.
(b—a)(d—c)

Since for f () = (bfa+cf )t —bc + ad we have f (¢) = (c—a)(c—d) <0
and f (b) = (b—a) (b —d) <0, we have

1 b
12 = m/c ((Cl*b+d*€)t+b6'7ad)dt
1 ((a—b+d—c)t+bc— ad)’ 1
(b—a)(d—rc) 2 .a—ber—cc

_(-a@d-bf —[c-a) @]
2(b—a)(d—c)(a—b+d—c)

[(b—a)(d—b)z - (d—c)(c—a)zl 1
2(d—c) 2(b—a) a—b+d—c

Consequently

(d—1b)* = (c —a)’ B c—a—i—d—b.

= O
2(a—b+d—c) 2

d
/ |K(x,l)|dl=[l+12+l3 =

COROLLARY 3. Let f : [a,d] — R be such that f’ is an R-integrable on |a,d|.
Then for a < ¢ < b < d we have inequality

ba/f t——/f dt\—(—d—_Zer

b—




DIFFERENCE BETWEEN TWO WEIGHTED INTEGRAL MEANS 321

Proof. If weput p =1, g=o00,and w(t) = 7, t € [a,b] and u(t) = 7

d_ ~ 9
t € [c,d] in the inequality from the Corollary 1 we have [|K ()[|,, = sup,c(, 4 |K (1)

and ,
—a c—a
sup K ()| = sup |[-W(1)| = sup W(#) = sup = ;
t€a,c] t€ayc] t€a,c] t€a,c] b—a b—a
sup [K(t)] = sup [U() —1[= sup (1-U(1))
te[b,d] t€[b.d] t€[b,d]
sup (1 tc) sup d—t d-b
t€lb,d] d—c e d—c  d—c
and
sup |[K (t)] = sup |U(1) — W ()|
t€(c.b] t€(c,b]
_w I—c t1—a ~ max c—a d—>b
N ,E[CB,] d—c b—a|l b—ad—c]’
So, we have

—a d—b
sup |K ()] —max{u,d—}.

t€a,d)

Since 0 < &4 < d=b or () g 4= =@
max c—a d—>b 1 c—a+a’—b+
b—a'd—c| 2\b- d—c

COROLLARY 4. Assume (p,q) is a pair of conjugate exponents, that is 1 <

p,q < 00, l + l = 1. Let |[f'|" : [a,d] — R be an R-integrable function. Then for
alc<b< d wehave

1 1
b_a/af(t)dtfﬁ/cf(t)dt

. H(d - b)‘”i (c— a)‘fﬂl
d=o*  (b—a)

1

1 ’ !
(q+1)(a—b+d—c)] L, (8)

Proof. For p,q # 1,00 and w(f) = ;2—, t € [a,b] and u(t) = 7, 1 € [c,d]
in the inequality from the Corollary 1 gives

d—c
[rwora= [ (=) o= G50

/bd'U“) - ”‘”:/bd (Z_Dq‘”: <q(+dl_>fjﬂc>"
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q

dt

and simillary as in the proof of the Corollary 2
a—1 r—c
+

b
_ q
/‘ W) +U@lde = /L b—a d-c

[(b—a)(d=b)"" = [(c=a)(d—c)""
(b—a)’(d—c)(g+1)(a—b+d—c)
_|-a)(a- by (d—c)(c—a)""
(d—c) (b—a)?

1
(g+1)(a—b+d—c)

Cosenquently,

d . B (d*b)ﬁl B (c—a)qﬂ
LS [(d_c)ql T

1
(g+1)(a—b+d—c)

Applying Corollary 1 we have the proof. [J

COROLLARY 5. Assume (p, q) is a pair of conjugate exponents, thatis 1 < p,q <
00, Il, + é =1. Let |f'|" : [a,d] — R be an R-integrable function. Then for x € [a,d]

we have
1 & 1 d
— [ roa-= [ rwu

d;a'“fl”ooa fleLOO [a7b}a

<3 (=) 1l £ eyl

1l freLifab].

Proof. By setting b = ¢ = x in the inequalities (6), (8), (7). O

REMARK 2. The incorect version of the inequality from Corollary 5 was first
1 L
proved by P. Cerone in [5], with {Wi%w} ? instead of [fﬁl] ‘.

COROLLARY 6. Assume (p,q) is a pair of conjugate exponents, that is 1 <
p,q < 00, 1% + é = 1. Let |[f'|' : [a,b] — R be a R-integrable function. Then for



DIFFERENCE BETWEEN TWO WEIGHTED INTEGRAL MEANS 323

a<c<d<b,wehave

b d
/ w(0)f (1) dr — / w () f (1) dr

I/l [J5 W @+ 7 10— W (o) dr+ [ W (0) — U n)] ],
f' €Ly la,b],
W [ werans - w e ac [w e - vra]”
fleL,(a,b],
I/l max {W (), 1= W (@), supyeieq W (1) = U (9]}
f/ S L] [a,b],

andfor a<<c<b<d

b d
/ w () () dr — / w(0)f (1) dr

I e [J W @i+ f 10— U @] de+ [71W () = U 0]t
f' € Ly a,d],
<L, [T w@rar+ - v+ w0 - vl
flekL,(ad,
I/l max {W () 1= U (b), sup,eregy W (1) = U (1)}
flel [a,d} .

Proof. Directly from the Corollary 1. [

The first inequality from the next theorem may be regarded as the weighted Os-
trowsky inequality.

THEOREM 4. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <
00, 1% + % =1. Let |f']" : [a,b] — R be a R-integrable function. Then

b
/ w(0)f () di —f (x)

Il |7 W @ de+ [P0 =W O)dr| f' € Lo 0,8,

Sl (LW e [P - w @] e L fab),
|[f’||1max{W(x),l—W(x)}. f eL|a,b].

Proof. By setting ¢ =d = x and u(t) = , t € [e,d] in the first inequality

from the Corollary 6, and assuming -— f S dt =f (x) as alimit case. O
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THEOREM 5. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <

00, % + % =1. Let |f'|" : [a,d] — R be a R-integrable function. Then for x € [a,d]
we have

X d
/w(t)f(t)dtf/ u(t)f (r)de

Il [ W@ de+ [N -U@d],  f € Lulad],

N

SV W @ta+ v @ralt r e Lla),
Il max {W (x) ;1= U (), [W (x) = U @)} f" € Li[a.d].

Proof. By setting b = ¢ = x in the second inequality from the Corollary 6. [

The second method of giving the estimates of the difference between two weighted
integral means for functions whose first derivatives are in L; or L, or Lo, spaces, is
by integrating weighted Montgomery identity.

THEOREM 6. Let f : [a,b] — R be such that |f'|" : [a,b] — R is a R-integrable
Sunction 1 < p < oo, and w: [a,b] — [0,00), u: [c,d] — [0,00) are normalized
weighted functions, W (t) and U (t) as before (3). Letalso (p, q) be a pair of conjugate
exponents. Then, for the [c,d] C [a,b] the following inequalities hold:

b d
/w(t)f(t)dt—/ u(t)f (r)de

I e S LW @ e+ 7 (U= W (@) dt] Ju ()] v, f € Lo [a,B]

/A

I, S| W @) de+ f7 (1= w07t @) dx, f € Lyla,],

P/ LTS+ (W () — 4[] Ju ()] f'eLilab).

Proof. Using identity (1) we obtain

d b d [ b
/u(x)f(x)dx—/f(t)w(t)dt:/ (/ P(W(x),W(t))f'(t)dt)u(x)dx
©)

SO

b

b
/ POW () W (1) (1) di| Ju () d,

d
g\/
c

d
f(t)w(t)dt—/ u(t)f (r)de

a
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and therefore using the properties of modulus and Holder inequality

b
/ P(W (). W (0)f' (1) di

IFlle [ W @i+ [P =W @) di], f € Lo fab)],

S Wl [ w @ s [P a-wo)a]’ et

£ 1y max {W (x), 1 — W (x)}, f' € Lila,b].
The proof folows since

A+B ‘AB

AB} = —— . g
L 2]

REMARK 3. The result from Theorem 3

/ f / w(t)f (1)t
b

/ WOl Odi+ [ 0= Wl O+ [Ca- Wl o

a d

we could also get from formula (9) by an interchange of the order of integration in the
following way

[ (/bP<W<x>,W<>>f <>dr> s
- [vw ([ woroa)as [fue (/Xb[W(t)—l}f’(t)dt>dx
/W (/ >dX>df+/ W (1 ()(/tdu(x)dx>dt
[ o-nrw (/Cdu(x)dx> @
[ wo-nro([vwa)a

/W dt+/b[W(t)—l]f'(t)dt
d
/[W()[I*U()H[W(t)*HU(I)]f’(f)dt
/W dt+/ [W(t)1]f’(t)dt+/d[W(t)U(t)]f’(t)dt

c
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By substitution into (9) we get the result.

THEOREM 7. Let f , w and u satisfy the conditions of Theorem 6 and [c,d] C
[a, b]. Then the following inequities are valid

d d
/umfmmUUmvwm+W@f@+uwwvwﬂ

/oo S W () = U ()] 1, f' € Loo [a,B],

_=

SV, w0 - v@ral?, e Laat],
I/l supcieq IW (1) = U @], 1" € L fa b

Proof. From Remark 3 we have

d b c b
/u@f@wf/w@f@wj/Wwf@wa[WmAVWMt

d
- [ wo-voyr e

Integration by parts gives

[ worwa=were- [ wor o

and , ,
/ﬁwmfuﬂmmzﬁwwfuﬂ@f/wmf@w
d d

So we have

/umfmm—/fmwmm—wwf@

+/acw(t)f (t)dt+[W(d)—1]f (d)+/dbw(t)f (¢) dt

/ 1) di -

d
:/<W@70@vowr

/f dww>ﬂ>4ww4vw]

Taking the modulus of the last equality and using the properties of modulus and Holder
inequality we get the proof. [J
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THEOREM 8. Let f , w and u satisfy the conditions of Theorem 7 and. Then for
[a,b] N [c,d] = [c, b] the following inequities are valid

b b
/ w(0)f () dr — [ / w (O (@) di+ W () (¢) + [1 - Ub)]f <b>H
' llo [21W (0) = U ()| dt,  f' € Lo [a,d],
S LW —voral e b,

Nl supreies (W () =U @], f" € Li[a,d].
Proof. Similar as the proof of the previous Theorem. [

REMARK 4. In the special case when we take b = d, all the results from all
the theorems and the corollaries from this section, i.e for the case a < ¢ < b < d,
coincide with all results for the case a < ¢ < d < b, with b = d (the only exeption
are Theorem 4 and Theorem 5).

3. Generalization for functions whose derivatives of order n arein L, space,
I<p<oo

THEOREM 9.  Assume (p,q) is a pair of conjugate exponents, that is 1 <
p,q < o0, % + é = 1. Let f : [a,b]U [c,d] — R be n-times differentiable on
[a,b] U [c,d],n € N and |f" |p :la,b] U [¢,d] — R is integrable on |a,b] U [c,d].
w: [a,b] — [0,00) and u: [c,d] — [0,00) are some normalized weighted functions,
W (1), U(t) as before (3). Then for every x € [a,b] N [c,d]

b d n—2 b
[ s wa- [uos <r>dr+2( [ <s1>w<s1>dsl>
a ¢ k=0

a

b b k
// P(W(x),W(s0)) [ [P(W(s:), W (si1)) dsi - - - disieyr

N , i=1
(k+4-1)-th integral

n—2 d
- f<k+1) (s1)u(s1) ds1>
(Lo

c
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d d k
/ / P(U(x)>U(51))HP(U(Sz) U (sit1)) dsy - -dsir

< , i=1
(k=+1)th integral

< Hf(n)

1

max{b,d} q
(/ K (x, sn)qu,,) ,
r min{a,c}
where

b b
K (x,s,) = // P(W W (s1) HP W (si41)) dsy - -dsp—1

——
(n—1)th integral

d d n—1
_/ / P(U@),U(s0) [[PU (1), U (si1)) sy - s
¢ c i=1

(n—1)th integral

and we suppose that

/ / <s1>>"_[[1P<W<s,->,W<si+1>>ds1 sy

(n—1)th zntegrul
equals zero for s, ¢ |a,b] and

/ / Sl))ﬁP(U(Si) y U (si41)) dsy - +dsn—

i=1

(n— 1 th integral
equals zero for s, ¢ [c,d].
Proof. First we give the generalized weighted Montgomery identity (see [3]):

b n—2 b
_/ f(si)w(sy)ds; — Z (/ fU+) (sl)w(sl)ds1>
a —0 a

k

b b k
[ [ P v wen TTPov ). w ) dsi -ds

< , i=1
(k=+1)th integral

b b n—1
:/ -~/P(W(x),W(sl))HP(W(S,-),W(siH))f(") (sn) dsy - -ds,.
o Ja e (10)

n-th integral
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Now, as in Theorem 3, we subtract two weighted Montgomery identities, one for
interval [a, b] and the other for [c,d] , and the statement follows. [J

THEOREM 10. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <
00, % + é = 1. Let f : [a,b] — R be n-times differentiable on [a,b],n € N and
lf("> |p : la,b] — R is integrable on [a,b]. w : [a,b] — [0,00) and u : [c,d] —
[0,00) are some normalized weighted functions, W (t), U (t) as before. Then for
a<c<d<b

n—2

d b d - b
u(t)f (t)de — w(t)f (1) dt — u (x) ( f(kﬂ) (s1)w(s1) ds1>
/ / [rox (]

b b k
[ [ v w ) TTP ¥ (0 W () - o s |

N , i=1

(k+1)ih integral
[1ff o

n
< ’ 7 ()
(n— 1 th integral

n—1

HP W (siy1)) dsy - -dsy—1

q q
dsn> |u ()] dx.

Proof. As in Theorem 6, first we multiply weighted Montgomery identity by u (x)
and then integrate it. Then the statement follows. [

REMARK 5. For n =1 the inequality from Theorem 10 reduces to the inequality
from Theorem 6.

4. Estimaties of difference between two integral means via Euler-type identities

4.1. Equivalence of Montgomery identity and Euler identity

For every function f : [a,b] — R such that £"~! is a continuous function of
bounded variation on [a, b] for some n > 1 and for every x € [a,b], the following
two formulae have been poved (see [8]):

1 b
0=yt [ a0+ P ) (1)
and

fx) =

b
/ £ (1) de+ T () + RS (x) (12)

b—a
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where

m k—1
=Y P () [ - @

plot 3y = (=9 /ab 5 (=)o,

R0 =P e (2 - () a0,

Here By (x), k > 0, are the Bernoulli polynomials, By = By (0), k > 0, the Bernoulli
numbers, and B} (x), k = 0, are periodic functions of period 1, related to Bernoulli
polynomials as

Bi(x)=Bi(x), 0<x<l, Bi(x+1)=Bi(x), xck.

From the properties of Bernoulli polynomials it follows B (1) = 1, B} is a discontin-
uous function with the jump of —1 at each integer, and B} , k > 2, is a continuous
function (see [1]).

REMARK 6. In the special case, if we take w(r) = ;1 , ¢ € [a,b] and

u(t) = 7, 1 € [c,d] the weighted Montgomery identity reduces to the Euler identity
(12), see [2]. For the readers conviniens we give the shorter proof of this fact in the
next Lemma.

LEMMA 1. Forall k € {0,1,2,3,..} we have

b b
/ / P (x,51) P (s1,52) - - P (Sk, Sk41) dsy - - - dsgr1
a a

(k41)-th integral

e () "

Proof. We will prove this by induction with respectto k. For k = 0 and x € [a, D)
we have for the left side of (13) by integration by parts

b b
/P(x,sl)dsl = P(x,b)-b—P(x,a)-a—/ 51dP (x, s1)

b 2 _ 2
S1 b —a a+b
= - ds; | —(-)x=——F—— =x— —
(l ba“> (Dx=—g=g T =3
since P(x,b) = P(x,a) = 0 and P (x,s;) is differentiable on [a,b]\ {x} and its
derivative is equal to biu ,and at x it has a jump of —1. Since B; () =t — %, the
right side of (13) is

(b—a)' x—a\ x—a 1] a+b
TR sy B CaOl it | Bk st
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For x = b we have P(b,s;) = 3=, 51 € [a,b] and equality (13) obviously holds.

Thus, we have proved the base of induction. Let’s denote

Ok+1 (x / / (o, 51) P (s1,52) =+ P (sk, S41) dsy -+ - dsgan
(k+1)-th mtegral
We can suppose now for k > O that

k
Ok (y) = (b;!a) By (ZZ>7 y € [a,b].

Then we have for k 4+ 1 and for x € [a, b)

b b (b—a) s1—a
Oi+1 (%) :/ P (x,s1) O (s1) dsy :/ P(x,s1) 0 By A dsy
Since B), (t) = nB,_ (t) we have

d b—aB S| —a _B S| —a
ds; [k+1 ""\bp=—a )| "\b=a)’

and by integration by parts

ourt) = LI [ o myan (32

-y [ (e
- | e () (22 )

(b—a)! [ 1 si—a\|" x—a
B — ] -1
(k+1)! k+27 2 \b—a )|,| T"'\b-a (=1)
—da X—d
B (b )k+lB
T kD T \p=4a )
since By (1) = B (0) forall k > 2. Tt s easy to see that

b k k1
B si—a (b—a) s1—a _(b—a) b—a
Q"“(b)_/u b—a K Bk( a)dsl_ (k+1)! B’““(b—a)

The statement is valid also for k + 1, so it is valid for all £ € {0,1,2,3,...} O

From this lemma we have the equality of the left sides of Montgomery identity and
the Euler identity, so the equality of the right sides follows. So we cite the next lemma
from [2] without the proof.
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LEMMA 2. Forall n € N we have

a)
b b
/ . / P(x,s1)P(s1,82) - - ~P(s,,,1,sn)f<”) (su)dsy -+ - dsy
a a
n-th integral
(ba)nl/b x—a L x—t ()
= B,{—— ) —B .
n! g b—a "\b—-a Fr ) dr
b)

b b
/ / P(x,sl)P(Sl,Sz)"'P(Sn—hsn)dsl"'dsn—l

—_———
(n—1)-th integral

e [ (=) - (2]

4.2. Case [c,d] C [a,b] (i.e. a<c<d<Db)

In the recent paper [10], using formulae (11) and (12), following two theorems
were obtained:

THEOREM 11.  Let f : [a,b] — R be such that f "=V is a continuous function
of bounded variation on [a,b] for some n > 1. Then for x € [c,d], if [c,d] C [a,b]
we have

/f dt——/f 1) dt + T (x) — T\ ](x)_/abK;(x,t)df@lU(t)

—a
and
/f dt——/f 1) di+ T (x) — T,[f_’l](x):/ K2 (x,0)df "=V (1),
where
b, () € lac],
Ky (no) = 8 fny (3) - S (52) L re (e
_ag)n! —
et p, (=2 + 1)) 1 € [d,b],
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and

Kr% (x7 t) _ L [BZ (%) - B, (Z_Z))}

— n—1 " "
bt [ (5t +1) = B (522)] . reldb].
THEOREM 12. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <

00, Il, + é =1. Let V<”)‘p : [a,b] — R be an R-integrable function for some n > 1.
Then for a < ¢ < d < b, we have

s [ 10w [ oa e -
 ( "l
(/ K, xt|dt> V , (14)
and
d , y
_a/f nai- g [ 1 a1 w0 -1 @
b i
2 q (n)
< (/a Ky (x,1)| dt> V ) (15)

forevery x € [c,d].
Now we will prove that inequalities in the Theorem 12 are sharp.

1 L
THEOREM 13. The constants (fab ’Krll (x, 1) ’th) " and (fab ‘K,% (x, t)‘th) " in

the inequalities (14) and (15) are sharp for 1 < p < oo and the best possible for
p=1.

Proof. Similar as the proof of the Corollary 1 (instead of K () we have K (x,1)
and K2 (x,7), instead of £/ (¢), £ (¢r)). O

REMARK 7. If we take n = 1 we get the results from the Theorem 1. All these
results were obtained in [10].
4.3. Case [a,b]N[c,d] = [c,b] (i.e. a<ec<b<d)

Now, we establish result from the Theorem 11 (which is valid for [¢,d] C [a, ],
ie. a <c<d<b),forthe other case [a,b]N[c,d] = [c,b],ie. a<c<b<d.



334

A. AGLIC ALJINOVIC, J. PECARIC AND . PERIC

THEOREM 14. Let f

[a,d] — R be such that f"=") is a continuous function
of bounded variation on [a,d] for some n > 1

a < c<b<d forx € |[c,b] we have

. Then if [a,b] N [c,d] = [c

,b], ie.

e [rwa 2 [ wane o - w = [(Rienat o
} ’ (16)
an
bia/bf(t)dt /f £) di+ T ()T,E“’E(x)—/dl?ﬁ(xﬁ)df "),
where "
“"Z?H n(‘%;), t€la,cl,
Ri(en) = =gy () - =y (22), 1€ (o)
e (3 11) i€ b,
and
et B, (522) - B (322)] . relad,
. 1B (=) B (5
= [Bn (j%ﬁl) —B(d%)} € [b,d].

Proof. We subtract identities (11) for interval [a, b] and [c,d], and then using the
properties of B, we get the first formula. By doing the same with identitie (12)
get the second formula.

O

Then for a <

THEOREM 15. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q
00, %—&-% =1. Let lf(”)‘p: [

<(L

X ) <
a,b] — R be an R-integrable function for some n > 1
<c<b<d, wehave

_a/f dt——
Kl(xt)‘ dt)

f (1) dt + T, (x)

W)

- T ()

_[I- o

P
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and

b—a

/f dt——/f e+ T () = 7 (3)

(1
/ 2o ar) [ .
p

~ q
forevery x € [c,b]. The constants (fad ‘Krll (x, t)‘ dt)
sharp for 1 < p < oo and the best possible for p = 1.

<=
Q=

and (fad ’I?,ZL (x, 1) ’q dt) are

Proof. Use the identity (16) and apply the Holder inequality to obtain

b—a

1

b 1 d ) )
/uf(t)d“ﬁfc f () dr+ Tt () = T, (x)

</d\l?,l w0 [ 0 ar < / & )| ar ,, o

which proves the first inequality and similary we prove the second inequality. The proof
for sharpness and the best possibility are similar as in Corollary 1. [

)

p

REMARK 8. If we take n = 1 and for p = co, we get the same result as in the
Corollay 2; for p = 1, the Corollary 3; and for 1 < p < oo, the Corollary 4.

REMARK 9. We have showed that in the special case, if we take w (1) = 7,

t € [a,bl and u (t) = 7=, t € [c,d],in (10) the weighted Montgomery identity reduces
to the Euler identity. Consequently, the inequality from the Theorem 9, for [c, d] C [a, b]
reduces to the second inequality from the Theorem 12; and for [a, b] N [c,d] = [c, D] to
the second inequality from the Theorem 15.
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