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ESTIMATIONS OF THE DIFFERENCE OF TWO
INTEGRAL MEANS VIA EULER-TYPE IDENTITIES

J. PECARIC, 1. PERIC AND A. VUKELIC

(communicated by Z. Pdles)

Abstract. Generalizations of estimations of difference of two integral means are given, by using
Euler-type identities.

1. Introduction

The following Ostrowski inequality is well known [13]:
2
1 _ atb
< l‘_‘ + M} (b—a)M, x€lab], (11)

1 b
P@%—balfﬁﬂ T

where f : [a,b] — R is a differentiable function such that |[f'(x)| < M, for every
X € [a,b].
Note that (1.1) can be given in the equivalent form

b
Pw—bla/fmm<

The Ostrowski inequality has been generalized over the last years in a number of ways.
In this paper we will generalize the results from [2], where N. S. Barnet, P. Cerone,
S. S. Dragomir and A. M. Fink estimated the difference of the two integral means for
absolutely continuous mappings whose first derivative is in Ly [a, b]. We will give the
results for functions whose derivative of order n, n > 1, is from L, [a, b] spaces.
Recently, M. Mati¢ and J. Peari¢ [12] proved the following result which is more
in spirit of our results, so we use it as a initial result:

(x—a)+(b—x)°

2(b —a) M.

THEOREM 1. Let a,b,c,d € R, be such that
a<c<d<b,c—a+b—d>0.
(i) If f : [a,b] — R is M -Lipschitzian on [a,b], with some constant M > 0, then

i s gt o
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c—a) +(b—d)?
2(c—a+b—d)

M. (12)
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(ii) If fo : [a,b] — R is defined as
fo(t) = |t — so|, t € [a,b],
where
_ bc—ad
c—a+b—d
then fo is 1-Lipschitzian on |a,b] and we have

/fo dl——/fo )ds| =

Note that for ¢ = d = x we can assume d - f f(s)ds = f(x), as alimit case, so that
(1.2) reduces to the Ostrowski inequality (1.1). So, 1nequa11ty (1.2) can be regarded as
a natural generalization of Ostrowski inequality (1.1).

In the recent paper [6], for every function f : [a,b] — R such that £ =1
a continuous function of bounded variation on [a, b] for some n > 1 and for every
X € [a, b], the following two formulae have been proved:

S0

(c—a)*+ (b—d)?
20c—a+b—d)

@ = — [ e+ T () 4 PR (1.3)
f X) = m . f n X n X), .
and .
1 " .
5 [ £ T+ RE), (14
where for 1 <m < n,
i =3 C e () e ] 0

with convention 7. (x) = 0, and

Ry (x) = —% /ub [B:: (;_;) ~ B, (Z‘Z)] af"=h ().

Here By(x) are Bernoulli polynomials, By = By(0) are the Bernoulli numbers, and
B{(x), k > 0, are periodic functions of period one, related to the Bernoulli polynomials
as

B} (x) = Bi(x), for 0 <x < 1,
and

Bi(x+1)=B;(x), x e R,

so that By = 1, By is a discontinuous function with a jump of —1 at each integer, and
B;, k = 2, is a continuous function. For some details on the Bernoulli polynomials
and the Bernoulli numbers see for example [1] or [3].



DIFFERENCE OF TWO INTEGRAL MEANS 367

The formulae (1.3) and (1.4) are extensions of a Euler formula [ 11, p. 17].

In this paper we make use of the formulae (1.3) and (1.4) to prove generalizations
of (1.2) using two different methods. Also, we establish our main results for functions
whose derivatives are either functions of bounded variation or Lipschitzian functions or
functions from the L, -spaces.

2. Integral identities of Euler type

THEOREM 2. Let f : [a,b] — R be such that f "= is continuous function of
bounded variation on [a, b for some n > 1. Thenif [c,d] C [a, b] for every x € [c,d|

fa/f dl_—/f (Dt + T (x) / L, 1)df (1)

(2.1)
/f dt——/f f)dr + T (x) — 71 (x) / 2(x, )df "V (1),
(2.2)
where T,[,u’b] (x) and T,[,C’d] (x) are defined by (1.5),
(b_Z')nlen (2:(,1 ift € [a,cl;
Ki(n) = § By (1) - By (322) e (ea);
(b— Z')" an (;:;_,_1) ift € [d,bl;
and
(b_Z!yH B, (,’:;) B, (2 Z) ift € [a,c];
SO Bl A GOREA )
Kn(x, 1) = 7(d_;_!>n71_ {BZ *—_tc) B, (X ;):| ift € (cd): (2.3)
s [ (1) - ()] rclan

Proof. First we write identities (1.3) and (1.4) for interval [a, b] and for interval
[c,d]. Then we subtract them and using the properties of B} we get above state-
ments. 0

THEOREM 3. Let f : [a,b] — R be such that f "~V is continuous function of
bounded variation on [a,b] for some n > 1. Then if [c,d] C |a, b]

b d b
e [rwa 2 [rwacn= [moaw e

and

bia /bf(f)dt _ ﬁ /df(x)dx+ = /bH}%(t)df(nl)(t)’ (2.5)
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where Ty = 0 and for 1 <m < n,

e e E U e (20) (2] ]

b—a) d— -
o= sl (o) ma (o) e
B (5=2) 80 (5=2)]
Proof. From (1.3) we have

dfc/cf(x)dx: E/uf([)dl—f—ﬂ/c Tn’ (x)dx—l—dic/c Pn’ (x)dx.

However,

/cd T}Eu,b] (x)dx = zn: % [f(k—l)(b) _f(k—l)(a):| /CdBk (z_z) .

k=1

S (52) - (D)

1

and

and interchanging the order of integration

/CdP,[l‘"b](x)dx - —%b/ af = /d (x_’> x
S [ (520 - (52|

So we get identity (2.4). Similar using identity (1.4) we get (2.5). O

3. Estimations of the difference of two integral means

THEOREM 4. Let f : [a,b] — R be such that f ") is an L-Lipschitzian function
on [a,b] for some n > 1. Then for a < ¢ < d < b, we have
b
L/ (K (x, )| di

b—a /f dt_—/f (ndr + T, (x) = T, (x)| <
/‘szt‘dt

an

/f dt——/f ()dt + T’ (x) — T (x)

forevery x € [c,d].

b—a
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Proof. For integrable function F : [a,b] — R we have
b b
| oo <L Fola

since £~ is L-Lipschitzian function. This proves our assertions using identities
(2.1)and (2.2). O

THEOREM 5. Let f : [a,b] — R be suchthat f "=V isan L-Lipschitzian function
on la,b| for some n = 1. Thenfor a < ¢ <d < b, we have

b d b
pa | i g [y <i [l

1 b 1 d b
E/uf(t)dt—ﬁ/cf(t)dﬂrn_l <L/a |H; (1) dt.

Proof. Similar as in Theorem 4 using identities (2.4) and (2.5). O

and

COROLLARY 1. Let f : [a,b] — R be such that f is an L-Lipschitzian function
n [a,b]. Then for a < ¢ < d < b, we have inequality

it [rom- gt [om

In a case ¢ = a and d = b we assume that the right hand side of above inequality is
equal to zero.

c—a)2+(b—d)2
(b—a—d+c)

L (3.1)

Proof. We give two different proofs of the inequality (3.1).
(i) For n = 1 in the second inequality in Theorem 4 we have T (x) = T\ (x) =

0. By (2.3) we get
/b|K2(xt)|dt—/cB 270 g (222
L LT \b—a "\b—ua
—|—/dB* x—t _g (*=2\ _p x—t 4B xX—c
L P \b—a "\b—a "\ad—-c¢ "\a—¢

b
xX—1 X —d
B 1| —-—B; | —— ||dt.
e[ G e) w5
x—t Xx—a ¢
(m) B (m) \ a —/u

However,

g

[ 1—a . (c—a)?
dl_/a = 2(b—a)’
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b b
7t _

[ (=a) - (=)= |

d b—a b_a d

("b—t,  (b—a)?
“L b= = 2 —a)

xX—1 X—a

b—a b—ua

and
d x—t X—a x—t x—c
[ (o) - (=) i (=) o (=)l
“|x—t x—a x—-t x-—c
_[ b—a b—-a d-c d—cdl
d
x—t xX—a x—t xX—c
+K b +1_E_E_l+d7 dt
d
a—t t—c b— d+c
—/C b—a+d—c dt_(b /|t sol dt,
where 5o = 3 i’fl:fi‘ic . Further we have
d—c
= —— " (e—a) >
S~ ¢ bfa—d+c(c @) >0
and
d—c
— - - 2 )
4= bfa—d+c(b d)20
which implies that s € [c, d] and
d S0 d
/\t—s0|dt = / (so—t)dt—l—/(t—so)dt
c c S0
1 2 2
= §[(so—c) + (d — 50)°]
(d—c)? 2 2
= — b—d
MWo—a—drop € +b-d]
Consequently,
b
/’Klz(x,t)‘dt
(c —a)? d—c ) (b —d)?
= — b—d
- 3@ —a—drolc T Tl

~(c—a)?+ (b—d)?
- 2bb—a—d+c)

So with Theorem 4 we get (3.1).
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(ii) For n = 1 in the second inequality in Theorem 5 we have Tp = 0. By (2.6)
we get

b
/ \H:(1)| dt
b—a /C
2(d—c) | Ja
d
<

B d—t B c—t B d—a 4B c—a
\b—a \b—a \b_ua \b—a

c—t d—a c—a
5 >Bz(b_aJrl)Bz(—b_a)JrBz(—b_a)
LA S Al AU S () Y (el
b—a \b—a \b—ua \b—a

(=]
N
/\ /\ SN~—
ISH
L
Q| ~

dft)z_(cft)z_(clfa)2 (c —a)?
(b—ap (b-a3? (b-a)

— ¢ —¢)(c—a)?
) gy et

b—ay o ap
and
¢ d—t c—t d—a c—ua
/C Bz(b_ ) 2<b— +1)Bz(b_ >+Bz(b—a> dt
B d (d*t)z (C*[)z (Cft) (d*(l)z (C*a)z
_/C (b_a)27(b_a)272(b—a)i(b—a)er(b—a)z dt
412(d - ¢)(a— —c Wb —a—d+c) [?
:/C ( (b_)g)z t)+2;)—a dt = ( (b_a)er )/C It — so| d,
where 5o = ;2=

We get the same results as in (i), so with Theorem 5 we also get (3.1). O

REMARK 1. Inequality (3.1) is equal to inequality (1.2), so Theorems 4 and 5
generalize Theorem 1.
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REMARK 2. Suppose that f : [a,b] — R is such that ") exists and is bounded
n [a,b], for some n > 1. Therefore, the inequalities established in Theorems 4 and 5
hold with L = ||f ||

THEOREM 6. Let f : [a,b] — R be such that "~V is continuous function of
bounded variation on [a,b] for some n > 1. Then for a < ¢ < d < b, we have

b—a

/f dt——/f (t)dt 4+ T (x) — T (x)

< sup ‘K (x,1)] - vE(r =)
t€(a,b]

and

s [ra— 7 [ a1 -1

< sup ‘K xt’ VE(rin=hy,
t€(a,b

for every x € [c,d], where VE(f "=V is the total variation of f ") on [a, b].

Proof. If F : [a,b] — R is bounded on [a, b] and the Riemann-Stieltjes integral

b
| Foar
exists, then

< sup [F(0)|- V(oY)
t€a,b)

/ ’ Fdr )

This proves our assertions. [

THEOREM 7. Let f : [a,b] — R be such that "~V is continuous function of
bounded variation on [a,b] for some n > 1. Then for a < ¢ < d < b, we have

. /f d;_—/f Ydx + T,
1t I
m/af(t)a’t—ﬂ/cf(x)d)H‘Tn—l

where VP (f "=V is the total variation of f "=V on [a,b).

< sup [H,(0)] - Ve(rY)
t€la,b)

and

< sup [Ha() - VE(FOY),
t€(a,b]
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Proof. Similar as in Theorem 6 using identities (2.4) and (2.5). O

COROLLARY 2. Let f : [a,b] — R be such that f is continuous function of
bounded variation on [a,b]. Then for a < ¢ < d < b, we have inequality

—a/f dti_/f N CaberD'Vf(f)

b—a
(3.2)
Proof. We give two different proofs of the inequality (3.2).

1 c—a+b—d
2 b—a

(i) For n = 1 in the second inequality in Theorem 6 we have T (x) = T\ (x) =
0. From (2.3) we get

sup ’Klz(x t)’ = sup Bl<xr)Bl (xa)‘
t€a,c] ’ t€a,c] b—a b—a
~ s x—t x—a dt = sup -a c—a
t€a,c] b—a b—a t€a,c] a b—a’
xX—a
sup |K?(x,7)] = sup |B; <—+1)—B1( )’
re[d,b]‘ 1( )’ t€[d,b] b— b—a
sup xft_’_1 X—a sup b—t b—d
= u — = u =
r€[d b] b—a b—a ,e[d’b]b—a b—a
and
x—t xX—a x—t xX—c
sup |K?(x,1)| = sup |B} (—)—B1< )—B* (—>+Bl( )’
rE[c,d]’ 1( )‘ t€c,d) ! b—a b—a ! d—c d——c
o« aftthfc ~ max c—a b—d
N te[}:,] b—a d—c| b—a'b—al’
Consequently,
c—a b—d
K (x,0)| = —_— = A,B
ISEBJH l(xa )| max{b—a’b—a} max{ ) }a
where b
c—a —
A: B: .
b—a’ b—a

Also, 0 <A< Bor0<B<A,sothat
1
max{A,B} = = (A—&—B—HA B|).

So using the above formula with Theorem 6 we get (3.2).
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(ii) For n = 1 in the second inequality in Theorem 7 we have Ty = 0. From (2.6)
we get

sup |Hf(t)|
t€ac]
b—a d—t c—t d—a c—a
= B,| — | —B —B B
g e (=) -2 (=) -2 (5=0) + 2 (5=5)
c—a
= r— =
b—atél[zg}( @) b—a’
sup |H%(t)|
t€(d,b]
b—a —t c—t a c—a
= B,| —+1)—-B 1) —B | — B, | —
o s () - () - (520 + (50|
1 b—d
= sup (b—1) =
— A 1eld,b] b—a
and
sup ‘H%(t)’
t€c,d)
b—a d—t c—t d—a c—a
= B|— | -By| —+1 ) —B | — B, | ——
ey o o (52 2 (5e+1) - (5=%) + (55
_w a—t+t—c ~ max c—a b—d
_re[cgi] b—a d—c| b—a'b—a]l’

We get the same results as in (i), so with Theorem 7 we also get (3.2). O

REMARK 3. For ¢ = d = x we can assume —— [f(s)ds = f (), as a limit

case, 50 (3.2) reduces to
1 b
1)dt
= [ 10

}/(X) -

which is the inequality in Remark 5 from [6].

_atb
YT

b—a

< |y
S 2

] Vi),

REMARK 4. Suppose that £ : [a,b] — R is R-integrable function for some
n > 1 Inthis case £ "~ is a continuous function of bounded variation on [a, b] and

we have .
Vi) = [ lrow]a= e

Therefore, the inequalities established in Theorem 6 and 7 hold with ||f *||; in place
of VE(f(n=1y,
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THEOREM 8. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <

00, [% + é =1. Let [f<”) ‘p : |a,b] — R is R-integrable function for some n > 1.
Then for a < ¢ < d < b, we have

/f dt——/f (t)dr + T (x) — T (x)

b—a

/a

b
<</ \Ki(w)!th) AlF

ﬁ/f dt——/f (it + 7] (x) — T )

and

b q
< (/ \Kﬁ(%t)’qdf) s
forevery x € [c,d].

Proof. Use the identity (2.1) and apply the Holder inequality to obtain

e [ 10 g [ a1 -

b b 1/q
</ 1K5<x,t>w<'”<r>\dr<< / 1K5<x,r>\qdr> Al

which proves first inequality and similar we prove the second inequality. [

THEOREM 9. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <
00, % + é =1. Let [f<”) ‘p : |a,b] — R is R-integrable function for some n > 1.

Then for a < ¢ < d < b, we have
1 b | d b ] 1/a "
1 n
e [ 10d— = [ rwarsn) < [ lgiola) 1,
b l/‘[
< (/ IHﬁ(t)qut> .

1 1
mL f(t)dt* E[ f(x)derTn,l

Proof. Similar as in Theorem 8 using identities (2.4) and (2.5). O

and

REMARK 5. For p = oo results from Theorem 8 and Theorem 9 coincide with
the results of Theorem 4 and Theorem 5 with L = |[f | o. For p = 1 results from



376 J. PECARIC, 1. PERIC AND A. VUKELIC

Theorem 8 and Theorem 9 coincide with the results of Theorem 6 and Theorem 7 with

Vo) = lIr .
COROLLARY 3.  Assume (p,q) is a pair of conjugate exponents, that is 1 <

D,q < 00, I%Jré = 1. Let |f')P : [a,b] — R is R-integrable function. Then for
a<c<d<b,wehave

it [rom- gt [om

Proof. We give two different proofs of the inequality (3.3).

(c—a)™™ + (b— a’)q+1 Ve
{ TOG-a b—a—datq]
(3.3)

(i) For n = 1 in the second inequality in Theorem 8 we have . (x) = 7" (x) =
0. From (2.3), similar as in the proof of Corollary 1, we get

[ln(G=a)-m (=) - atoim

VEE

/bB x—t+1 g (@ o (b—a)y!
L \b—a "\b—a g+ 1)(b—a)
and

d q

L x—1 x—a L x—1 x—c
[l (G=t) -m(G=2) - (5r) o (55 [ ar
d—c

T gDl -a)ib-—a—d+tc) [(c=a)™ +(B—a)™],

Consequently,

_ q+1+(b7d)q+l
K3( (c—a) .
/ | xt‘ di = Nb—-—a)='(b—a—d+c)

So with Theorem 8 we get (3.3).
(ii) For n = 1 in the second inequality in Theorem 9 we have T, = 0. From
(2.6), similar as in the proof of Corollary 1, we get

[ (=) -2 (6=2) - (=) - (=)
_ 29(d — ¢)4(c — a)i*!
PESNCEEEN

B, (—Z_Z +1> ~ B, (;_; ) — B, (Z_Z> +B (Z_Z>
_ 29(d = c)i(b— )t
(q+1)(b—a)™

q
dt
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d—t c—t d—a c—a
w(5=0) - (=) -2 (520) +2 (5=2)

/d
29(d — ¢)t!

~ DG b —a—dgq TV T e

and

q
dt

We get the same results as in (i), so with Theorem 9 we also get (3.3). O

REMARK 6. Inequality (3.3) was also obtained by P. Cerone and S. S. Dragomir in
[5] by using different method.

REMARK 7. For ¢ = d = x we canassume — [° ‘¥ (s)ds = f (x), as a limit case,
so (3.3) reduces to

b x — q)it! — x)at! 1/q
(-5 [roa) < | SIS LIy,

This inequality was proved by A.M. Fink [10] (see also [7], [8] and [9]).

REMARK 8. The results from Corollaries 1, 2 and 3 were also obtained in [4].
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