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Abstract. In this paper we consider a class of polynomials P(z) = a0 +
n∑

j=μ
ajz

j , 1�μ�n , not

vanishing in the disk |z| < K . For K � 1 , we investigate the dependence of max|z|=1 |P(Rz)−
P(z)| on max|z|=1 |P(z)| and for K > 0 weestimate max|z|=R |P′(z)| in terms of max|z|=r |P(z)| ,
0 � r � R � K . Our results not only generalize some known polynomial inequalities, but olso
a variety of interesting results can be deduced from these by a fairly uniform procedure. We also
obtain a generalization of a Theorem of Paul Turan.

1. Introduction and statement of results

If P(z) is a polynomial of degree n and P′(z) its derivative, then

max
|z|=1

|P′(z)| � n max
|z|=1

|P(z)| (1)

max
|z|=R>1

|P(z)| � Rn max
|z|=1

|P(z)|. (2)

Inequality (1) is a well-known result of S. Bernstein (for reference see [6] or [15],
whereas inequality (2) is a simple deduction from maximum modulus principle (see
[18]). In both (1) and (2) equality holds only when P(z) is a constant multiple of zn .

If we restrict ourselves to a class of polynomials of degree n having no zeros in
|z| < 1 , then

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)| (3)

max
|z|=R>1

|P(z)| � Rn + 1
2

max
|z|=1

|P(z)|. (4)

Inequality (3) was conjectured by Erdös and latter verified by Lax [13], whereas
Anykeny and Rivlin [1] used (3) to prove (4).

As an extension of (3) Malik [14] verified that if P(z) does not vanish in |z| < K ,
K � 1 , then

max
|z|=1

|P′(z)| � n
1 + K

max
|z|=1

|P(z)|. (5)
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Chan and Malik [7] generalised (5) in a different direction and proved that, if

P(z) = a0 +
n∑

j=μ
ajzj , 1 � μ � n is polynomial of degree n which does not vanish in

|z| < K , where K � 1 , then

max
|z|=1

|P′(z)| � n
1 + Kμ max

|z|=1
|P(z)|. (6)

Inequality (6) was independently proved by Qazi [17, Lemma 1], who also under
the same hypothesis proved that

max
|z|=1

|P′(z)| �
1 +

μ
n

∣∣∣∣aμa0

∣∣∣∣ Kμ+1

1 + Kμ+1 +
μ
n

∣∣∣∣aμa0

∣∣∣∣ (Kμ+1 + K2μ)
max
|z|=1

|P(z)|. (7)

Recently Frappier, Rahman and Ruscheweyh [11] investigated the dependence of
max|z|=1 |P(Rz)− P(z)| on max|z|=1 |P(z)| , where R > 1 and proved that, if P(z) is a
polynomial of degree n , then for all R > 1 ,

max
|z|=1

|P(Rz) − P(z)| + Ψ(R)|P(o)| � (Rn − 1) max
|z|=1

|P(z)|,

where

Ψn(R) =
(R − 1)(Rn−1 + Rn−2){Rn−1 + Rn − (n + 1)R + (n − 1)}

Rn−1 + Rn − (n − 1)R + (n − 3)
, n � 2

and
Ψ1(R) = R − 1.

In this paper, we consider the class of polynomials P(z) = a0 +
n∑

j=μ
ajzj , 1 � μ �

n , not vanishing in the disk |z| < K , where K � 1 , and investigate the dependence
of max|z|=1 |P(Rz) − P(z)| on max|z|=1 |P(z)| . We first prove the following more
general result which includes not only inequality (7) as a special case, but also leads to
a standarad development of interesting generalizations of some well known results.

THEOREM 1. Let P(z) = a0 +
n∑

j=μ
ajzj be a polynomial of degree n which does not

vanish in |z| < K , where K � 1 , then for every R � 1 and |z| = 1 ,

|P(Rz) − P(z)| � (Rn − 1)
1 +

{
Rμ − 1
Rn − 1

} ∣∣∣∣aμa0

∣∣∣∣ Kμ+1

1 + Kμ+1 +
{

Rμ − 1
Rn − 1

} ∣∣∣∣aμa0

∣∣∣∣ (Kμ+1 + K2μ)
max
|z|=1

|P(z)|.

(9)

REMARK 1. If we divide the two sides of inequality (9) by R−1 and make R → 1 ,
we immediately get inequality (7).

If we use the fact that |P(Rz)| � |P(Rz) − P(z)| + |P(z)| , then the following
corollary is an immediate consequence of Theorem 1.
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COROLLARY 1. If P(z) = a0 +
n∑

j=μ
ajzj is a polynomial of degree n which does not

vanish in |z| < K , where K � 1 , then for every R � 1 ,

max
|z|=R>1

|P(z)| �
Rn

{
1 +

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ+1

}
+ Kμ+1 +

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ K2μ

1 + Kμ+1 +
{

Rμ − 1
Rn − 1

} ∣∣∣∣aμa0

∣∣∣∣ (Kμ+1 + K2μ)
max
|z|=1

|P(z)|.

The inequality
Rμ − 1
Rn − 1

� μ
n

(11)

holds for all R � 1 and 1 � μ � n . To prove this inequality, we observe that it is trivial
for R = 1 , and for every R � 1 it easily follows when μ = n . Hence to establish
(11), it suffices to consider the case 1 � μ � n − 1 and R > 1 . Now, if R > 1 and
1 � μ � n − 1 , then we have

μRn − nRμ + (n − μ) = μRμ(Rn−μ − 1) − (n − μ)(Rμ − 1)

= (R − 1){μRμ(Rn−μ−1 + Rn−μ−2 + · · · + 1)

− (n − μ)(Rμ−1 + · · · + R + 1)}
� (R − 1){μ(n − μ)Rμ − (n − μ)μRμ−1}
= μ(n − μ)(R − 1)2Rμ−1

> 0.

This implies μ(Rn − 1) � n(Rμ − 1) , for all values of R > 1 and 1 � μ � n − 1 ,
which is equivalent to (11).

With the help of inequality (11), a simple direct calculation yields,

Rn

{
1 +

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ+1

}
+ Kμ+1 +

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ K2μ

1 + Kμ+1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ (Kμ+1 + K2μ)

�
Rn

{
1 +

μ
n

∣∣∣∣aμa0

∣∣∣∣Kμ+1

}
+ Kμ+1 +

μ
n

∣∣∣∣aμa0

∣∣∣∣K2μ

1 + Kμ+1 +
μ
n

∣∣∣∣aμa0

∣∣∣∣ (Kμ+1 + K2μ)
.

(12)

Hence from Theorem 1, we easily deduce the following:

COROLLARY 2. If P(z) = a0 +
n∑

j=μ
ajzj is a polynomial of degree n , which does

not vanish in the disk |z| < K , where K � 1 , then for every R > 1 ,

max
|z|=R>1

|P(z)| �
Rn

{
1 +

μ
n

∣∣∣∣aμa0

∣∣∣∣ Kμ+1

}
+

μ
n

∣∣∣∣aμa0

∣∣∣∣K2μ

1 + Kμ+1 +
μ
n

∣∣∣∣aμa0

∣∣∣∣ (Kμ+1 + K2μ)
max
|z|=1

|P(z)|. (13)
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Inequality (10) provides a refinement of a result due to Govil and Dewan [9,
Treorem 1.9] which is also a special case of inequality (13) when μ = 1 .

Next, if we take μ = 1 in Theorem 1, we get the following:

COROLLARY 3. Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n , which does not

vanish in the disk |z| < K , K � 1 , then for every R > 1 ,

|P(Rz) − P(z)| � (Rn − 1)
1 +

R − 1
Rn − 1

∣∣∣∣a1

a0

∣∣∣∣K2

1 + K2 + 2
R − 1
Rn − 1

∣∣∣∣a1

a0

∣∣∣∣K2

max
|z|=1

|P(z)|. (14)

REMARK 2. Dividing the two sides of inequality (14) by R−1 and making R → 1 ,

it follows that, if P(z) =
n∑

j=0
ajzj is a polynomial of degree n such that P(z) �= 0 in

|z| < K , K � 1 , then

|P′(z)| � n
n|a0| + K2|a1|

n(1 + K2)|a0| + 2K2|a1| max
|z|=1

|P(z)|. (15)

Inequality (15) is a refinement of inequality (5) and was also independently proved by
Govil, Rahman and Schmeisser [12].

Now, it is known (for reference see [17, Remark 1]), that

μ
n

∣∣∣∣aμa0

∣∣∣∣Kμ � 1. (16)

Using this fact and the inequality (11), it is easy to verify that

1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ+1

1 + Kμ+1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ (Kμ+1 + K2μ)
� 1

1 + Kμ . (17)

By using these observations, the following result is an immediate consequence of
Theorem 1.

COROLLARY 4. If P(z) = a0 +
n∑

j=μ
ajzj is a polynomial of degree n , which does

not vanish in the disk |z| < K , where K � 1 , then for every R > 1 ,

|P(Rz) − P(z)| � Rn − 1
1 + Kμ max

|z|=1
|P(z)| (18)

and in fortiori

max
|z|=R

|P(z)| � Rn + Kμ

1 + Kμ max
|z|=1

|P(z)|. (19)
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Inequality (19) is a generalization of a result due to Govil and Dutt [8, Theorem
1.6] and inequality (10) is an improvement over this bound. Also for K = μ = 1 ,
inequality (19) reduces to inequality (4) due to Ankeny and Rivlin.

Next we prove the following theorem, which is an improvement as well a genera-
lization of a result proved by Bidkham and Dewan [10].

THEOREM 2. If P(z) = a0 +
n∑

j=μ
ajzj is a polynomial of degree n having no zeros

in the disk |z| < K , K � 0 , then for 0 � r � R � K ,

max
|z|=R

|P′(z)| � nRμ−1(Rμ + Kμ)
n
μ −1

(rμ + Kμ)n/μ

{
max
|z|=r

|P(z)| − min
|z|=K

|P(z)|
}

. (20)

The result is best possible and equality holds for the polynomial P(z) = (zμ + Kμ)n/μ ,
where n is a multiple of μ .

If we take μ = 1 = r in Theorem 2, we get the following:

COROLLARY 5. If P(z) =
n∑

j=0
ajzj is a polynomial of degree n having no zeros in

the disk |z| < K , where K � 1 , then for 1 � R � K ,

max
|z|=R

|P′(z)| � n(R + K)n−1

(1 + K)n

{
max
|z|=1

|P(z)| − min
|z|=K

|P(z)|
}

. (21)

The result is sharp and equality holds for P(z) = (z + K)n .

If we take R = K = 1 in Theorem 2, we get the following generalization of result
due to Aziz and Dawood [3].

COROLLARY 6. If P(z) = a0 +
n∑

j=μ
ajzj is a polynomial of degree n , not vanishing

in the disk |z| < 1 , then for 0 < r � 1 ,

max
|z|=1

|P′(z)| � n
2

(
2

1 + rμ

)n−1 {
max
|z|=r

|P(z)| − min
|z|=1

|P(z)|
}

. (22)

The result is best possible and equality holds for the polynomial P(z) = (zμ + 1)n/μ ,
where n is a multiple of μ .

Lastly in this paper we prove the following result which is a generalization of a
theorem due to Paul Turan [19].

THEOREM 3. If P(z) =
n∑

j=s
ajzj is a polynomial of degree n having all its zeros in

the disk |z| � K � 1 with s -fold zeros at origin, then for |z| = 1 ,

max
|z|=1

|P′(z)| � n + Ks
1 + K

max
|z|=1

|P(z)|. (23)
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The result is sharp and extremal polynomial is

P(z) = zs(z + K)n−s, 0 < s � n.

The result proved by Turan [19] is a special case of Theorem 3, when s = 0 and
K = 1 . Also for s = 0 , it reduces to inequality (5) due to Malik [14].

2. Lemmas

For the proofs of these theorems we need the following lemmas.

LEMMA 1. If P(z) is a polynomial of degree n having all its zeros in |z| � 1 ,
then for R > 1

|P(Rz)| > |P(z)| for |z| = 1. (24)

The lemma is a special case of result due to Aziz and Rather [4, Lemma 2], when
K = 1 .

LEMMA 2. If P(z) = a0 +
n∑

j=μ
ajzj is a polynomial of degree n having no zeros in

the disk |z| � K where K � 1 , then for |z| = 1 and R > 1 ,

|P(Rz) − P(z)| � 1
Kμ+1

⎧⎪⎪⎨
⎪⎪⎩

1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ+1

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ−1 + 1

⎫⎪⎪⎬
⎪⎪⎭ |Q(Rz) − Q(z)|. (25)

Proof of Lemma 2. The result is trivial if R = 1 , so we suppose that R > 1 . Since
P(z) has all zeros in |z| � K where K � 1 , the polynomial F(z) = P(Kz) has all its
zeros in |z| � 1 , so that the polynomial G(z) = znF(1/z) has all its zeros in |z| � 1
and |F(z)| = |G(z)| for |z| = 1 . Hence the function G(z)/F(z) is analytic in |z| � 1
and ∣∣∣∣G(z)

F(z)

∣∣∣∣ =
∣∣∣∣G(z)
F(z)

∣∣∣∣ = 1.

A direct application of the maximum modules principle shows that

|G(z)| � |F(z)| for |z| � 1. (26)

We now show that all the zeros of f (z) = F(z)−βG(z) lie in |z| � 1 , for every β
with |β | > 1 . First suppose that F(z) has all its zeros on |z| = 1 . If z1, z2, . . . , zn are
zeros of F(z) , then |zj| = 1 for all j = 1, 2, . . . , n and we have F(z) = cΠn

j=1(z− zj) ,
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so that

G(z) = ZnF(1/z) = c Πn
j=1(1 − zzj)

= c Πn
j=1 (1 − z/zj)

= c Πn
j=1(−1)n

{
z − zj

zj

}

=
{

c(−1)nΠn
j=1

1
zj

}
Πn

j=1(z − zj)

= uF(z),

where

|u| =
∣∣∣∣cc(−1)nΠn

j=1
1
zj

∣∣∣∣ = 1.

Hence all the zeros of f (z) = F(z) − βG(z) = (1 − βu)F(z) also lie on |z| = 1 and
therefore, in |z| � 1 . Now suppose that F(z) has at least one zero in |z| < 1 , then
obviously F(z)/G(z) is not a constant and hence from (26), it follows that

|G(z)| < |F(z)| for |z| < 1. (27)

Replacing z by
1
z

in (27), we obtain

|F(z)| < |G(z)| for |z| > 1.

Using Rouche’s theorem, we conclude that polynomial f (z) = F(z) − βG(z) has all
its zeros in |z| � 1 . Thus in any case the polynomial f (z) has all its zeros in |z| � 1 ,
for every β , with |β |>1. Applying Lemma 1 to the polynomial f (z) , we get

|f (z)| < |f (Rz)| for |z| = 1 and R > 1.

Since all zeros of f (Rz) lie in |z| � 1/R < 1 , again Rouche’s theorem shows that the
polynomial

g(z) = f (Rz) − f (z) = (F(Rz) − F(z)) − β(G(Rz) − G(z)) (28)

has all its in |z| < 1 , for every complex number β with |β | > 1 and R > 1 . This
implies

|F(Rz) − F(z)| � |G(Rz) − G(z)| (29)

for |z| � 1 and R > 1 . If inequality (29) is not true, then there is a point z = z0 with
|z0| � 1 such that

|F(Rz0) − F(z0)| > |G(Rz0) − G(z0)|.
Since G(z) has all its zeros in |z| � 1 , it follows that all the zeros of G(Rz)−G(z) lie
in |z| < 1 for every R > 1 . Hence

G(Rz0) − G(z0) �= 0 with |z0| � 1.

We take

β =
F(Rz0) − F(z0)
G(Rz0) − G(z0)

,
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so that |β | > 1 and with this choise of β , from (28), we get g(z0) = 0 , where |z0| � 1 .
This contradicts the fact that all the zeros of g(z) lie in |z| < 1 . Thus

|F(Rz) − F(z)| � |G(Rz) − G(z)| for |z| � 1 and R > 1.

Replacing F(z) by P(Kz) and G(z) by znP(K/z) , we get

|P(RKz − P(Kz))| �
∣∣∣RnznP(K/Rz) − znP(K/z)

∣∣∣
= |RnP(Kz/R) − P(Kz)| for |z| = 1, R > 1.

Since the polynomial RnP(Kz/R) − P(Kz) does not vanish in |z| � 1 , therefore

H(z) =
P(RKz) − P(Kz)

RnP(Kz/R) − P(Kz)
is analytic in |z| � 1 and by the maximum modules principles, we have

|H(z)| � 1 for |z| � 1.

Also, it can be easily seen that

H(o) = H′(o) = · · · = H(μ−1)(o) = 0

and

Hμ(o) =
Rμ − 1
Rn − 1

(
aμ/a0

)
Kμ .

Hence by a generalized form of Schewarz’s Lemma

|H(z)| � |z|μ
|z| + Rμ − 1

Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ |z| + 1
for |z| � 1.

Equivalently

∣∣∣∣ P(RKz) − P(Kz)
RnP(Kz/R) − P(Kz)

∣∣∣∣ � |z|μ
|z| + Rμ − 1

Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ |z| + 1
for |z| � 1.

We take z = eiθ/K , 0 � θ < 2π , so that |z| = 1/K and we get

|P(Reiθ) − P(eiθ)|
|RnP(eiθ/R) − P(eiθ)| � 1

Kμ+1

1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ+1

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ−1 + 1
.

This implies

|P(Rz) − P(z)|
|RnP(z/R) − P(z)| � 1

Kμ+1

1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ+1

Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ−1 + 1
for |z| � 1. (30)

From this (25) follows and this completes the proof of Lemma 2.
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LEMMA 3. If P(z) is a polynomial of degree n , then for every R > 1

|P(Rz) − P(z)| + |Q(Rz) − Q(z)| � (Rn − 1) max
|z|=1

|P(z)|. (31)

The above lemma was proved by Aziz [2] (see also [11]).

LEMMA 4. If P(z) = a0 +
n∑

j=μ
ajzj is a polynomial of degree n which does not

vanish in |z| < K , K � 1 , then

max
|z|=1

|P′(z)| � 1
1 + Kμ

{
max
|z|=1

|P(z)| − min
|z|=K

|P(z)|
}

. (32)

This lemma was proved by Dewan and Pukhta [16, Theorem 1.4], (see also [5]).
Next we use Lemma 4 to prove the following:

LEMMA 5. Let P(z) = a0 +
n∑

j=μ
ajzj be a polynomial of degree n such that

M(P, r) = max
|z|=r

|P(z)| and m(P, r) = min
|z|=r

|P(z)|.

If P(z) has no zeros in |z| < K , K > 0 , then for 0 � r � R � K ,

M(P, r) �
{

rμ + Kμ

Rμ + Kμ

}n/μ

M(P, R) +

[
1 −

{
rμ + Kμ

Rμ + Kμ

}n/μ
]

m(P, K). (33)

The result is sharp and equality holds for the polynomial P(z) = (zμ + Kμ)n/μ ,
where n is a multiple of μ .

Proof of Lemma 5. By hypothesis P(z) has no zeros in |z| < K , therefore, the

polynomial F(z) = P(sz) has no zeros in |z| <
K
s

,
K
s

� 1 where 0 � s � K . Since

K
s

� 1 , by Lemma 4, it follows that

max
|z|=1

|F′(z)| � n

1 +
Kμ

sμ

{
max
|z|=1

|F(z)| − min
|z|=K/s

|F(z)|
}

.

This gives

max
|z|=s

|P′(z)| � nsμ−1

sμ + Kμ

{
max
|z|=s

|P(z)| − min
|z|=K

|P(z)|
}

. (34)

Now, for 0 � r � R � K , and 0 � θ � 2π , we have

|P(Reiθ) − P(reiθ)| =
∣∣∣∣
∫ R

r
eiθP′(seiθ)ds

∣∣∣∣
�

∫ R

r
|P′(se2θ )|ds.
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This gives

|P(Reiθ)| � |P(re2θ)| +
∫ R

r
|P′(se2θ )|ds,

from which it follows that

M(P, R) � M(P, r) +
∫ R

r
M(P′, s)ds. (35)

Using (34) in (35), we obtain

M(P, R) � M(P, r) + n

[∫ R

r

sμ−1

sμ + Kμ M(P, s)ds −
∫ R

r

sμ−1

sμ + Kμ m(P, K)ds

]
. (36)

If

φ(R) = M(P, r) + n

[∫ R

r

sμ−1

sμ + Kμ M(P, s)ds −
∫ R

r

sμ−1

sμ + Kμ M(P, K)ds

]
,

then

φ ′(R) =
nRμ−1

Rμ + Kμ M(P, R) − nRμ−1

Rμ + Kμ m(P, K). (37)

From (37) with the help of (36), we conclude that

φ ′(R) − nRμ−1

Rμ + Kμ {φ(R) − m(P, K)} � 0. (38)

Multiplying the two sides of (38) by (Rμ + Kμ)−n/μ , we get

φ ′(R)(Rμ + Kμ)−n/μ − n(φ(R) − m(P, K))(Rμ + Kμ)−n/μ−1

Rμ−1 � 0,

which implies
d
dR

{
(φ(R) − m(P, K))(Rμ + Kμ)−n/μ

}
� 0. (39)

From (39) we conclude that the function

{φ(R) − m(P, K)}(Rμ + Kμ)−n/μ

is a non increasing function of R in (0, K) . Hence for 0 � r � R � K ,

φ(r) �
[

Kμ + rμ

Kμ + Rμ

]n/μ

φ(R) +

{
1 −

[
Kμ + rμ

Kμ + Rμ

]n/μ
}

m(P, K). (40)

Since φ(R) � M(P, R) and φ(r) = M(P, r) it follows from (40) that

M(P, r) �
[

Kμ + rμ

Kμ + Rμ

]n/μ

M(P, R) +

{
1 −

[
Kμ + rμ

Kμ + Rμ

]n/μ
}

m(P, K).

This proves the lemma completely.
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3. Proofs of Theorems

Proof of Theorem 1. Since P(z) = a0 +
n∑

j=μ
ajzj does not vanish in |z| < K ,

K � 1 , by Lemma 2, we have

Kμ+1

{
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ−1 + 1

}

1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ+1

|P(Rz) − P(z)| � |Q(Rz) − Q(z)|. (41)

Inequality (41) implies with the help of Lemma 3 that⎧⎪⎪⎨
⎪⎪⎩1 +

Kμ+1

(
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ−1 + 1

)

1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ Kμ+1

⎫⎪⎪⎬
⎪⎪⎭ |P(Rz) − P(z)| � |P(Rz) − P(z)| + |Q(Rz) − Q(z)|

� (Rn − 1) max
|z|=1

|P(z)|.

This gives

|P(Rz) − P(z)| � (Rn − 1)

⎧⎪⎪⎨
⎪⎪⎩

1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣Kμ+1

1 + Kμ+1 +
Rμ − 1
Rn − 1

∣∣∣∣aμa0

∣∣∣∣ (K2μ + Kμ+1

⎫⎪⎪⎬
⎪⎪⎭max

|z|=1
|P(z)|,

which is (9) and this proves Theorem 1 completely.

Proof of Theorem2. Byhypothesis P(z) = a0+
n∑

j=μ
ajzj does not vanish in |z| < K ,

therefore the polynomial F(z) = P(Rz) has no zero in |z| < K/R , K/R � 1 . Applying
Lemma 4 to the polynomial F(z) , we get

max
|z|=1

|F′(z)| � n

1 +
Kμ

Rμ

{
max
|z|=1

|F(z)| − min
|z|=K/R

|F(z)|
}

,

which gives

max
|z|=R

|P′(z)| � nRμ−1

Rμ + Kμ

{
max
|z|=R

|P(z)| − min
|z|=K

|P(z)|
}

. (42)

Now if 0 � r � R � K , then by Lemma 5, we have

max
|z|=R

|P(z)| �
(

Rμ + Kμ

rμ + kμ

)n/μ

max
|z|=r

|P(z)|+
{

1 −
(

Rμ + Kμ

rμ + kμ

)n/μ
}

min
|z|=K

|P(z)|. (43)
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From (42) and (43), it follows that

max
|z|=R

|P′(z)| � nRμ−1

Rμ + Kμ

{(
Rμ + Kμ

rμ + Kμ

)n/μ

max
|z|=r

|P(z)| −
(

Rμ + Kμ

rμ + Kμ

)n/μ

min
|z|=K

|P(z)|
}

=
nRμ−1

Rμ + Kμ

(
Rμ + Kμ

rμ + Kμ

)n/μ {
max
|z|=r

|P(z)| − min
|z|=K

|P(z)|
}

,

which is equivalent to (20) and this completes the proof of Theorem 2.

Proof of Theorem 3. Since P(z) has all its zeros in |z| � K , K � 1 , whit s -fold
zeros at origin, we write

P(z) = zsh(z), (44)
where h(z) is a polynomial of degree n − s having all its zeros in |z| � K , K � 1 .
From (44) we get

zP′(z)
P(z)

= s +
zh′(z)
h(z)

. (45)

If z1, z2, . . . , zn−s are the zeros of h(z) , then |zj| � K � 1 , and from (45), we have

Re

{
eiθP′(eiθ)

P(eiθ)

}
= s + Re

{
eiθh′(eiθ )

h(eiθ)

}

= s + Re
n−s∑
j=1

(
eiθ

eiθ − zj

)

= s +
n−s∑
j=1

Re

(
1

1 − zje−iθ

)
(46)

for points eiθ , 0 � θ < 2π , which are not the zeros of h(z) . Now, if |w| � K � 1 ,
then it can be easily verified that

Re

(
1

1 − w

)
� 1

1 + K
.

Using this fact in (46), we get∣∣∣∣P′(eiθ )
P(eiθ)

∣∣∣∣ � Re

(
eiθP′(eiθ)

P(eiθ)

)
= s +

n−s∑
j=1

Re

(
1

1 − zje−iθ

)

� s +
n − s
1 + K

which gives

|P′(eiθ)| � n + sK
1 + K

|P(eiθ )| (47)

for points eiθ , which are not the zeros of P(z) . Since inequality (47) is trivially true
for points eiθ , which are the zeros of P(z) , it follows that

|P′(z)| � n + sK
1 + K

|P(z)| for |z| = 1.
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This immediately leads to

max
|z|=1

|P′(z)| � n + sK
1 + K

max
|z|=1

|P(z)|

which completes the proof of Theorem 3.
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