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INEQUALITIES FOR A POLYNOMIAL AND ITS DERIVATIVE

A. Az1z AND W. M. SHAH

(communicated by Th. Rassias)

n X
Abstract. In this paper we consider a class of polynomials P(z) = ag + > ;2 , 1<u<n, not

J=H
vanishing in the disk |z| < K. For K > 1, we investigate the dependence of max;|_ |P(Rz) —
P(z)| on max| ;| |P(z)| andfor K > 0 we estimate max|;|_g |P’(z)| interms of max|,|_ [P(2)].

0 <r <R K K. Ourresults not only generalize some known polynomial inequalities, but olso
a variety of interesting results can be deduced from these by a fairly uniform procedure. We also
obtain a generalization of a Theorem of Paul Turan.

1. Introduction and statement of results

If P(z) is a polynomial of degree n and P’(z) its derivative, then

max |P'(z)| < nmax |P(z)] (1)
|z]=1 |z]=1
max |P(z)] < R"max |P(z)|. (2)
|z|=R>1 |z|=1

Inequality (1) is a well-known result of S. Bernstein (for reference see [6] or [15],
whereas inequality (2) is a simple deduction from maximum modulus principle (see
[18]). In both (1) and (2) equality holds only when P(z) is a constant multiple of z".

If we restrict ourselves to a class of polynomials of degree n having no zeros in
lz] < 1, then

n
max |P'(z)| < = max |P(z)| (3)
lz|=1 2 =1
R" 41
max |P < max |P(z)|. 4
max 1P < S max (o) @

Inequality (3) was conjectured by Erdos and latter verified by Lax [13], whereas
Anykeny and Rivlin [1] used (3) to prove (4).

As an extension of (3) Malik [14] verified that if P(z) does not vanishin |z] < K,
K > 1, then

n
max |P'(z)] < —— max |P(z)|. 5
max P(2)] < g max |P(2) )
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380 A. AzizZ AND W. M. SHAH

Chan and Malik [7] generalised (5) in a different direction and proved that, if
P(z) =ap+ > aid, 1 <p < nis polynomial of degree n which does not vanish in

=
lz| < K, where K > 1, then

max |P'(z)| <

n
< max |P(z)]. 6
|z|=1 1+ K* \z|=1| @l ©)

Inequality (6) was independently proved by Qazi [17, Lemma 1], who also under
the same hypothesis proved that

it
n

[
n

au
ao

1+ ) Gan

au max |P(z)]. (7)

(KHHT 4 K2H)
ao

Recently Frappier, Rahman and Ruscheweyh [11] investigated the dependence of
max|,—i |P(Rz) — P(z)| on max,—; |[P(z)|, where R > 1 and proved that, if P(z) isa
polynomial of degree n, then forall R > 1,

max [P(Rz) — P(2)| + ¥(R)|P(0)| < (R" — 1) max P(2)],

where
R—1 Rnfl Rn72 Rnfl R — 1R -1
)~ RDET SRR Rt DR (1)
R—14+ R —(n—1)R+ (n—3)
and
Y, (R)=R— 1.

n .
In this paper, we consider the class of polynomials P(z) =ap+ > a7, 1 < <
j=h
n, not vanishing in the disk |z| < K, where K > 1, and investigate the dependence
of max,— [P(Rz) — P(z)| on max_[P(z)|. We first prove the following more
general result which includes not only inequality (7) as a special case, but also leads to
a standarad development of interesting generalizations of some well known results.

n .
THEOREM 1. Let P(z) = ao+ Y a7 be a polynomial of degree n which does not
=
vanishin |z| < K, where K > 1, then for every R > 1 and |z| =1,

1+ {R ; } G Kut1
Rﬂ —
IP(R) — P(2) < (R~ 1) T B max|P(z)|.
[y I N T ) A <O
R"—1 ap

REMARK 1. If we divide the two sides of inequality (9) by R— 1 and make R — 1,
we immediately get inequality (7).

If we use the fact that |P(Rz)| < |P(Rz) — P(z)| + |P(2)|, then the following
corollary is an immediate consequence of Theorem 1.
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n
COROLLARY 1. If P(z) = ap+ Y. a;@ is a polynomial of degree n which does not

=
vanish in |z| < K, where K > 1, then for every R > 1,
relr e Bl g Ly g B2 L gy
R"—1 |ay R'—1 |ay
max |P(z)] < 1 max |P(z)].
= 1 Kot d = LI (gt gow) =t
R"—1 ap
The inequality
R* —1
<E (11)
R —1 n

holdsforall R > 1 and 1 < u < n. To prove this inequality, we observe that it is trivial
for R = 1, and for every R > 1 it easily follows when u = n. Hence to establish
(11), it suffices to consider the case 1 < u <n—1 and R > 1. Now, if R > 1 and
1 < u < n—1,then we have
UR" — nR* 4 (n — ) = R (R"H — 1) — (n — w) (R — 1)
=(R—D{uR!(R"H I+ R+ 4 1)
—(n—w)®R'+. +R+1)}
> (R— 1){u(n — w)R* — (n — u)ur*~"}
— p(n— w)(R— 1R
> 0.

This implies u(R* — 1) > n(R* — 1), for all valuesof R > 1 and 1 < u <n-1,
which is equivalent to (11).

With the help of inequality (11), a simple direct calculation yields,

R 1+R#71
R — 1

au

ao

u
ap

K

R —1
K;Hrl K;Hrl
} + + T

R -1
R —1

1+ kst 4 L

R"{1+ﬁa—“
<

(KH+! 4 K24)
ag

au K2H
n | dp

K““} + ket B

n

ao

G
ap
Hence from Theorem 1, we easily deduce the following:

1 +KM+1 + E (KM+1 +K2“)
n

COROLLARY 2. If P(z) = ap+ Y. a;7 is a polynomial of degree n, which does
J=Hu
not vanish in the disk |z| < K, where K > 1, then for every R > 1,

R"{l+E L 1<M+1}+E
max |P(z)| < 1 1do

n
|z|=R>1

au
ap

au

[y
n |ap

(Kntt 4 g2y 1
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Inequality (10) provides a refinement of a result due to Govil and Dewan |9,
Treorem 1.9] which is also a special case of inequality (13) when u = 1.
Next, if we take u = 1 in Theorem 1, we get the following:

n
COROLLARY 3. Let P(z) = Y a7 be a polynomial of degree n, which does not
=0
vanish in the disk |z| < K, K > 1, then for every R > 1,

1+1€e 11 4k
n— a
P(RS) ~ P(2) < (R~ 1) o max (P (14)
1+ K242 al g2 V=
R"—1 |ag

REMARK 2. Dividing the two sides of inequality (14) by R—1 and making R — 1,

it follows that, if P(z) = > ;7 is a polynomial of degree n such that P(z) # 0 in
j=0
|zl <K, K >1,then

KZ
nlaol + K¥ja| ax |P(2)]. (15)

P'(z)] <n
[P (2)] n(1+ K2)|ao| + 2K2[ay| |21

Inequality (15) is a refinement of inequality (5) and was also independently proved by
Govil, Rahman and Schmeisser [12].

Now, it is known (for reference see [17, Remark 1]), that

u

n

au

ao

K" <1 (16)

Using this fact and the inequality (11), it is easy to verify that

L T
R —1 |a _ -
T = :
R O L) N I
R'"—1 |ay

By using these observations, the following result is an immediate consequence of
Theorem 1.

n .
COROLLARY 4. If P(z) = ao + ) a;Z is a polynomial of degree n, which does
=
not vanish in the disk |z| < K, where K > 1, then for every R > 1,

R —1
P(Rz) — P <
IP(RS) — PO <

max |P(2)] (18)

and in fortiori
R"+ K*
max |P(z)] < ————— max
‘leRl @< T g max

P(2)]- (19)
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Inequality (19) is a generalization of a result due to Govil and Dutt [8, Theorem
1.6] and inequality (10) is an improvement over this bound. Also for K = u = 1,
inequality (19) reduces to inequality (4) due to Ankeny and Rivlin.

Next we prove the following theorem, which is an improvement as well a genera-
lization of a result proved by Bidkham and Dewan [10).

n .
THEOREM 2. If P(z) = ao + >_ a;Z is a polynomial of degree n having no zeros
=
inthe disk |z < K, K >0, thenfor 0 < r <R<K,

RE- (R 4 Ky !
max |P'(z)] < n (R + K*) {

fax < (7 1 Ki)ii max |P(z)| — min P(z)} . (20)

|z]=r lz|=K

The result is best possible and equality holds for the polynomial P(z) = (Z* 4+ K*)"/*
where n is a multiple of U.

If we take u = 1 = r in Theorem 2, we get the following:

n .
COROLLARY 5. If P(z) = ) a;Z is a polynomial of degree n having no zeros in
=0
the disk |z| < K, where K > 1, thenfor 1 <R < K,

| < MR K .
max (0] < "G {ma e - mn el f e

The result is sharp and equality holds for P(z) = (z + K)".

If wetake R = K = 1 in Theorem 2, we get the following generalization of result
due to Aziz and Dawood [3].

n
COROLLARY 6. If P(z) = ap+ Y a;d is a polynomial of degree n, not vanishing
=
in the disk |z| < 1, thenfor 0 <r <1,

max|P' ()] < 2 (2 . max|P(z)| — min|P(z)| \ . (22)
5

lz]=1 L+ |z|=r |z[=1

The result is best possible and equality holds for the polynomial P(z) = (2 + 1)"/*,
where n is a multiple of U.

Lastly in this paper we prove the following result which is a generalization of a
theorem due to Paul Turan [19].

n
THEOREM 3. If P(z) = Y. a;@ is a polynomial of degree n having all its zeros in
Jj=s
the disk |z| < K < 1 with s-fold zeros at origin, then for |z| =1,

n+Ks
max |P'(z)| > max |P(z)|. 23
max P(2)] > 0 max (o) 23)
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The result is sharp and extremal polynomial is
P(z) =7Zz+K)"*, 0<s<n.

The result proved by Turan [19] is a special case of Theorem 3, when s = 0 and
K = 1. Also for s = 0, it reduces to inequality (5) due to Malik [14].

2. Lemmas

For the proofs of these theorems we need the following lemmas.
LEMMA 1. If P(z) is a polynomial of degree n having all its zeros in |z] < 1,
then for R > 1
|P(Rz)| > |P(2)| for |z]=1. (24)

The lemma is a special case of result due to Aziz and Rather [4, Lemma 2], when
K=1.

LEMMA 2. If P(z) = ap + Y ;7 is a polynomial of degree n having no zeros in
=
the disk |z| < K where K > 1, then for |zl =1 and R > 1,

Lol RE = 1w g
R"—1 |ay
PR — P2 < oy | 0k~ 0@ (25)
L -1
— | K1 41
R"—1 |ag

Proof of Lemma 2. Theresult s trivial if R = 1, so we suppose that R > 1. Since
P(z) has all zeros in |z| > K where K > 1, the polynomial F(z) = P(Kz) has all its
zeros in |z| > 1, so that the polynomial G(z) = z'F(1/Z) has all its zeros in |z] < 1
and |F(z)| = |G(z)| for |z] = 1. Hence the function G(z)/F(z) is analyticin |z| < 1
and

‘G(Z)
F(z)

A direct application of the maximum modules principle shows that

=1

_’@
F(z)

IGE)| < |F(z)| for [z < 1. (26)

We now show that all the zeros of f (z) = F(z) — BG(2) liein |z| < 1, forevery
with |B| > 1. First suppose that F(z) has all its zeroson |z| = 1. If z1,2,...,2, are
zeros of F(z), then [z;| =1 forall j=1,2,...,n and we have F(z) = cIT_,(z - z),
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so that
G(z) =Z"F(1)7) = EHJ’f:I(I — 2Zj)
Z2—3Z
—CIl" (=1 2%
eI ){ Zj }
- n n 1 n
=qc(=1) Hj:lf Hj:l(Z*Zj)
Zj
= uF(z),
where

c 1
=|-(-D)'"TL,—| =1.
= S0

j
Hence all the zeros of f(z) = F(z) — BG(z) = (1 — Pu)F(z) also lie on |z| = 1 and
therefore, in |z| < 1. Now suppose that F(z) has at least one zero in |z| < 1, then
obviously F(z)/G(z) is not a constant and hence from (26), it follows that

|G(2)| < |F(z)|] for |z < L. (27)

Replacing z by — in (27), we obtain

NI =

|F(z)| < |G(z)] for |z] > 1.

Using Rouche’s theorem, we conclude that polynomial f(z) = F(z) — BG(z) has all
its zeros in |z| < 1. Thus in any case the polynomial f (z) has all its zeros in |z] < 1,
forevery 3, with |B|>1. Applying Lemma 1 to the polynomial f (z), we get

If (z)] <|f(Rz)] for |z7f=1 and R>1.

Since all zeros of f (Rz) liein |z] < 1/R < 1, again Rouche’s theorem shows that the
polynomial

8(z) =f(Rz) —f(2) = (F(Rz) — F(2)) — B(G(Rz) — G(z)) (28)

has all its in |z] < 1, for every complex number 8 with |8| > 1 and R > 1. This
implies

|F(Rz) — F(z)| < |G(Rz) — G(2)] (29)
for |zl > 1 and R > 1. If inequality (29) is not true, then there is a point z = zo with
|zo| = 1 such that

|F(Rzo) — F(z0)| > |G(Rz0) — G(20)]-

Since G(z) has all its zeros in |z| < 1, it follows that all the zeros of G(Rz) — G(z) lie
in |z| < 1 forevery R > 1. Hence

G(Rz) — G(z0) #0 with |zo] > 1.

We take
F(Rz0) — F(20)

b= GlR) —Ga)
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sothat [B| > 1 and with this choise of 8, from (28), we get g(z0) = 0, where |zo| > 1.
This contradicts the fact that all the zeros of g(z) lie in |z| < 1. Thus

|F(Rz) — F(z)| < |G(Rz) —G(z)| for |zl>1 and R> 1.
Replacing F(z) by P(Kz) and G(z) by Z'P(K/Z) , we get
[P(RKz — P(Kz))| < |R"Z'P(K/Rz) — 'P(K/z)
= |R"P(Kz/R) — P(Kz)| for [z/=1, R>1.
Since the polynomial R"P(Kz/R) — P(Kz) does not vanish in |z| < 1, therefore
(s — _PRED — P(K2)
R'P(Kz/R) — P(Kz)
is analytic in |z < 1 and by the maximum modules principles, we have
|H(z)| <1 for [¢] < 1.
Also, it can be easily seen that

H(o)=H'(0)=---=H*"Y()=0

and R 1
= o7 (@u/ao) K*.
Hence by a generalized form of Schewarz’s Lemma

R —1

H*(0)

KH

Equivalently

for |z] < 1.

P(RKz) — P(K?) ’ o
R'P(Kz/R) — P(Kz)

We take z = €9 /K, 0 < 6 < 27, so that |z| = 1/K and we get
R —1

P(RE) — P(e")] 1 e

|R"P(e'® /R) — P(e'®)| ~ KM+l RH —1

R —1

du
aop

KM+1

Dl gu—t 41

ao

This implies
L
|P(Rz) — P(z)| 1 R — 1
RPE/R) = PR~ Ko R -1
R"—1
From this (25) follows and this completes the proof of Lemma 2.

au Kutl

ao

for |z] < 1. (30)
G
ao

Ke=l 41
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LEMMA 3. If P(z) is a polynomial of degree n, then for every R > 1

[P(Rz) — P(2)| + |Q(Rz) — Q(2)] < (R" — l)gllflilP(Z)L (31)

The above lemma was proved by Aziz [2] (see also [11]).
LEMMA 4. If P(z) = ao + Y. a;7 is a polynomial of degree n which does not

j=u
vanishin |z| < K, K > 1, then

max |[P'(z)| < 1 +1K# {r?lé_l)l(|P(Z)| — min P(z)} . (32)

lz]=1 lz|l=K

This lemma was proved by Dewan and Pukhta [16, Theorem 1.4], (see also [3]).
Next we use Lemma 4 to prove the following:

n
LEMMA 5. Let P(z) = ao+ Y. a7 be a polynomial of degree n such that
=

M(P,r) = rlil\i)i |P(z)| and m(P,r) = min|P(z)|.

|z|=r

If P(2) hasnozerosin |z <K, K >0, thenfor 0 < r < R< K,

] ™+ K* n/u
B {RH+K“}

The result is sharp and equality holds for the polynomial P(z) = (* + K*)"/*,
where n is a multiple of u .

r* + K*

m m(P,K). (33)

M(P,r) > { }n/# M(P,R) +

Proof of Lemma 5. By hypothesis P(z) has no zeros in |z| < K, therefore, the

K K
polynomial F(z) = P(sz) hasno zerosin |z] < —, — > 1 where 0 < s < K. Since
ss

K
— > 1, by Lemma 4, it follows that
s

max|F(2) < —"gr {max )] - min [P
na
1+~

|z|=1 |z|]=K/s
sH
This gives
, nstt—1
max |P'(z)] < max |P(z)| — min |P(z . 34
nax |P(2) < S22 {max P&~ min (2 } (34)
Now, for 0 <r < R< K,and 0 < 6 < 21, we have
|P(Re'®) — P(re')| = / P/ (se'%)ds

R
< / |P' (se*)|ds.
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This gives
R
PR")| < Pe)| + [P as,

from which it follows that
R
M(P,R) < M(P,r) +/ M(P', s)ds. (35)
Using (34) in (35), we obtain

M(P,R) < M(P,r) +n { / S s / R K)ds} . (36)

sH 4+ KK S 4 KM
If
R =l R -1
O(R) =M(P,r) +n { / mM(P, s)ds — / mM(P, K)ds] ,
then / —_— i
0'(R) = g M(P.R) — (P K). (37)
From (37) with the help of (36), we conclude that
0 (R) — R (0(R) (P K)} <0 o9
Rt + k¥

Multiplying the two sides of (38) by (R* 4+ K*)~"/*, we get
o' (R)(R" + K*)~"/" — n(9(R) — m(P, K))(R* + K*) ™"/ "R*=" <0,

which implies
d
dR
From (39) we conclude that the function

{(6(R) = m(P.K))(R" + K*) ™} < 0. (39)

{¢(R) — m(P,K)}(R* + Kﬂ)fn/y

is a non increasing function of R in (0,K). Hence for 0 < r < R < K,

K4 /R KM un/u
o) > [ mm+{1[ﬁggﬂ }mmK» (40)

Since ¢(R) > M(P,R) and ¢(r) = M(P, r) it follows from (40) that

KR R KR 1 i m
MPA) > |~ MRy 41— |2 m(P,K).
KH 1 RH KM+ RM

This proves the lemma completely.
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3. Proofs of Theorems

Proof of Theorem 1. Since P(z) = ao + Y. a7 does not vanish in |z] < K,
=
K > 1, by Lemma 2, we have

et [ R
R —1

R* —1
R"—1

au

ao

K“‘1+1}

[P(Rz) — P(2)| < [Q(Rz) — Q)| (41)

u

1+ Kn+l

ao

Inequality (41) implies with the help of Lemma 3 that

KA+ (R_“ _; D | gu-t +1>
R*—1 |a
1+ T IP(Re) — P(2)] < |P(Re) — P(2)| + |Q(Re) — Q(x)]
1+ £ | gutt
R"—1 |ay
< (R'— 1) max[P(3)|.
z|=1
This gives
1+ I;H — : Dl guet
" — a
IP(R) — P(2)| < (R" — 1) (P max P(z)],
I R L T G
R"—1 |ay

which is (9) and this proves Theorem 1 completely.

Proof of Theorem 2. By hypothesis P(z) = ap+ ) ;7 doesnotvanishin |z| < K,
=
therefore the polynomial F(z) = P(Rz) hasno zeroin |z| < K/R, K/R > 1. Applying
Lemma 4 to the polynomial F(z), we get

max [F(2)] < L{maxw(z) min F<z>|},

m
lz|=1 4 11;1 |z|=1 |2|=K/R
which gives
max |P'(z)| < 7nRH71 {max |P(z)| — min |P(z)|} ) (42)
|z|=R RM + K* | Jz|=R lz|=K

Now if 0 < r < R < K, then by Lemma 5, we have

n/u n/u
max |P(z)] < (M> maxP(z)+{l - <M) } min |P(z)|. (43)

|z|=R rH 4k |z|=r rH 4 k# |z|=K
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From (42) and (43), it follows that
Ru—1 RY 4 KM n/u RY 4 KM n/u
max |P/(2)] < - {( o) el - (5 ) min p)

| <
|z|=R RH 4 KM

r# + KH |z=r r* + K¢ |z|=K
nRETL R KR
= P(z)| — min |P
RE 1 KA (,y H@) {n;l%ygl (2)] — min | (z)l},

which is equivalent to (20) and this completes the proof of Theorem 2.

Proof of Theorem 3. Since P(z) has all its zeros in |z] < K, K < 1, whit s-fold
Zeros at origin, we write
P(z) = 2'h(2), (44)
where h(z) is a polynomial of degree n — s having all its zeros in |z] < K, K < 1.
From (44) we get

7P'(2) 7' (2)
P(z) h(z) #3)
If z1,20,...,2z,—s are the zeros of h(z), then |z;| < K < 1, and from (45), we have
R eiBP/(eiB) + R eieh/(eie)
ed ——— L b =3 e —— -
P(e'?) h(e'f)
n—s o0
_ +Re; (e,-e _ Zj) (46)
=5+ SRe !
- . 1— ZJ€ i0
j=1

for points ¢, 0 < 6 < 27, which are not the zeros of h(z). Now, if [w| < K < 1,
then it can be easily verified that

1 1
Re| —— | > ——.
1—w 1+K

Using this fact in (46), we get

P (eie) eiOP/ (eie) n—s 1
’ P(e'?) “\ P9 o ; ‘\1—zge®

S s+ n—s

=5

1+K
which gives
; n—+ sk ;
P = S P (47)

for points e, which are not the zeros of P(z). Since inequality (47) is trivially true
for points ¢ . which are the zeros of P(z), it follows that

n—+ sk
1+K

|P'(z)] > |P(z)] for |z =1.
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This immediately leads to

n+ sk
max |P'(z)| > ——— max |P(z
max /()] > 2% max ()

which completes the proof of Theorem 3.
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