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SOME COMPACT GENERALIZATIONS OF
BERNSTEIN-TYPE INEQUALITIES FOR POLYNOMIALS

ABDUL AzIZ AND NISAR AHMAD RATHER

(communicated by J. Pecari¢)

Abstract. Let P(z) be a polynomial of degree n > 1. In this paper we consider a more general
problem of investigating the dependence of maximum of

P(Rz) — aP(z2) + ﬁ{ (RTHY - Ia\}P(Z)

on the maximum of |P(z)| on |z] = 1 where o, B are arbitrary complex numbers with
|| <1, |B] <1 and obtain certain sharp compact generalizations of well-known Bernstein-
type polynomial inequalities.

k) R>17

1. Introduction and statement of results

Let P(z) be a polynomial of degree at most 7, then according to a famous result
known as Bernstein’s inequality (for reference, see [11, p. 531] or [14]),
max |P'(z)| < nmax |P(2)] (1)
|z|=1 |z|=1

whereas concerning the maximum modulus of P(z) on a large circle |z] = R > 1, we
have

max |P(z)| < R" max |P(z)] (2)
|z|=R |z]=1

(for reference see [11, p. 442] or [12, vol. I, p. 137]).

If we restrict ourselves to the class of polynomials having no zero in |z] < 1, then
inequalities (1) and (2) can be sharpened. In fact, if P(z) # 0 in |z] < 1, then (1) and
(2) can be respectively replaced by

n

max |P'(z)| < = max |P(z)| (3)
|z[=1 2 |z|=1
and o
max [P(0) < “Fmax [P, R > 1. @)
lz|=R 2 z=1
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Inequality (3) was conjectured by P. Erdds and later verified by P. D. Lax [8] (see also
[4]). Ankeny and Rivlin [1] used (3) to prove inequality (4).

Recently both the inequalities (3) and (4) were generalized by Jain [7] who proved
thatif P(z) # 0 in |z\ < 1, then for every real or complex number § with |B| < 1,

2+

/ _— — —

’zP( 40 P ’\ {’1+ + 2}13?1(\}’()\ for |gf=1  (5)
and

‘PRZ +[3( ;1) P(z)’ 1{

5 R"+[3(R+1) ‘+’1+B(R+l) ’}max|P(Z)

2 |z|=1 |
(6)

for |zl =1and R > 1
More recently the authors [5] have investigated the dependence of
‘rnlax |P(Rz) — aP(z)| on ‘rrTax|P( 2)|
=1 =1
for every real or complex number o with || < 1 and R > 1. As a compact
generalization of inequalities (1) and (2), they have shown that if P(z) is a polynomial
of degree n, then for every real or complex number o with |o| <1 and R > 1,

|P(Rz) — aP(z)] < |R" — a\|z\"1|n‘a>1< [P(z)] for [z > 1. (7)
A

The results is best possible and equality in (7) holds for P(z) = AZ", A # 0. Inequality
(1) can be obtained from inequality (7) by dividing the two sides of (7) by R — 1 and
taking limit R — 1 with oo = 1. For a = 0, inequality (7) reduces to (2).

As a corresponding compact generalization of inequalities (3) and (4), the authors
[5] have also shown that if P(z) # 0 in |z] < 1, then for every real or complex number
o with || <l and R>1,

1
IP(Rz) — 0tP(2)] < E{W — oz + 1 — a\}ﬁa)l( PGz)| for |z >1. (8)
na

The result is sharp and equality in (8) holds for P(z) = 7" + 1.
In this paper we consider a more general problem of investigating the dependence
of

) R>1,

PR — ap(e) + B (F2)" - Il P2

on the maximum of |P(z)| on |z] = 1 for all real of complex numbers o,  with
| < 1, B < 1 and develop a unified method for arriving at these results. We

first prove the following interesting result which is a compact generalization of the
inequalities (1), (2) and (7):

THEOREM 1. If P(z) is a polynomial of degree n, then for all real or complex
numbers o, B with |o] < 1,

[P(Re) — ap(z) + B (“ 2+ 1) ~ e} )

<o+ 5{ (5

~lal} || max P@) for | > 1.
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The result is sharp and equality in (9) holds for P(z) = A7", A #0.

REMARK 1. Theorem 1 includes a result due to Jain [7, Lemma 5] as a special case
for oo = 0 whereas inequality (9) reduces to inequality (7) for § = 0.

Several other interesting results follow from Theorem 1. Here we mention the
following result which easily follows by taking & = 1 in the Theorem 1.

COROLLARY 1. If P(z) is a polynomial of degree n, then for every real or complex
number B with |B| <1 and R > 1,

|P(Re) = P(2) + B (R%l) ~ 1}P(2)
n 1 " n
< | —n+p{(F5=) -t} kP maxipl  for > 1. o

The result is sharp and equality in (10) holds for P(z) = A", A # 0.
Dividing the two sides of (10) by R — 1 and letting R — 1, we obtain
/ n Bl
P'(z) + EBP(z)‘ < n‘l + §‘|z\ I\n|a)1( for |z| > 1,
2=

which in particular includes a result due to Jain [7, Lemma 2] as a special case.
Next we use Theorem 1 to prove the following interesting result.

THEOREM 2. If P(z) is a polynomial of degree n, then for all real or complex
numbers o, B with |a] <1, |[B| <1 and R > 1,

PR — ap(@) + B{ (57"~ lal}Ca)|
+ o) — a0 + B{(B51)" - el o)

e {(1) e

sl p{ (B0~ et} max e (11)

|z|=1

‘|

for |z| = 1, where Q(z) = 7"P(1/7).
The result is sharp and equality in (11) holds for P(z) = Az", A #0.

REMARK 2. Theorem 2 includes some well-known polynomial inequalities as
special cases. For example, inequality (11) reduces to a result due to A. Aziz |2,
Lemma 2] for @ = 1 and § = 0 whereas for oc = 0, Theorem 2 reduces to a result
due to Jain [6, Theorem 1]. If we take 8 = 0 inequality (11), we obtain Theorem 3 of
[5] due to A. Aziz and N. A. Rather.

The following corollary immediately follows from Theorem 2 by taking o = 1.
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COROLLARY 2. If P(z) is a polynomial of degree n, then for every real or complex
number B with |B| <1 and R > 1,

pre) o)+ B{ (B5) 1} e
+ o) — o)+ 8{ (B51)" - 1))
- 1al (S - e

H181 (B2 1)) max e (12

lz]=1

‘|

for |z| = 1, where Q(z) = 7'P(1/7).
Inequality (12) becomes equality for P(z) = Az", A #0.

REMARK 3. Corollary 2 includes as special case a result due to Jain [7, Lemma 3]
which is obtained by dividing the two sides of (12) by R — 1 and letting R — 1.

Theorem 1 can be sharpened if we restrict ourselves to the class of polynomials
having no zeros in |z| < 1. In this direction, we next prove the following interesting
result which is a compact generalization of inequalities (3), (4), (5), (6) and (8).

THEOREM 3. If P(z) is a polynomial of degree n which does not vanishin |z| < 1,
then for all real or complex numbers o, B with |a| <1, |[B| <1 and R > 1

|P(R:) = aP() + B{ — ol }P(2)|

<Al s ()

+‘1—a+ﬁ{($) ~ e} max P(2) (13)

|z

R+1)

for |z| = 1. The result is best possible and equality in (13) holds for P(z) = 7"+ 1.

REMARK 4. If we take o« = 0 in Theorem 3, we get inequality (6) whereas
inequality (8) follows by taking 8 = 0 in inequality (13). For @ = 8 = 0, inequality
(13) reduces to inequality (4).

The next corollary which is obtained by taking o = 1 in Theorem 3, is a refinement
of Corollary 1, for polynomials not vanishing in the unit disk.

COROLLARY 3. If P(z) is a polynomial of degree n which does not vanish in
|z < 1, then for every real or complex number B with |B| < 1 and R > 1

|P(R2) — P ()+B{(R+l) - 1}P(@)|
S%H(R"””ﬁ{(RTH) ~1}|lz |"+|13|{(R+1) ~1}] max |P(z)]

|z]=1
for |z = 1. (14)
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The result is best possible and equality in (13) holds for P(z) = 7"+ 1.

REMARK 5. Dividing the two sides of (14) by R— 1 and letting R — 1, we obtain,
in particular, inequality (3).

2. Lemmas

For the proofs of these theorems we need following lemmas.

LEMMA 1. If P(z) is a polynomial of degree n having all its zeros in |z| < k,
where k < 1, then for every R > 1

R+ k\n
PR > (1) IPQ@I for [l =1.

Lemma 1 follows by using the argument similar to the proof of Theorem 1 [3].
Here we use Lemma 1 to prove:

LEMMA 2. If F(z) is a polynomial of degree n having all its zeros in |z] < 1 and
P(z) is a polynomial of degree atmost n such that

|P(2)| < |F(z)| for lz|=1,

then for all real or complex numbers o, B with |a| <1, |B| <1 and R > 1,

’P(Rz) —aP(z) + B{ (RTH) - |a\}P(z)’
g‘F(Rz)faF(z)JrB{(RTH)n—M}F(Z)‘ for I >1. "

REMARK 6. Dividing the two sides of (15) by R — 1 and letting R — 1 with
o = 1, we obtain a result due to Malik and Vong [10].

Proof of Lemma 2. In case R = 1, we have nothing to prove. Henceforth we
assume R > 1. By hypothesis F(z) is a polynomial of degree n having all its zeros in
|zl <1 and P(z) is a polynomial of degree atmost n such that

|P(z)] < |[F(z)| for [z =1, (16)

therefore, if F(z) has a zero of multiplicity s at z = €%, then P(z) must also have
a zero of multiplicity atleast s at z = % . If P(z)/F(z) is a constant, then the
inequality (15) is obvious. We now assume that P(z)/F(z) is not a constant so that by
the maximum modulus principle, it follows that

|P(z)| < |F(z)| for |z] > 1.
Suppose F(z) has m zeros on |z| = 1 where 0 < m < n so that we write

F(z) = Fi(2)F2(z2)
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where Fy(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and F»(z) is
a polynomial of degree exactly n — m having all its zeros in |z| < 1. This implies with
the help of inequality (16) that

P(z) = P1(2)F1(2)

where P;(z) is a polynomial of degree atmost n — m. Now, from inequality (16), we
get

Pi(2)] < [F2(2)] for |z =1
where F(z) # 0 for |z| = 1. Therefore, for every real or complex number A with
|[A] > 1, a direct application of Rouche’s theorem shows that all the zeros of the
polynomial P(z) — AF,(z) of degree n —m > 1 liein |z| < 1. Hence the polynomial

G(z) = Fi(z) (Pl (2) = /le(Z)) = P(z) — AF(2)
has all its zeros in |z] < 1 with atleast one zero in |z| < 1, so that we can write
G(z) = (z - rei‘s)H(z)

where r < 1 and H(z) is a polynomial of degree n — 1 having all its zeros in |z| < 1.
Hence with the help of Lemma 1 with k = 1, forevery R > 1, 0 < 0 < 27,

|G(Re"®)| = |Re"® — re'®||H(RE™)|

: s (R4 1\n—1 :
> ‘Reze _rezﬁ‘(%) ‘H(610)|

R+ 1\"1|Re® — re'd| . ; ;
:< 2 ) €0 — reid |(69_r68)H(69)|
R+ 1\ (RE1N, 1o
= G(e?)|.
( 2 ) (1+r)‘ ()]
This implies
1 . R+ 1yn1 .
(Rir)\G(Re’e)\><%) IG(¢®), R>1 and 0<O<2m. (17)
p

Since R > 1 > r so that G(Re'®) # 0, 0 < 0 < 27 and RLH > Ilei; , from inequality
(17), we obtain
R+1

IG(Re™®)| > ( .

)"|G(ef9)|, R>1 and 0<6 <27 (18)

Equivalently,

R+ 1\"
|G(Rz)|>(T) IG(z)| for | =1 and R> 1.

Hence for every real or complex number o with || < 1, we have
|G(Rz) — aG(2)| = |G(Rz)| — |]|G(2)]

> L) jaio@l for =1 and R>1.(19)
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Inequality (18) can be written in the form

G(e)] < (=) 1G(Re") (20)

R+1
- i0 2 \"
forevery R > 1 and 0 < 6 < 27. Since G(Re') # 0 and (R—H) < 1, from
inequality (20), we obtain
|G(e?)| < |G(Re")]
forevery R > 1 and 0 < 6 < 2m. Equivalently,
|G(z)| < |G(Rz)| for |zl=1 and R>1.

Since all the zeros of G(Rz) lie in |z] < 1/R < 1, a direct application of Rouche’s
theorem shows that the polynomial G(Rz) — aG(z) has all its zeros in [z| < 1 for
every real or complex number o with || < 1. Applying Rouche’s theorem again, it
follows from (19) that for every real or complex number 8 with || < 1 and R > 1,
all the zeros of the polynomial

7(2) = G(R:) — aG(2) + B (R%l) ~lal}6(2)

liein |z| < 1. Replacing G(z) by P(z) — AF(z), we conclude that all the zeros of
7(2) = [P(Rz—aP )+ 8{ (5)" et} P
— A[F(R) — aF () + B RH) ol }F(2)] (21)
liein |z] < 1 forevery R > 1, |o] < 1, |B| < 1 and |A| > 1. This implies
P(Re) — ap(2) + 6] (“3)" ~ lal} P2
< |Fir) — ar) + B{(F51) "~ 1ot b o) (22)

for |zl > 1 and R > 1. If inequality (22) is not true, then there is a point z = zo with
|zo| = 1 such that
R+ 1\"
’P(Rzo) — oP(z0) + ﬁ{(T) - ‘Oﬂ|}P(Z0)’

R+ 1\"
> |F(Ra) = aF () + B{ (=)~ et} F(z0)|
Since all the zeros of F(z) liein |z| < 1, it follows (as in the case of G(z)) that all the
zeros of

F(Re) — k() + B (22~ Jal} (o)

liein |z| < 1 for all real or complex numbers o, f with || <1, |f]| <1 and R > 1.

Hence
R+1

F(Rz) = aF () + B{ (5—) " = el }F(2) #0
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with |z9| > 1. We choose

P(Rzy) — aP(z0) + B (%) o/ }P(z0)

A=
F(R) = aF (z0) + B{ (%41)" = o} F(z0)

sothat A is well defined real or complex number with |[A| > 1, and with this choice of
A, from (21) we get
T(z0) =0 with |z| > 1

This is clearly a contradiction to the fact that all the zeros of T(z) lie in |z| < 1. Thus
for all real or complex number o,  with |o| <1, |f]| <1 and R > 1,

P(Re) — ap(2) + 6] (“3)" ~ lal} P
< [F(Re) — ar () + B{ (“5+)" - el }FOo)|

for |z > 1. This proves Lemma 2.
We also need:

LEMMA 3. If P(z) is a polynomial of degree n which does not vanish in
then for all real or complex numbers o, B with |a| < 1,

[P(Re) — ap(2) + B{ (F52)" ~ el P2
< Jow) — a0 + B{ (X51)" - et} o)

Jor |z| = 1 where Q(z) = 2'P(1/2).

Proof of Lemma 3. By hypothesis, the polynomial P(z) has all its zeros in |z] >
therefore, all the zeros of the polynomial Q(z) = Z'P(1/z) liein |z] < 1 and |P(z )\ =
|O(z)| for |z| = 1. Applying Lemma 2 with F(z) replaced by Q(z), it follows that

[P(Re) — ap(2) + B (“22)" ~ lal} P

< |or) — a0 + B{ (*5+)" - lel }oe)

for |71 >1,R>1, |a| > 1 and |B| < 1. This proves Lemma 3.

3. Proofs of the theorems

Proof of Theorem 1. Taking F(z) = MZ7" where M = ‘mlax |P(z)|, in Lemma 2
z|=1

we get the conclusion of Theorem 1.
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Proof of Theorem 2. Let M = I\n|a)1( |P(z)|. In order to prove inequality (11) for
Z

R =1, it suffices to show that
IP(2)| +10(2)| < (|2[* + )M for [z] > 1. (23)

The inequality (23) is implicit in [13] but for the sake of completeness here we deduce
it from a result of Aziz [2, Lemma 2], according to which is P(z) is a polynomial of
degree n, then for every p > 1,

|P(pz) — P(z)| + |Q(pz) — O(z)| < (p" = 1)M, for |z =1 (24)

where Q(z) = z"P(1/z). Since |P(z)| = |Q(2)| for |z] = 1, from inequality (24), we
getfor |z] =1,

[P(pz)| +10(pz)| < 2|P(2)[ + (0" — )M

M+ (p" = 1M = (p" + )M

NN

for every p > 1, which is clearly equivalent to (23). Henceforth we assume R > 1.
Since |P(z)| < M for |z| = 1, it follows by Rouche’s theorem that for every real or
complex number A with |A| > 1, the polynomial H(z) = P(z) + AM does not vanish
in |z] < 1. Applying Lemma 3 to the polynomial H(z), we getfor |z| > 1 and R > 1,

pre) — ap(2) + B (52—t} @) + a1 - et B{ (B32)" 1ot} ]
< |ow) — a0 + B{ (F51)" - et} o0

O (%

where |a| <1, |B| <1 and Q(z) = 7'P(1/Z). Choosing argument of A in the right
hand side of (25) such that

0(R) — a0(0) + B (F5=)" - el } o) + Z[R" — o ] (F1)" o} maz
R -ap{(S5)" - tal} e

- |otke) — w0 + B{ (5" - lal}oto)

(25)

(which is possible by Theorem 1), we obtain

P(Re) — ap(e) + B (F50) =2} p@)| - 411 — o B{ (F2)" et} m
e el (55 -

- |otr) ~ a0 + B{ (*1)" - It} 00)
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for |z] > 1, |a| > 1, |B| <1 and R > 1. Equivalently
R+1
[P(Re) — ap() + B ()" ~ eI} P(2)|

+ o) — a0 + B{ (B51)" - el o)

R ot B (B30) g} flr

#|-a{(557)" - e}

for |z] > 1, |a| <1, |B| <1 and R > 1. Finally letting |A| — 1, we get the desired
result and this completes the proof of Theorem 2.

<l

Proof of Theorem 3. Since P(z) does not vanish |z| < 1, by Lemma 3 we have

(P(Re) — ap(2) + B{ (B2~ el }peo)|
< Jow) — a0 + B{(X51)" - et} o)

for |z] > 1 where Q(z) = 7"P(1/Z), |a| < 1, |B| <1 and R > 1. Using thisin (11)
we get forall a, B with || <1, |B|<1land R>1

2‘P(Rz) —aP(z) + B{ (R%l) - \aI}P(Z)‘
< ’P(Rz) — aP(z )+B{(R+ 1) - Ia\}P(Z)’
+lo®) - a0 + B (*31)" ~ lal} o)

el (52
tli-atp{ (F20)" et} max |P(z)

for |z] > 1, which is equivalent to (13). This completes the proof of Theorem 3.

REMARK 7. A polynomial P(z) of degree n issaid to self-inversiveif P(z) = O(z)
where Q(z) = z"P(1/Z). It can be now easily seen that Theorem 3 equally holds for
self-inversive polynomials as well.

REMARK 8. If P(z) = ¢ [[(z—z;) is a polynomial of degree n having all its zeros
=1
in |z| <k, k < 1, then clearly for |z] = 1 and |B] < 1, we have

Re {50 1} = re (55 + 152
- nRe () n  nRe(B)
_Rezzfzj+ Ttk T4k 1tk
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This gives

ZP'(2) nP n
P(z)  14+kl~ 1+k

{1 +Re([3)} for |z =1,

which implies

np
1+k

P(z)] > 1L+k {1 +Re (B)} max |P(2)] (26)

max ’zP’(z) +
|z]=1

Inequality (26) is a generalization of Malik’s inequality [9] for polynomials having all
its zeros in |z| < k, k < 1. For k = 1, this reduces to Remark 2 of [7].
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