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Abstract. Let P(z) be a polynomial of degree n � 1 . In this paper we consider a more general
problem of investigating the dependence of maximum of∣∣∣∣P(Rz) − αP(z) + β

{(
R + 1

2

)n
− |α|

}
P(z)

∣∣∣∣, R � 1,

on the maximum of |P(z)| on |z| = 1 where α , β are arbitrary complex numbers with
|α| � 1 , |β | � 1 and obtain certain sharp compact generalizations of well-known Bernstein-
type polynomial inequalities.

1. Introduction and statement of results

Let P(z) be a polynomial of degree at most n , then according to a famous result
known as Bernstein’s inequality (for reference, see [11, p. 531] or [14]),

max
|z|=1

|P′(z)| � n max
|z|=1

|P(z)| (1)

whereas concerning the maximum modulus of P(z) on a large circle |z| = R > 1 , we
have

max
|z|=R

|P(z)| � Rn max
|z|=1

|P(z)| (2)

(for reference see [11, p. 442] or [12, vol. I, p. 137]).
If we restrict ourselves to the class of polynomials having no zero in |z| < 1 , then

inequalities (1) and (2) can be sharpened. In fact, if P(z) �= 0 in |z| < 1 , then (1) and
(2) can be respectively replaced by

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)| (3)

and

max
|z|=R

|P(z)| � Rn + 1
2

max
|z|=1

|P(z)|, R > 1. (4)
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Inequality (3) was conjectured by P. Erdös and later verified by P. D. Lax [8] (see also
[4]). Ankeny and Rivlin [1] used (3) to prove inequality (4).

Recently both the inequalities (3) and (4) were generalized by Jain [7] who proved
that if P(z) �= 0 in |z| < 1 , then for every real or complex number β with |β | � 1 ,∣∣∣zP′(z) +

nβ
2

P(z)
∣∣∣ � n

2

{∣∣∣1 +
β
2

∣∣∣ +
∣∣∣β
2

∣∣∣}max
|z|=1

|P(z)| for |z| = 1 (5)

and∣∣∣P(Rz) + β
(R + 1

2

)n
P(z)

∣∣∣ � 1
2

{∣∣∣Rn + β
(R + 1

2

)2∣∣∣ +
∣∣∣1 + β

(R + 1
2

)n∣∣∣}max
|z|=1

|P(z)|
(6)

for |z| = 1 and R � 1 .
More recently the authors [5] have investigated the dependence of

max
|z|=1

|P(Rz) − αP(z)| on max
|z|=1

|P(z)|

for every real or complex number α with |α| � 1 and R � 1 . As a compact
generalization of inequalities (1) and (2), they have shown that if P(z) is a polynomial
of degree n , then for every real or complex number α with |α| � 1 and R � 1 ,

|P(Rz) − αP(z)| � |Rn − α||z|n max
|z|=1

|P(z)| for |z| � 1. (7)

The results is best possible and equality in (7) holds for P(z) = λ zn , λ �= 0 . Inequality
(1) can be obtained from inequality (7) by dividing the two sides of (7) by R − 1 and
taking limit R → 1 with α = 1 . For α = 0 , inequality (7) reduces to (2).

As a corresponding compact generalization of inequalities (3) and (4), the authors
[5] have also shown that if P(z) �= 0 in |z| < 1 , then for every real or complex number
α with |α| � 1 and R � 1 ,

|P(Rz) − αP(z)| � 1
2

{
|Rn − α||z|n + |1 − α|

}
max
|z|=1

|P(z)| for |z| � 1. (8)

The result is sharp and equality in (8) holds for P(z) = zn + 1 .
In this paper we consider a more general problem of investigating the dependence

of ∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣, R � 1,

on the maximum of |P(z)| on |z| = 1 for all real of complex numbers α , β with
|α| � 1 , β � 1 and develop a unified method for arriving at these results. We
first prove the following interesting result which is a compact generalization of the
inequalities (1), (2) and (7):

THEOREM 1. If P(z) is a polynomial of degree n , then for all real or complex
numbers α , β with |α| � 1 , |β | � 1 and R � 1 ,∣∣∣P(Rz) − αP(z) + β

{(R + 1
2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣(Rn − α) + β
{(R + 1

2

)n
− |α|

}∣∣∣|z|n max
|z|=1

|P(z)| for |z| � 1.
(9)
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The result is sharp and equality in (9) holds for P(z) = λ zn , λ �= 0 .

REMARK 1. Theorem 1 includes a result due to Jain [7, Lemma 5] as a special case
for α = 0 whereas inequality (9) reduces to inequality (7) for β = 0 .

Several other interesting results follow from Theorem 1. Here we mention the
following result which easily follows by taking α = 1 in the Theorem 1.

COROLLARY 1. If P(z) is a polynomial of degree n , then for every real or complex
number β with |β | � 1 and R � 1 ,

∣∣∣P(Rz) − P(z) + β
{(R + 1

2

)n
− 1

}
P(z)

∣∣∣
�

∣∣∣(Rn − 1) + β
{(R + 1

2

)n
− 1

}∣∣∣|z|n max
|z|=1

|P(z)| for |z| � 1.
(10)

The result is sharp and equality in (10) holds for P(z) = λ zn , λ �= 0 .

Dividing the two sides of (10) by R − 1 and letting R → 1 , we obtain

∣∣∣zP′(z) +
n
2
βP(z)

∣∣∣ � n
∣∣∣1 +

β
2

∣∣∣|z|n max
|z|=1

for |z| � 1,

which in particular includes a result due to Jain [7, Lemma 2] as a special case.
Next we use Theorem 1 to prove the following interesting result.

THEOREM 2. If P(z) is a polynomial of degree n , then for all real or complex
numbers α , β with |α| � 1 , |β | � 1 and R � 1 ,

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
+

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z)

∣∣∣
�

[∣∣∣Rn − α + β
{(R + 1

2

)n
− |α|

}∣∣∣|z|n
+

∣∣∣1 − α + β
{(R + 1

2

)n
− |α|

}∣∣∣] max
|z|=1

|P(z)| (11)

for |z| � 1 , where Q(z) = znP(1/z) .

The result is sharp and equality in (11) holds for P(z) = λ zn , λ �= 0 .

REMARK 2. Theorem 2 includes some well-known polynomial inequalities as
special cases. For example, inequality (11) reduces to a result due to A. Aziz [2,
Lemma 2] for α = 1 and β = 0 whereas for α = 0 , Theorem 2 reduces to a result
due to Jain [6, Theorem 1]. If we take β = 0 inequality (11), we obtain Theorem 3 of
[5] due to A. Aziz and N. A. Rather.

The following corollary immediately follows from Theorem 2 by taking α = 1 .
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COROLLARY 2. If P(z) is a polynomial of degree n , then for every real or complex
number β with |β | � 1 and R � 1 ,

∣∣∣P(Rz) − P(z) + β
{(R + 1

2

)n
− 1

}
P(z)

∣∣∣
+

∣∣∣Q(Rz) − Q(z) + β
{(R + 1

2

)n
− 1

}
Q(z)

∣∣∣
�

[∣∣∣Rn − 1 + β
{(R + 1

2

)n
− 1

}∣∣∣|z|n
+ |β |

{(R + 1
2

)n
− 1

}]
max
|z|=1

|P(z)| (12)

for |z| � 1 , where Q(z) = znP(1/z) .

Inequality (12) becomes equality for P(z) = λ zn , λ �= 0 .

REMARK 3. Corollary 2 includes as special case a result due to Jain [7, Lemma 3]
which is obtained by dividing the two sides of (12) by R − 1 and letting R → 1 .

Theorem 1 can be sharpened if we restrict ourselves to the class of polynomials
having no zeros in |z| < 1 . In this direction, we next prove the following interesting
result which is a compact generalization of inequalities (3), (4), (5), (6) and (8).

THEOREM 3. If P(z) is a polynomial of degree n which does not vanish in |z| < 1 ,
then for all real or complex numbers α , β with |α| � 1 , |β | � 1 and R � 1

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
� 1

2

[∣∣∣Rn − α + β
{(R + 1

2

)n
− |α|

}
|z|n

+
∣∣∣1 − α + β

{(R + 1
2

)n
− |α|

}∣∣∣] max
|z|=1

|P(z)| (13)

for |z| � 1 . The result is best possible and equality in (13) holds for P(z) = zn + 1 .

REMARK 4. If we take α = 0 in Theorem 3, we get inequality (6) whereas
inequality (8) follows by taking β = 0 in inequality (13). For α = β = 0 , inequality
(13) reduces to inequality (4).

The next corollary which is obtained by taking α = 1 in Theorem 3, is a refinement
of Corollary 1, for polynomials not vanishing in the unit disk.

COROLLARY 3. If P(z) is a polynomial of degree n which does not vanish in
|z| < 1 , then for every real or complex number β with |β | � 1 and R � 1 ,

∣∣∣P(Rz) − P(z) + β
{(R + 1

2

)n
− 1

}
P(z)

∣∣∣
� 1

2

[∣∣∣(Rn − 1) + β
{(R + 1

2

)n
− 1

}∣∣∣|z|n + |β |
{(R + 1

2

)n
− 1

}]
max
|z|=1

|P(z)|

for |z| � 1. (14)
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The result is best possible and equality in (13) holds for P(z) = zn + 1 .

REMARK 5. Dividing the two sides of (14) by R−1 and letting R → 1 , we obtain,
in particular, inequality (3).

2. Lemmas

For the proofs of these theorems we need following lemmas.

LEMMA 1. If P(z) is a polynomial of degree n having all its zeros in |z| � k ,
where k � 1 , then for every R > 1

|P(Rz) �
(R + k

1 + k

)n
|P(z)| for |z| = 1.

Lemma 1 follows by using the argument similar to the proof of Theorem 1 [3].
Here we use Lemma 1 to prove:

LEMMA 2. If F(z) is a polynomial of degree n having all its zeros in |z| � 1 and
P(z) is a polynomial of degree atmost n such that

|P(z)| � |F(z)| for |z| = 1,

then for all real or complex numbers α , β with |α| � 1 , |β | � 1 and R � 1 ,
∣∣∣P(Rz) − αP(z) + β

{(R + 1
2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣F(Rz) − αF(z) + β
{(R + 1

2

)n
− |α|

}
F(z)

∣∣∣ for |z| � 1.
(15)

REMARK 6. Dividing the two sides of (15) by R − 1 and letting R → 1 with
α = 1 , we obtain a result due to Malik and Vong [10].

Proof of Lemma 2. In case R = 1 , we have nothing to prove. Henceforth we
assume R > 1 . By hypothesis F(z) is a polynomial of degree n having all its zeros in
|z| � 1 and P(z) is a polynomial of degree atmost n such that

|P(z)| � |F(z)| for |z| = 1, (16)

therefore, if F(z) has a zero of multiplicity s at z = eiθ0 , then P(z) must also have
a zero of multiplicity atleast s at z = eiθ0 . If P(z)/F(z) is a constant, then the
inequality (15) is obvious. We now assume that P(z)/F(z) is not a constant so that by
the maximum modulus principle, it follows that

|P(z)| < |F(z)| for |z| > 1.

Suppose F(z) has m zeros on |z| = 1 where 0 � m < n so that we write

F(z) = F1(z)F2(z)
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where F1(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and F2(z) is
a polynomial of degree exactly n−m having all its zeros in |z| < 1 . This implies with
the help of inequality (16) that

P(z) = P1(z)F1(z)

where P1(z) is a polynomial of degree atmost n − m . Now, from inequality (16), we
get

|P1(z)| � |F2(z)| for |z| = 1

where F2(z) �= 0 for |z| = 1 . Therefore, for every real or complex number λ with
|λ | > 1 , a direct application of Rouche’s theorem shows that all the zeros of the
polynomial P1(z)−λF2(z) of degree n−m � 1 lie in |z| < 1 . Hence the polynomial

G(z) = F1(z)
(
P1(z) − λF2(z)

)
= P(z) − λF(z)

has all its zeros in |z| � 1 with atleast one zero in |z| < 1 , so that we can write

G(z) =
(
z − reiδ

)
H(z)

where r < 1 and H(z) is a polynomial of degree n− 1 having all its zeros in |z| � 1 .
Hence with the help of Lemma 1 with k = 1 , for every R > 1 , 0 � θ < 2π ,

|G(Reiθ)| = |Reiθ − reiδ ||H(Reiθ)|
� |Reiθ − reiδ |

(R + 1
2

)n−1
|H(eiθ)|

=
(R + 1

2

)n−1∣∣∣Reiθ − reiδ

eiθ − reiδ

∣∣∣|(eiθ − reiδ )H(eiθ )|

�
(R + 1

2

)n−1(R + 1
1 + r

)
|G(eiθ)|.

This implies
( 1 + r

R + r

)
|G(Reiθ)| �

(R + 1
2

)n−1
|G(eiθ)|, R > 1 and 0 � θ < 2π. (17)

Since R > 1 > r so that G(Reiθ) �= 0 , 0 � θ < 2π and 2
R+1 > 1+r

R+r , from inequality
(17), we obtain

|G(Reiθ)| >
(R + 1

2

)n
|G(eiθ )|, R > 1 and 0 � θ < 2π. (18)

Equivalently,

|G(Rz)| >
(R + 1

2

)n
|G(z)| for |z| = 1 and R > 1.

Hence for every real or complex number α with |α| � 1 , we have

|G(Rz) − αG(z)| � |G(Rz)| − |α||G(z)|
>

{(R + 1
2

)n
− |α|

}
|G(z)| for |z| = 1 and R > 1.

(19)
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Inequality (18) can be written in the form

|G(eiθ)| <
( 2

R + 1

)n
|G(Reiθ)| (20)

for every R > 1 and 0 � θ < 2π . Since G(Reiθ) �= 0 and
(

2
R+1

)n
< 1 , from

inequality (20), we obtain
|G(eiθ)| < |G(Reiθ)|

for every R > 1 and 0 � θ < 2π . Equivalently,

|G(z)| < |G(Rz)| for |z| = 1 and R > 1.

Since all the zeros of G(Rz) lie in |z| � 1/R < 1 , a direct application of Rouche’s
theorem shows that the polynomial G(Rz) − αG(z) has all its zeros in |z| < 1 for
every real or complex number α with |α| � 1 . Applying Rouche’s theorem again, it
follows from (19) that for every real or complex number β with |β | � 1 and R > 1 ,
all the zeros of the polynomial

T(z) = G(Rz) − αG(z) + β
{(R + 1

2

)n
− |α|

}
G(z)

lie in |z| < 1 . Replacing G(z) by P(z) − λF(z) , we conclude that all the zeros of

T(z) =
[
P(Rz) − αP(z) + β

{(R + 1
2

)n
− |α|

}
P(z)

]

− λ
[
F(Rz) − αF(z) + β

{(R + 1
2

)n
− |α|

}
F(z)

]
(21)

lie in |z| < 1 for every R > 1 , |α| � 1 , |β | � 1 and |λ | > 1 . This implies
∣∣∣P(Rz) − αP(z) + β

{(R + 1
2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣F(Rz) − αF(z) + β
{(R + 1

2

)n
− |α|

}
F(z)

∣∣∣ (22)

for |z| � 1 and R > 1 . If inequality (22) is not true, then there is a point z = z0 with
|z0| � 1 such that

∣∣∣P(Rz0) − αP(z0) + β
{(R + 1

2

)n
− |α|

}
P(z0)

∣∣∣
>

∣∣∣F(Rz0) − αF(z0) + β
{(R + 1

2

)n
− |α|

}
F(z0)

∣∣∣.
Since all the zeros of F(z) lie in |z| � 1 , it follows (as in the case of G(z) ) that all the
zeros of

F(Rz) − αF(z) + β
{(R + 1

2

)n
− |α|

}
F(z)

lie in |z| < 1 for all real or complex numbers α , β with |α| � 1 , |β | � 1 and R > 1 .
Hence

F(Rz0) − αF(z0) + β
{(R + 1

2

)n
− |α|

}
F(z) �= 0
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with |z0| � 1 . We choose

λ =
P(Rz0) − αP(z0) + β

{(
R+1

2

)n
− |α|

}
P(z0)

F(Rz0) − αF(z0) + β
{(

R+1
2

)n
− |α|

}
F(z0)

so that λ is well defined real or complex number with |λ | > 1 , and with this choice of
λ , from (21) we get

T(z0) = 0 with |z0| � 1.

This is clearly a contradiction to the fact that all the zeros of T(z) lie in |z| < 1 . Thus
for all real or complex number α , β with |α| � 1 , |β | � 1 and R > 1 ,

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣F(Rz) − αF(z) + β
{(R + 1

2

)n
− |α|

}
F(z)

∣∣∣
for |z| � 1 . This proves Lemma 2.

We also need:

LEMMA 3. If P(z) is a polynomial of degree n which does not vanish in |z| < 1 ,
then for all real or complex numbers α , β with |α| � 1 , |β | � 1 and R � 1 ,

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z)

∣∣∣
for |z| � 1 where Q(z) = znP(1/z) .

Proof of Lemma 3. By hypothesis, the polynomial P(z) has all its zeros in |z| � 1 ,
therefore, all the zeros of the polynomial Q(z) = znP(1/z) lie in |z| � 1 and |P(z)| =
|Q(z)| for |z| = 1 . Applying Lemma 2 with F(z) replaced by Q(z) , it follows that

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z)

∣∣∣
for |z| � 1 , R � 1 , |α| � 1 and |β | � 1 . This proves Lemma 3.

3. Proofs of the theorems

Proof of Theorem 1. Taking F(z) = Mzn where M = max
|z|=1

|P(z)| , in Lemma 2

we get the conclusion of Theorem 1.
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Proof of Theorem 2. Let M = max
|z|=1

|P(z)| . In order to prove inequality (11) for

R = 1 , it suffices to show that

|P(z)| + |Q(z)| � (|z|n + 1)M for |z| � 1. (23)

The inequality (23) is implicit in [13] but for the sake of completeness here we deduce
it from a result of Aziz [2, Lemma 2], according to which is P(z) is a polynomial of
degree n , then for every ρ � 1 ,

|P(ρz) − P(z)| + |Q(ρz) − Q(z)| � (ρn − 1)M, for |z| = 1 (24)

where Q(z) = znP(1/z) . Since |P(z)| = |Q(z)| for |z| = 1 , from inequality (24), we
get for |z| = 1 ,

|P(ρz)| + |Q(ρz)| � 2|P(z)| + (ρn − 1)M
� 2M + (ρn − 1)M = (ρn + 1)M

for every ρ � 1 , which is clearly equivalent to (23). Henceforth we assume R > 1 .
Since |P(z)| � M for |z| = 1 , it follows by Rouche’s theorem that for every real or
complex number λ with |λ | > 1 , the polynomial H(z) = P(z) + λM does not vanish
in |z| < 1 . Applying Lemma 3 to the polynomial H(z) , we get for |z| � 1 and R > 1 ,

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z) + λ

[
1 − α + β

{(R + 1
2

)n
− |α|

}]
M

∣∣∣
�

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z)

+ λ
[
Rn − α + β

{(R + 1
2

)n
− |α|

}]
Mzn

∣∣∣ (25)

where |α| � 1 , |β | � 1 and Q(z) = znP(1/z) . Choosing argument of λ in the right
hand side of (25) such that

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z) + λ

[
Rn − α + β

{(R + 1
2

)n
− |α|

}]
Mzn

∣∣∣
= |λ |

∣∣∣Rn − α + β
{(R + 1

2

)n
− |α|

}∣∣∣M|z|n

−
∣∣∣Q(Rz) − αQ(z) + β

{(R + 1
2

)n
− |α|

}
Q(z)

∣∣∣
(which is possible by Theorem 1), we obtain

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− λ

}
P(z)

∣∣∣ − |λ |
∣∣∣1 − α + β

{(R + 1
2

)n
− |α|

}∣∣∣M
� |λ |

∣∣∣Rn − α + β
{(R + 1

2

)n
− |α|

}∣∣∣M|z|n

−
∣∣∣Q(Rz) − αQ(z) + β

{(R + 1
2

)n
− |α|

}
Q(z)

∣∣∣
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for |z| � 1 , |α| � 1 , |β | � 1 and R > 1 . Equivalently∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
+

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z)

∣∣∣
� |λ |

[∣∣∣Rn − α + β
{(R + 1

2

)n
− |α|

}∣∣∣|z|n
+

∣∣∣1 − α + β
{(R + 1

2

)n
− |α|

}∣∣∣]M
for |z| � 1 , |α| � 1 , |β | � 1 and R > 1 . Finally letting |λ | → 1 , we get the desired
result and this completes the proof of Theorem 2.

Proof of Theorem 3. Since P(z) does not vanish |z| < 1 , by Lemma 3 we have∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z)

∣∣∣
for |z| � 1 where Q(z) = znP(1/z) , |α| � 1 , |β | � 1 and R � 1 . Using this in (11)
we get for all α , β with |α| � 1 , |β | � 1 and R � 1

2
∣∣∣P(Rz) − αP(z) + β

{(R + 1
2

)n
− |α|

}
P(z)

∣∣∣
�

∣∣∣P(Rz) − αP(z) + β
{(R + 1

2

)n
− |α|

}
P(z)

∣∣∣
+

∣∣∣Q(Rz) − αQ(z) + β
{(R + 1

2

)n
− |α|

}
Q(z)

∣∣∣
� 1

2

[∣∣∣Rn − α + β
{(R + 1

2

)n
− |α|

}∣∣∣|z|n
+

∣∣∣1 − α + β
{(R + 1

2

)n
− |α|

}∣∣∣] max
|z|=1

|P(z)|

for |z| � 1 , which is equivalent to (13). This completes the proof of Theorem 3.

REMARK 7. A polynomial P(z) of degree n is said to self-inversive if P(z) = Q(z)
where Q(z) = znP(1/z) . It can be now easily seen that Theorem 3 equally holds for
self-inversive polynomials as well.

REMARK 8. If P(z) = c
n∏

j=1
(z− zj) is a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then clearly for |z| = 1 and |β | � 1 , we have

Re
{ zP′(z)

P(z)
+

nβ
1 + k

}
= Re

(zP′(z)
P(z)

)
+

nRe (β)
1 + k

= Re
n∑

j=1

z
z − zj

+
nRe (β)
1 + k

� n
1 + k

+
nRe (β)
1 + k

.
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This gives

∣∣∣ zP′(z)
P(z)

+
nβ

1 + k

∣∣∣ � n
1 + k

{
1 + Re (β)

}
for |z| = 1,

which implies

max
|z|=1

∣∣∣zP′(z) +
nβ

1 + k
P(z)

∣∣∣ � n
1 + k

{
1 + Re (β)

}
max
|z|=1

|P(z)|. (26)

Inequality (26) is a generalization of Malik’s inequality [9] for polynomials having all
its zeros in |z| � k , k � 1 . For k = 1 , this reduces to Remark 2 of [7].
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