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ON THE MAXIMUM PRINCIPLE FOR ELLIPTIC OPERATORS

L. CASO, P. CAVALIERE AND M. TRANSIRICO

(communicated by J. Pečarić)

Abstract. In this paper we obtain some estimates for solutions of second order elliptic equations
whose leading coefficients are functions of vanishing mean oscillation.

1. Introduction

Let Ω be a bounded open subset of R
n , n � 3 , and

L0 =
n∑

i,j=1

aij
∂2

∂xi∂xj

an uniformly elliptic operator whose coefficients aij are measurable in Ω . Moreover,
let u be a solution of the Dirichlet problem

(1.1)

⎧⎪⎨
⎪⎩

u ∈ W2,p(Ω) ∩ C0(Ω),
L0u = f ∈ Lp(Ω),
u|∂Ω = 0,

with p >
n
2

.

It is well known that if the coefficients aij satisfy some regularity hypotheses, then
u verifies the bound

(1.2) sup
Ω

|u| � c||f ||Lp(Ω),

where c ∈ R+ depends on Ω, p , on the ellipticity constant and on the regularity of aij .
Actually, the estimate (1.2) has been proved in [6] when the coefficients aij are Hölder
continuous, in [7] when the aij are continuous and in [8] if the aij belong to W1,n(Ω) .

For p = n , the bound (1.2) is the classical Aleksandrov-Pucci estimate, and it
holds with no regularity assumptions on the aij and with the constant c depending only
on Ω and on the ellipticity constant (see for instance [10] and [1]).
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For a more recent treatment of such theory, see [5] Chapter 9. Note also that some
interesting generalizations of (1.2) in the case p = n can be found in [2] and [3].

On the other hand, an example in [9] shows that, when the ellipticity constant is
small enough, the estimate (1.2), with p < n and c depending only on Ω and on the
ellipticity constant, does not hold. Therefore, it is of interest the study of the problem
(1.1) with p < n and with the coefficients aij in a space wider than those already
considered in the literature. Observe that both the hypotheses aij uniformly continuous
and aij ∈ W1,n imply aij ∈ VMO (see [4]).

In this paper we fix an arbitrary open (bounded or not) subset Ω of R
n , n � 3 ,

a real number p >
n
2

, and we consider the second order uniformly elliptic differential
operator

L =
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑
i=1

ai
∂

∂xi
+ a,

where the coefficients aij are bounded and locally VMO . We also suppose that
the coefficients ai and a satisfy suitable local summability conditions and that a is
negative. In this situation, we will prove that if u is a solution of the problem

(1.3)

⎧⎪⎨
⎪⎩

Lu � f ∈ Lp
loc(Ω),

u ∈ W2,p
loc (Ω) ∩ C0(Ω), u|∂Ω � 0,

lim sup|x|−→+∞ u(x) � 0 if Ω is unbounded,

then there exist an open ball B ⊂⊂ Ω and a positive constant c0 such that

(1.4) sup
Ω

u � c0

(∫
—

B
|f −|p

)1/p
,

where f − is the negative part of f ,∫
—

B
|f −|p = |B|−1

∫
B
|f −|p

and c0 depends on n, p , on the ellipticity constant and on the regularity of the coeffi-
cients of L .

2. Some notation

Let Ω be an open subset of R
n . If p ∈ [1, +∞[ , we shall denote by Mp(Ω) the

set of all functions g ∈ Lp
loc(Ω) such that

(2.1) ||g||Mp(Ω) = sup
x∈Ω

||g||Lp(Ω(x,1)) < +∞ .

Here, for each positive real number r , Ω(x, r) = Ω∩B(x, r) , where B(x, r) is the open
ball of R

n of radius r centered at x . The position (2.1) defines a norm on Mp(Ω) .
Moreover, M̃p(Ω) will denote the closure of L∞(Ω) in Mp(Ω) .
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Let Σ(Ω) be the collection of all Lebesgue measurable subsets of Ω ; for each
E ∈ Σ(Ω) , we denote by |E| and χE the Lebesgue measure and the characteristic
function of E , respectively. It can be observed that a function g (in Mp(Ω) ) belongs
to M̃p(Ω) if and only if

lim
t→0+

τg(t) = 0 ,

where
τg(t) = sup

E∈Σ(Ω)
supx∈Ω |E(x,1)|�t

||χEg||Mp(Ω) ∀t ∈ R+ .

Then a modulus of continuity of g in M̃p(Ω) is a map σ̃p[g,Ω] : R+ −→ R+ such that

τg(t) � σ̃p[g,Ω](t) ∀t ∈ R+ , lim
t→0+

σ̃p[g,Ω](t) = 0 .

Moreover, M̃p
loc(Ω) will denote the set of all functions g : Ω −→ R such that

ζg ∈ M̃p(Ω) for every ζ ∈ C∞
o (Ω) . Note that

Lp(Ω) ⊆ M̃p(Ω) ⊆ Mp(Ω) , M̃p
loc(Ω) = Lp

loc(Ω) ,

in particular, for any bounded open set Ω , we have

Lp(Ω) = M̃p(Ω) = Mp(Ω) .

If g ∈ Lp(Ω) , we put

|g|p,Ω = ||g||Lp(Ω) , ωp[g,Ω](t) = sup
E∈Σ(Ω)
|E|�t

|g|p,E , t ∈ R+ ;

clearly, lim
t→0+

ωp[g,Ω](t) = 0 and the function ωp[g,Ω] : R+ −→ R+ is a modulus of

continuity of g in Lp(Ω) .
If Ω has the property

(2.2) |Ω(x, r)| � A rn ∀x ∈ Ω , ∀r ∈]0, 1],

where A is some positive constant independent of x and r , one can consider the space
BMO(Ω, t) , t ∈ R+, consisting of all functions g in L1

loc(Ω) such that

[g]BMO(Ω,t) = sup
x∈Ω

r∈]0,t]

∫
—
Ω(x,r)

∣∣∣∣∣g −
∫
—
Ω(x,r)

g

∣∣∣∣∣ < +∞ .

If g ∈ BMO(Ω) = BMO(Ω, tA) , with

tA = sup
t∈R+

(
sup
x∈Ω

r∈]0,t]

rn

|Ω(x, r)| � 1
A

)
,

we shall say that g is in VMO(Ω) when [g]BMO(Ω,t) → 0 as t → 0+ . Moreover, a
function η[g,Ω] : R+ −→ R+ is called a modulus of continuity of g in VMO(Ω) if

[g]BMO(Ω,t) � η[g,Ω](t) ∀t ∈ R+ , lim
t→0+

η[g,Ω](t) = 0 .

We will also say that g ∈ VMOloc(Ω) if ζg belongs to VMO(Ω) for each ζ ∈ C∞
o (Ω) .

A more detailed account of properties of the above defined function spaces can be
found in [12], [13] and [14].
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3. Preliminary results

Let B be an open ball of R
n , n � 3 , with radius d ∈ R+ and p ∈

]n
2
, +∞

[
.

Consider in B the operator

(3.1) L =
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑
i=1

ai
∂

∂xi
+ a

and the following condition on the coefficients of L :

(hB)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aij = aji ∈ L∞(B) ∩ VMO(B) , i, j = 1, . . . , n,

∃μ ∈ R+ :
n∑

i,j=1

aij ξi ξj � μ|ξ |2 a.e. in B , ∀ ξ ∈ R
n,

ai ∈ Lr(B), i = 1, . . . , n, r > n if p � n, and r = p if p > n,

a ∈ Lp(B), a � 0 a.e. in B .

Note that under the assumption (hB) the operator L from W2,p(B) into Lp(B) , is
bounded, and we have the following estimate

(3.2) |Lu|p,B � c1||u||W2,p(B) ∀u ∈ W2,p(B),

where c1 ∈ R+ depends on n, p, d, |aij|∞,B, |ai|r,B, |a|p,B .
We prove the following “maximum principle”, that was already known in the

special case in which the function h is non-negative in the whole ball, a = 0 and the
coefficients aij belong to VMO(Rn) (see [15]).

LEMMA 3.1. Suppose that condition (hB) holds, and let h, w be elements of
W2,p(B) such that h|∂B � 0 and w is a solution of the problem

(3.3)
{

Lw = 0 in B,

w|∂B = h|∂B.

Then w � 0 in B .

Proof. It can be assumed without loss of generality that p ∈
]n
2
, n

[
. Observe that

(3.3) is equivalent to the problem

(3.4)

{
L(w − h) = −Lh in B,

w − h ∈ W2,p(B)∩ ◦
W1,p(B).

Application of Theorem 5.1 of [14] (see also the proof of that result) yields that there
exist extensions p(aij) of aij to R

n ( i, j = 1, . . . , n ) such that

(3.5) p(aij) ∈ L∞(Rn) ∩ VMO(Rn) ,
(3.6) supp p(aij) is compact,
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(3.7) there exist δ ∈ R+, N ∈ N and an open covering (Uk)k=1,...,N of ∂B such
that, if Bδ = {x ∈ R

n : dist (x, B) < δ} and x belongs to Bδ \ B , there are
elements x1 ∈ Uk1 ∩ B, . . . , xl ∈ Ukl ∩ B , with l in {1, . . . , N} , for which
p(aij)(x) = θk1(x)aij(x1)+ . . .+θkl(x)aij(xl) , where θk1 , . . . , θkl ∈ C∞

o (Rn) and
θk1(x) + . . . + θkl(x) = 1 .

It follows from Theorem 2.1 of [15] and from (3.5) that w− h is the unique solution of
the problem (3.4), and we have the estimate

(3.8) ||w − h||W2,p(B) � c2|Lh|p,B ,

where c2 dependson n, p, d, μ, |aij|∞,B, [p(aij)]BMO(Rn,·), |ai|r,B, |a|p,B , ωr[ai, B] and
ωp[a, B] . Therefore it follows from (3.2) and (3.8) that for w − h we also have the
bound

(3.9) ||w − h||W2,p(B) � c3||h||W2,p(B) ,

with c3 ∈ R+ depending on the same parameters on which c2 does.
Denote now by ȧi, ȧ the extensions of ai and a , respectively, with zero values

out of B , and let (Jk)k∈N be a sequence of mollifiers; for each k ∈ N we put

ak
ij = Jk ∗ p(aij) , ak

i = Jk ∗ ȧi , ak = Jk ∗ ȧ .

By (3.6) we have that p(aij) ∈ Lq(Rn) for each q ∈ [1, +∞[ , and hence

(3.10) ak
ij −→ p(aij) in Lq(Rn) ∀q ∈ [1, +∞[ ;

moreover,

(3.11) [ak
ij]BMO(Rn,·) � [p(aij)]BMO(Rn,·) ∀k ∈ N

(see for instance [11]). Similarly, the sequences (ak
i )k∈N and (ak)k∈N satisfy the

following conditions:

(3.12) ak
i −→ ai in Lr(B) , ak −→ a in Lp(B) ,

(3.13)
{ |ak

i |r,B � |ai|r,B, |ak|p,B � |a|p,B,

ωr[ak
i , B] � ωr[ai, B], ωp[ak, B] � ωp[a, B], ∀k ∈ N,

(3.14) ak � 0 in B , ∀k ∈ N .

For each positive integer k consider now the Dirichlet problem

(3.15)

{
Lkvk = −Lkh in B,

vk ∈ W2,p(B)∩ ◦
W1,p(B),

where

Lk =
n∑

i,j=1

ak
ij

∂2

∂xi∂xj
+

n∑
i=1

ak
i

∂

∂xi
+ ak .
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Applying (3.7) we obtain that

|p(aij)|∞,Bδ � |aij|∞,B , i, j = 1, . . . , n ,
n∑

i,j=1

p(aij)ξiξj � μ|ξ |2 a.e. in Bδ , ∀ξ ∈ R
n ,

so that there exists ko = ko(δ) ∈ N such that for every k � ko the following holds:

|ak
ij|∞,B � |p(aij)|∞,Bδ , i, j = 1, . . . , n ,

n∑
i,j=1

ak
ijξiξj � μ|ξ |2 in B , ∀ξ ∈ R

n .

Without loss of generality we shall denote the subsequence (ak
ij)k�ko again by (ak

ij)k∈N .
It follows from the regularity of the coefficients of Lk , from (3.14) and from Theorem
2.1 of [15] that for each positive integer k there exists a unique solution vk of the
problem (3.15), and for such solution the relations (3.11) and (3.13) provide the bound

(3.16) ||vk||W2,p(B) � c4||h||W2,p(B) ,

where c4 ∈ R+ depends only on n, p, d, μ, |aij|∞,B, [p(aij)]BMO(Rn ,·) , |ai|r,B, |a|p,B ,
ωr[ai, B],ωp[a, B] . Clearly, wk = vk + h is a solution of the problem

⎧⎪⎨
⎪⎩

Lkwk = 0 in B,

wk ∈ W2,p(B),
wk
|∂B = h|∂B � 0.

Moreover, it follows from well known results that wk ∈ C2(B) ∩ C0(B) , so that the
weak maximum principle yields that

inf
B

wk � inf
∂B

(wk)−,

and hence

(3.17) wk � 0 in B .

By (3.16) and by the definition of wk we have that (wk)k∈N is a bounded sequence in
W2,p(B) ; thus there exists a subsequence, that we shall denote again by (wk)k∈N , such
that

(3.18)

⎧⎪⎨
⎪⎩

wk ⇀ w′ in W2,p(B),

wk −→ w′ in W1,q(B), 1 < q <
np

n − p ,

wk −→ w′ in C0(B),

with w′ ∈ W2,p(B) ∩ W1,q(B) . Moreover, it follows from (3.17) that w′ � 0 in B .
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We claim that the sequence (Lkwk)k∈N weakly converges to Lw′ in Lp(B) . In

fact, for each ϕ ∈ Lp′(B) , where
1
p

+
1
p′

= 1 , we have

∫
B
|(Lkwk − Lw′)ϕ|dx �

n∑
i,j=1

|aij|∞,B

∫
B
|(wk

xixj
− w′

xixj
)ϕ|dx

+
n∑

i=1

|ai|r,B|wk
xi
− w′

xi
|q,B|ϕ|p′,B + sup

B

|wk − w′| |a|p,B|ϕ|p′,B

+
n∑

i,j=1

|(ak
ij − aij)ϕ|p′,B|wk

xixj
|p,B

+
n∑

i=1

|ak
i − ai|r,B|wk

xi
|q,B|ϕ|p′,B + |ak − a|p,B sup

B

|wk| |ϕ|p′,B,

where q = rp
r − p . The weak convergence of (Lkwk)k∈N to Lw′ in Lp(B) follows

now from (3.10), (3.12) and (3.18). Therefore Lw′ = 0 a.e. in B . On the other hand,
w′
|∂B = h|∂B , and hence the uniqueness of the solution of problem (3.3) yields that

w = w′ , so that w � 0 in B . �

Lemma 3.1 can be used in the proof of our next result. It should be noted that the
constant in the estimate (eB) below depends explicitely on the radius d of the ball B ,
and this fact will be crucial in the proof of Theorem 4.1.

LEMMA 3.2. Suppose that B has radius d < 1 and that condition (hB) holds. If
u is a solution of the problem

(pB)

⎧⎨
⎩

u ∈ W2,p(B) ,

Lu � f ∈ Lp(B),
u|∂B � 0,

then there exists c ∈ R+ such that

(eB) sup
B

u � c d2− n
p |f −|p,B ,

with c dependent on n, p,μ, |aij|∞,B, [p(aij)]BMO(Rn,·), |ai|r,B, |a|p,B,ωr[ai, B] , ωp[a, B] ,
and where p(aij) is an extension of aij to R

n satisfying (3.5) .

Proof. Let B = B(x0, d) , where x0 is the centre of B , and put B∗ = B(x0, 1) .
Consider the function T : B −→ B∗ defined by the position

T(x) = x0 +
x − x0

d
,

and observe that

z = T(x) ⇐⇒ x = x0 + d(z − x0) = T−1(z).
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For each function g defined on B , put g∗ = g ◦ T−1 . Then

(Lu)∗ =
n∑

i,j=1

a∗ij(uxixj)
∗+

n∑
i=1

a∗i (uxi)
∗ +a∗u∗ = d−2

n∑
i,j=1

a∗iju
∗
zizj

+d−1
n∑

i=1

a∗i u
∗
zi +a∗u∗,

and hence
L∗u∗ = d2(Lu)∗ ,

where

L∗ =
n∑

i,j=1

a∗ij
∂2

∂zi∂zj
+ d

n∑
i=1

a∗i
∂

∂zi
+ d2a∗ .

Denote by p(aij) an extension of aij to R
n satisfying (3.5) ( i, j = 1, . . . , n ), and put

p(aij)∗(z) = p(aij)(x0 + d(z − x0)) , z ∈ R
n .

Since

(3.19) p(aij)∗ ∈ L∞(Rn) ∩ VMO(Rn), p(aij)∗|B∗ = a∗ij,

we have also

(3.20) a∗ij ∈ L∞(B∗) ∩ VMO(B∗)

(see [14]). Moreover, the hypothesis (hB) yields that

(3.21)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a∗ij = a∗ji, i, j = 1, . . . , n,
n∑

i,j=1

a∗ijξiξj � μ|ξ |2 a.e. in B∗, ∀ξ ∈ R
n,

a∗i ∈ Lr(B∗), i = 1, . . . , n, a∗ ∈ Lp(B∗), a∗ � 0 a.e. in B∗.

Consider now the following problem:

(3.22)

{
L∗v = h ∈ Lp(B∗),

v ∈ W2,p(B∗)∩ ◦
W1,p(B∗).

It follows from (3.19), (3.21) and from Theorem 2.1 of [15] that there exists a unique
solution v of (3.22) satisfying the estimate

(3.23) ||v||W2,p(B∗) � K|h|p,B∗ ,

where K depends on n , p , μ , |a∗ij|∞,B∗ , [p(aij)∗]BMO(Rn,·) , |da∗i |r,B∗ , |d2a∗|p,B∗ ,
ωr[da∗i , B

∗] , ωp[d2a∗, B∗] . Thus by (3.23) we obtain that there is K1 ∈ R+ , depending
on the same parameters on which K does, such that

(3.24) max
B
∗ |v| � K1|h|p,B∗ ,
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and hence for each z ∈ B∗ there is g(z, ·) ∈ Lp′(B∗)
(1

p
+

1
p′

= 1
)

for which

(3.25) v(z) = −
∫

B∗
g(z, y)h(y)dy.

The map g(z, ·) is the Green function for the operator L∗ in B∗ , and it has the following
properties:

(3.26)
∫

B∗
g(z, y)h̃(y)dy � 0 ∀h̃ ∈ Lp(B∗) , h̃ � 0 ,

(3.27) |g(z, ·)|p′,B∗ � K1.

Setting h = L∗u∗ = d2(Lu)∗ in (3.22), we have that v− u∗(∈ W2,p(B∗)) is a solution
of the problem {

L∗(v − u∗) = 0 in B∗,
(v − u∗)|∂B∗ = −u∗|∂B∗ � 0,

and so it follows from (3.20), (3.21) and from Lemma 3.1 that v − u∗ � 0 in B∗ .
Thus, applying (3.25) with h = L∗u∗ , it follows from (3.26) and (3.27) that

(3.28)

u∗(z) � −
∫

B∗
g(z, y)d2(Lu)∗(y)dy � −d2

∫
B∗

g(z, y)f ∗(y)dy

� −2d2
∫

B∗
g(z, y)(f ∗)−(y)dy � 2d2|g(z, ·)|p′,B∗ |(f ∗)−|p,B∗

� 2d2K1|(f −)∗|p,B∗ ∀z ∈ B∗.

It is now easy to deduce the statement from (3.28). �

4. Main results

Let Ω be an open subset of R
n , n � 3 . For our purposes we need to introduce

a sequence of functions of class C∞
o (Ω) . It is well known that there exists a function

α̃ ∈ C∞(Ω) ∩ C0,1(Ω) which is equivalent to dist (·, ∂Ω) (see for instance [17]).
Consider a function ϕ̃ , which is a restriction to [0, +∞[ of a map in C∞

o (R) , satisfying
the condition

0 � ϕ̃ � 1, ϕ̃(t) = 1 if t � 1
2
, ϕ̃(t) = 0 if t � 1 ,

and for every positive integer k define the function

ψk : x ∈ Ω −→ (
1 − ϕ̃(kα̃(x))

)
ϕ̃
( |x|

2k

)
.

It is easy to show that each ψk belongs to C∞
o (Ω) and

0 � ψk � 1, suppψk ⊆ Ω2k, ψk|Ωk
= 1,
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where

Ωk =
{

x ∈ Ω : |x| < k, α̃(x) >
1
k

}
.

Suppose now that Ω has the property (2.2) and p ∈
]n
2
, +∞

[
. Consider in Ω

the operator

(4.1) L =
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑
i=1

ai
∂

∂xi
+ a ,

and put

L0 =
n∑

i,j=1

aij
∂2

∂xi∂xj
.

We will make the following assumptions on the coefficients of L :

(h)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aij = aji ∈ L∞(Ω) ∩ VMOloc(Ω), i, j = 1, . . . , n,

∃μ ∈ R+ :
n∑

i,j=1

aijξiξj � μ|ξ |2 a.e. in Ω, ∀ξ ∈ R
n,

ai ∈ M̃r
loc(Ω), i = 1, . . . , n, where r > n if p � n, r = p if p > n,

a ∈ M̃p
loc(Ω), ∃a0 ∈ R+ : a � −a0 a.e. in Ω.

Our aim here is to prove the following result.

THEOREM 4.1. Suppose that (h) is satisfied, and let u be a solution of the problem

(p)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lu � f ∈ Lp
loc(Ω),

u ∈ W2,p
loc (Ω) ∩ C0(Ω),

u|∂Ω � 0,

lim sup|x|−→+∞ u(x) � 0 if Ω is unbounded.

Then there exist an open ball B ⊂⊂ Ω and a positive constant c0 such that

(e) sup
Ω

u � c0

(∫
—

B
|f −|p

)1/p
,

where c0 depends only on n , p , μ , |aij|∞,Ω , η[ψkaij,Ω] , ||ψkai||Mr(Ω) , ||ψka||Mp(Ω) ,
σ̃r[ψkai,Ω] , σ̃p[ψka,Ω] (k ∈ N) and a0 .

Proof. Without loss of generality it can be assumed that supΩ u > 0 . It follows
from the last two conditions of (p) that there is y ∈ Ω such that supΩ u = u(y) ;
moreover, there exists μ0 ∈ ]0, min (1, dist (y, ∂Ω))[ such that B(y,μ0) ⊂⊂ Ω and
u(x) > 0 in B(y,μ0) . Write μ0 = αλ0 with α � 1 ; we will later choose α suitable
for our pourposes. Moreover, put

(4.2) ϕ(x) = ϕλ (x) = 1 + λ 2 − |x − y|2
α2

,
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x ∈ B(y,αλ ) and λ ∈]0, λ0],

and note that

(4.3) 1 � ϕ � 1 + λ 2

(the function ϕ has also been used in [16] in a special case). Consider now the map v
defined by the position

(4.4) v(x) = ϕ(x)u(x) − u(y) , x ∈ B(y,αλ ) .

As ϕ|∂B(y,αλ ) = 1 , v satisfies the following condition:

(4.5) v|∂B(y,αλ ) = u|∂B(y,αλ ) − u(y) � 0 .

It follows from Lu � f that

(4.6) ϕLu � ϕf in B(y,αλ ) = B .

From this latter relation by easy computations we obtain that

(4.7) L0(ϕu)− uL0ϕ− 2
n∑

i,j=1

aijϕxjuxi +
n∑

i=1

ai(ϕu)xi − u
n∑

i=1

aiϕxi + aϕu � ϕf in B.

Since

uxiϕxj =
ϕxj

ϕ
(ϕu)xi −

ϕxiϕxj

ϕ2
(ϕu) ,

from (4.7) it follows that

(4.8) L0(ϕu) +
n∑

i=1

bi(ϕu)xi + cϕu � ϕf + u
n∑

i=1

aiϕxi in B ,

where

(4.9) bi = ai − 2
n∑

j=1

aij
ϕxj

ϕ
, i = 1, . . . , n ,

and

(4.10) c = a −
n∑

i,j=1

aij
ϕxixj

ϕ
+ 2

n∑
i,j=1

aij
ϕxiϕxj

ϕ2
.

Therefore (4.8) yields that

(4.11) L0v +
n∑

i=1

bivxi + cv � ϕf + u
n∑

i=1

aiϕxi − cu(y) in B .
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We can now choose α in such a way that c � 0 in B . In fact, as ϕxi = − 2(xi−yi)
α2 ,

ϕxixj = 0 if i �= j , ϕxixj = − 2
α2

if i = j , we have

c � −a0 + 2

∑n
i=1 aii

ϕ
· 1
α2

+ 8λ 2

∑n
i,j=1 aij

ϕ2
· 1
α2

� −a0 + (2
n∑

i=1

|aii|∞,Ω + 8
n∑

i,j=1

|aij|∞,Ω) · 1
α2

,

and hence, fixed α such that

(4.12) α2 �
2

∑n
i=1 |aii|∞,Ω + 8

∑n
i,j=1 |aij|∞,Ω

a0
,

it follows that c � 0 in B . Therefore by (4.4), (4.5), (4.9), (4.10), (4.11) and by
Lemma 3.2 we obtain:

(4.13) v(x) � c1λ 2− n
p |(ϕf + u

n∑
i=1

aiϕxi − cu(y))−|p,B ∀x ∈ B ,

with c1 ∈ R+ depending on n , p , μ , a0 , |aij|∞,Ω , [p(aij|B)]BMO(Rn,·) , |ai|r,B ,
|a|p,B,ωr[ai, B] , ωp[a, B] . Here we are choosing

p(aij|B) = (ψk1aij)o ,

where k1 is a positive integer such that ψk1 |B = 1 and (ψk1aij)o is the extension of
ψk1aij to R

n with zero values out of Ω . Since ψk1aij belongs to VMO(Ω) and its
support is a compact subset of Ω , by Lemma 4.2 of [14] we deduce that (ψk1aij)o is in
L∞(Rn) ∩ VMO(Rn) and

(4.14) [(ψk1aij)o]BMO(Rn,t) � [ψk1aij]BMO(Ω,t)

for t small enough. Moreover, it is easy to show that

(4.15)
{ |ai|r,B � ||ψk1ai||Mr(Ω), |a|p,B � ||ψk1a||Mp(Ω),

ωr[ai, B] � σ̃r[ψk1ai,Ω], ωp[a, B] � σ̃p[ψk1a,Ω].

Thus (4.14) and (4.15) yield that the constant c1 depends on n, p,μ, |aij|∞,Ω,
[ψk1aij]BMO(Ω,·), ||ψk1ai||Mr(Ω), ||ψk1a||Mp(Ω), σ̃r[ψk1ai,Ω], σ̃p[ψk1a,Ω] and a0 . It fol-
lows now from (4.13) that

(4.16) v(x) � c1λ 2− n
p (|ϕf −|p,B + u(y)|

n∑
i=1

aiϕxi |p,B) ∀x ∈ B ;

this latter relation for x = y gives:

(4.17) u(y) � c1λ− n
p (|ϕf −|p,B + u(y)|

n∑
i=1

aiϕxi |p,B) .
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Since |ϕ| � 1 + λ 2 and |ϕxi | � 2
α

· λ , applying the Hölder inequality if p � n ,

from (4.17) it follows that

(4.18) u(y) � c2
(
(λ− n

p + λ 2− n
p )|f −|p,B + u(y)λ 1− n

r

n∑
i=1

|ai|r,B
)

� c2
(
(λ− n

p + 1)|f −|p,B + u(y)
n∑

i=1

|ai|r,B
)
,

with c2 ∈ R+ depending on the same parameters as c1 .
Moreover,

|ai|r,B(y,αλ ) = |χBψk1ai|r,B(y,1)∩Ω � ||χBψk1ai||Mr(Ω) ,

and this last relation shows that it is possible to choose λ small enough, independent

on y , such that
n∑

i=1

|ai|r,B � 1
2c2

. Therefore (4.18) provides the estimate

u(y) � 2c2(λ− n
p + 1)|f −|p,B .

The theorem follows now easily. �

COROLLARY 4.2. Suppose that (h) is satisfied, and let u be a solution of the
problem

(p′)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lu = f ∈ L∞(Ω),

u ∈ W2,p
loc (Ω) ∩ C0(Ω),

u|∂Ω = 0,

lim
|x|−→+∞

u(x) = 0 if Ω is unbounded.

Then

(e′) sup
Ω

|u| � c0|f |∞,Ω ,

where c0 is the constant of the statement of Theorem 4.1.

Proof. The statement can be easily obtained applying Theorem4.1 to the functions
u and −u . �

The following uniqueness result is an obvious consequence of Corollary 4.2.

COROLLARY 4.3. If (h) is satisfied, the problem

(p′′)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lu = 0,

u ∈ W2,p
loc (Ω) ∩ C0(Ω),

u|∂Ω = 0,

lim
|x|−→+∞

u(x) = 0 if Ω is unbounded

has only the zero solution.
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