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FUNCTIONAL INCLUSIONS ON SQUARE–SYMMETRIC

GRUPOIDS AND HYERS–ULAM STABILITY

DORIAN POPA

(communicated by Z. Páles)

Abstract. In this paper we prove that a set-valued map F : X → P0(Y) that satisfies the inclusion
F(x ∗ y) ⊂ F(x) ♦ F(y) under suitable conditions admits exactly one selection f : X → Y that
satisfies the equation f (x ∗ y) = f (x) � f (y) , where (X, ∗) and (Y, �) are square-symmetric
grupoids and ♦ is the extension of � to P0(Y) . This result is in connection with Hyers-Ulam
stability of functional equation and generalizes a result of Z. Gajda and R. Ger.

1. Introduction

In 1941 D.H. Hyers [4] proved the following theorem:

THEOREM. Let X be a linear normed space, Y a Banach space, ε a positive
number and f : X → Y a function that satisfies the inequality

‖f (x + y) − f (x) − f (y)‖ � ε (1)

for every x, y ∈ X . Then there exists a unique additive function g : X → Y such that

‖f (x) − g(x)‖ � ε (2)

for every x ∈ X .

This was a first answer given to a problemproposed by S.M. Ulam at the Wisconsin
University in 1940 and it represents the starting point of the Hyers-Ulam stability theory
of functional equations. The subject was later strongly developed by many authors,
especially during the last 35 years. We recall that very important contributions at this
subject were brought by G.L. Forty [2], Z. Páles [7], [8], [9], T.M. Rassias [11], J. Rätz
[12], L. Székelyhidi [14]. An interesting connection between the stability of the Cauchy
functional equation and subadditive set-valued functions was established by Z. Gajda
and R. Ger [3]. They observed that if f satisfies the inequality (1), then the set-valued
map F : X → P0(Y) ,

F(x) = f (x) + B(0, ε), x ∈ X, (3)
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is subadditive and the function g from the relation (2) is an additive selection of F .
(P0(Y) denotes the collection of all nonempty subsets of Y and B(0, ε) is the closed
ball with centre 0 and radius ε in Y ).

Now one may ask under what conditions a subadditive set-valued map admits an
additive selection. An answer to this question is given in [3]. Furthermore this result
was generalized by the author [10], who considered a class of generalized subadditive
set-valued maps. Some interesting results concerning subadditive and subquadratic
set-valued maps were obtained by W. Smajdor [13].

The purpose of this paper is to give a stability result for the functional inclusion

F(x ∗ y) ⊂ F(x)♦ F(y), x, y ∈ X, (4)

where (X, ∗) and (Y, �) are square-symmetric grupoids and ♦ is a square-symmetric
operation on P0(Y) determined by � . J. Rätz [12] pointed out the role of square-
symmetry for the stability of functional equations. Z. Páles [9] and Z. Páles, P. Volkmann
and R.D. Luce [8] obtained nice results on stability on square-symmetric grupoids. In
our paper we shall use some ideas and terminology from [9]. Let us recall some of them.

A binary operation ∗ on X is called square-symmetric if

(x ∗ y) ∗ (x ∗ y) = (x ∗ x) ∗ (y ∗ y)

for all x, y ∈ X . A grupoid endowed with a square-symmetric operation is called
square-symmetric. It is obvious that a commutative semigroup is a square-symmetric
grupoid.

An operation ∗ : X × X → X is square-symmetric if and only if the function
σ∗ : X → X given by

σ∗(x) = x ∗ x, x ∈ X (5)

is an endomorphism of (X, ∗) . The grupoid (X, ∗) is called divisible if σ∗ is an
automorphism of (X, ∗) . The triple (Y, ∗, d) is called a metric grupoid if (Y, ∗) is a
grupoid, (Y, d) is a metric space and the operation ∗ is continuous with respect to the
topology of (Y, d) . For a nonempty set Y we denote by P0(Y) the collection of all
nonempty subsets of Y . If (Y, d) is a metric space then clY denotes the collection of
all nonempty and closed subsets of Y . If (Y, ‖ · ‖) is a linear normed space then

c(Y) := {A| A ∈ P0(Y), A is convex set},
cclY := {A| A ∈ P0(Y), A is closed and convex set},

cc(Y) := {A| A ∈ P0(Y), A is convex and compact set}.
For a nonempty subset A of a metric space (Y, d) the diameter of A is the extended

real number δ(A) defined by

δ(A) = sup{d(x, y)| x, y ∈ A}.
Let (Y, ρ) be a metric space. The Lipschitz modulus of a function f : Y → Y is

the smallest real extended number L with the property

d(f (x), f (y)) � Ld(x, y), x, y ∈ Y. (6)
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We denote the Lipschitz modulus of f by Lipf .
Recall that a selection of a set-valued map F : X → P0(Y) is a single valued

function f : X → Y with the property f (x) ∈ F(x) for every x ∈ X .

2. Main results

Let (Y, �, d) be a metric grupoid. We define an operation ♦ on P0(Y) putting

A ♦B = {x|x = a � b, a ∈ A, b ∈ B} (7)

Suppose in what follows that the defined operation ♦ satisfies the condition:
for all ε > 0 there exists η > 0 such that if δ(A), δ(B) < η, A, B ∈ P0(Y) , then

δ(A ♦B) < ε (8)

Let us remark that if � is square-symmetric on Y , then ♦ is not necessary square-
symmetric on P0(Y) . For the square-simmetry of ♦ it suffices that the operation �
satisfies the condition of bisimmetry introduced by J.Aczél (see[1]). Hence the following
lemma holds.

LEMMA 1. Let (Y, �) be a grupoid that satisfies the condition

(x1 � y1) � (x2 � y2) = (x1 � x2) � (y1 � y2) (9)

for every x1, x2, y1, y2 ∈ Y .Then σ♦ is an increasing endomorphism of (P0(Y), ♦ ,⊂) .

Proof. Let A, B ∈ P0(Y) . We have to prove that

σ♦(A ♦B) = σ♦(A)♦σ♦(B).

Let x ∈ σ♦(A ♦B) . Then there exist a1, a2 ∈ A , b1, b2 ∈ A such that x = (a1 � b1) �
(a2 � b2) . Taking account of the condition (9) it follows x = (a1 � a2) � (b1 � b2) ∈
σ♦(A)♦σ♦(B) . Hence σ♦(A ♦B) ⊂ σ♦(A) ♦σ♦(B) .

The reverse inclusion can be proved analogously. Let A, B ∈ P0(Y) , A ⊂ B . We
prove that

σ♦(A) ⊂ σ♦(B).

Let x ∈ σ♦(A) . Then there exist a1, a2 ∈ A such that x = a1 � a2 ∈ B♦B , hence
σ♦(A) ⊂ σ♦(B) . �

Now we can give the first stability result of this paper.

THEOREM 1. Let (X, ∗) be a square-symmetric divisible grupoid, (Y, �, d) a
complete metric bisymmetric divisible grupoid and (A, ♦ ) a divisible subgrupoid
of (P0(Y), ♦ ) .

Suppose that F : X → A is a set-valued map that satisfies:

F(x ∗ y) ⊂ F(x)♦ F(y), x, y ∈ X. (10)

If
σ−n

♦ ◦ F ◦ σn
∗(x) ∈ cl(Y) (11)
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for every x ∈ X and every n ∈ N and

lim
n→∞ δ(F ◦ σn

∗(x))Lip(σ−n
� ) = 0 (12)

for every x ∈ X , then there exists a unique selection f : X → Y of F that satisfies the
relation

f (x ∗ y) = f (x) � f (y), x, y ∈ X. (13)

Proof. Existence. For y = x the relation (10) becomes

F(σ∗(x)) ⊂ σ♦(F(x)), x ∈ X,

and replacing x by σn
∗(x) , n ∈ N , we get

F ◦ σn+1
∗ (x) ⊂ σ♦ ◦ F ◦ σn

∗(x). (14)

Now taking into account that σ♦ is increasing, it follows that σ−1
♦ is increasing

too, and by (13) we get

σ−n−1
♦ ◦ F ◦ σn+1

∗ (x) ⊂ σ−n
♦ ◦ F ◦ σn

∗(x), x ∈ X. (15)

Let x ∈ X be fixed. Define the sequence of sets (Fn(x))n�0 by

Fn(x) = σ−n
♦ ◦ F ◦ σn

∗(x), n � 0. (16)

The sequence (Fn(x))n�0 is decreasing, in view of relation (15).
We prove that

lim
n→∞ δ(Fn(x)) = 0. (17)

We have
δ(Fn(x)) = sup{d(u, v) : u, v ∈ Fn(x)}.

Let u, v ∈ σ−n
� ◦ F ◦ σn

∗(x) . Then

σn
�(u) ∈ F ◦ σn

∗(x) and σn
�(v) ∈ F ◦ σn

∗(x).

Denote σn
�(u) = s , σn

�(v) = t , s, t ∈ F ◦ σn
∗(x) . Then

d(u, v) = d(σ−n
� (s),σ−n

� (t)) � Lipσ−n
� d(s, t) � Lipσ−n

� δ(F ◦ σn
∗(x))

and
δ(Fn(x)) � Lipσ−n

� δ(F ◦ σn
∗(x)). (18)

By (12) and (18) we obtain lim
n→∞ δ(Fn(x)) = 0 . Then

∞⋂
n=0

Fn(x) (19)

is a singleton, in view of the Cantor theorem. Denote by f (x) the single element of this
intersection.

The function f : X → Y is a selection of F , since

f (x) ∈ F0(x) = F(x) for every x ∈ X.
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Now we prove that f satisfies the equation (13).
Let us prove first that

Fn(x ∗ y) ⊂ Fn(x)♦Fn(y), x, y ∈ X, n � 0. (20)

Replacing x by σn
∗(x) and y by σn

∗(y) , n � 0 , in

F(x ∗ y) ⊂ F(x)♦F(y)

we get
F ◦ σ∗

n (x ∗ y) ⊆ (F ◦ σ∗
n (x)) ♦ (F ◦ σ∗

n (y)), n � 0, (21)
in view of the square-symmetry of ∗ . Since σ−n

♦ is an increasing automorphism by
(21) it follows

σ−n
♦ ◦ F ◦ σ∗

n (x ∗ y) ⊂ (σ−n
♦ ◦ F ◦ σ∗

n (x)) ♦ (σ−n
♦ ◦ F ∗ σn

n (y)),

hence the relation (20) is proved.
By (20) we get

d(f (x ∗ y), f (x) � f (y)) � δ(Fn(x) ♦Fn(y)), n � 0 (22)

and taking account of the condition (8) we obtain

d(f (x ∗ y), f (x) � f (y)) = 0,

if n tends to infinity in (22). Hence f satisfies (13).
Uniqueness. Suppose that there exist two selections f , g of F that satisfy the

relations
f (x ∗ y) = f (x) � f (y)
g(x ∗ y) = g(x) � g(y) , x, y ∈ X (23)

By (23), we get

f ◦ σn
∗(x) = σn

� ◦ f (x)
g ◦ σn∗(x) = σn� ◦ g(x) , x ∈ X, n ∈ N, (24)

and taking into account that f , g are selections of F

f ◦ σn
∗(x) ∈ F ◦ σn

∗(x)
g ◦ σn∗(x) ∈ F ◦ σn∗(x)

, x ∈ X, n ∈ N. (25)

Let x ∈ X be fixed. Then

d(σn
� ◦ f (x),σn

� ◦ g(x)) = d(f ◦ σn
∗(x), g ◦ σn

∗(x))

� δ(F ◦ σn
∗(x)), x ∈ X.

Let σn
� ◦ f (x) = s , σn

� ◦ g(x) = t , s, t ∈ F ◦ Fn
∗(x) . We have f (x) = σ−n

� (s) ,
g(x) = σ−n� (t) and

d(f (x), g(x)) = d(σ−n
� (s),σ−n

� (t))
� Lipσ−n

� d(s, t) � Lipσ−n
� δ(F ◦ σ∗

n (x)), n � 0.

Taking account of (12) it follows

lim
n→∞Lipσ−n

� δ(F ◦ σ∗
n (x)) = 0

hence f (x) = g(x) . �
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THEOREM 2. Let (X, ∗) be a square-symmetric divisible grupoid and (Y, �, d) a
metric bisymmetric grupoid. Suppose that F : X → P0(Y) is a set-valued map that
satisfies the relation

F(x ∗ y) ⊂ F(x)♦ F(y), x, y ∈ X. (26)

If
lim

n→∞ δ(F ◦ σ−n
∗ (x))Lip(σn

�) = 0 (27)

for every x ∈ X , then F is single valued and

F(x ∗ y) = F(x) � F(y), x, y ∈ X. (28)

Proof. By the relation (26) we get

F(σ∗(x)) ⊂ σ♦(F(x)), x ∈ X,

and replacing x by σ−n−1
∗ (x) , n ∈ N , we obtain

F ◦ σ−n
∗ (x) ⊂ σ♦ ◦ F ◦ σ−n−1

∗ (x), x ∈ X,

and taking into account that σ♦ is increasing

σn
♦ ◦ F ◦ σ−n

∗ (x) ⊂ σn+1
♦ ◦ F ◦ σ−n−1

∗ (x), x ∈ X. (29)

Let x ∈ X be fixed. The sequence of sets (Fn(x))n�0 defined by

Fn(x) = σn
♦ ◦ F ◦ σ−n

∗ (x), n � 0,

is increasing. Then (δ(Fn(x)))n�0 is an increasing sequence of nonnegative numbers.
As in the proof of Theorem 1 we obtain

δ(Fn(x)) � Lipσn
�δ(F ◦ σ−n

∗ (x))

and taking account of (27) it follows

lim
n→∞ δ(Fn(x)) = 0.

Then δ(Fn(x)) = 0 for every n ∈ N , hence Fn(x) is single valued for every
n ∈ N and F0(x) = F(x) satisfies the relation F(x ∗ y) = F(x) � F(y) , x, y ∈ X . �

The following results are consequences of the previous theorems.
Suppose that Y is a Banach space over R and � is defined by

x � y = px + qy, x, y ∈ Y, (30)

where p, q ∈ R are given numbers.
The triple (Y, �, ‖ · ‖) is obviously a metric groupoid that satisfies condition (9).

Then for every U, V ∈ P0(Y) the operation ♦ is defined by

U ♦V = pU + qV, (31)

where + from the right hand side of (31) denotes the usual sum of two sets in a linear
space.
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COROLLARY 1. Let (X, ∗) be a square-symmetric divisible groupoid, Y a Banach
space over R , p, q ∈ R , p + q 
= 1 . Suppose that F : X → c(Y) is a set-valued map
such that

F(x ∗ y) ⊂ pF(x) + qF(y), x, y ∈ X, (32)

and the following conditions are satisfied:
(i) F ◦ σn

∗(x) ∈ cl(Y), x ∈ X, n ∈ N ;
(ii) there exists M > 0 such that

δ(F(x)) � M, x ∈ X.

Then there exists a unique selection f : X → Y of F such that

f (x ∗ y) = pf (x) + qf (y), x, y ∈ X. (33)

Proof. Let A = c(Y) . Then σ♦(U) = (p + q)U for every U ∈ c(Y) , σ♦ is an
automorphism of (c(Y), ♦ ) for p + q 
= 0 and σn�(x) = (p + q)nx , x ∈ X , n ∈ Z ,
with

Lipσn
� = |p + q|n, n ∈ Z.

1) If |p + q| > 1 then

σ−n
♦ ◦ F ◦ σn

∗(x) =
1

(p + q)n
F ◦ σn

∗(x) ∈ cl(Y)

for every n ∈ N and

δ(F ◦ σn
∗(x))Lip(σ−n

� ) � M
|p + q|n , x ∈ X, n ∈ N.

By Theorem 1 it follows that there exists a unique selection f of F that satisfies
(33).

2) If |p + q| < 1 then

Lip(σn
�)δ(F ◦ σ−n

∗ (x)) � M|p + q|n, x ∈ X, n ∈ N,

hence, in view of Theorem 2, F is single valued and satisfies the equation

F(x ∗ y) = pF(x) + qF(y), x, y ∈ X,

so that is its own selection. �

COROLLARY 2. Let (X, ∗) be a square-symmetric divisible grupoid, Y a Banach
space over R , p, q ∈ R , p + q > 1 and B ∈ cc(Y) . Suppose that F : X → c(Y)
satisfies the general linear inclusion

F(x ∗ y) ⊂ pF(x) + qF(y) + B, x, y ∈ X (34)

and the following conditions are satisfied:
(i) F ◦ σn

∗(x) ∈ cl(Y), x ∈ X, n ∈ N ;
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(ii) there exists M > 0 such that

δ(F(x)) � M, x ∈ X.

Then there exists a unique function f : X → Y such that

f (x) ∈ F(x) +
1

p + q − 1
B, x ∈ X,

and
f (x ∗ y) = pf (x) + qf (y), x, y ∈ X.

Proof. Let G : X → c(Y) be defined by

G(x) = F(x) +
1

p + q − 1
B, x ∈ X.

We prove that

G(x ∗ y) ⊂ pG(x) + qG(y), x, y ∈ X.

Indeed, using the convexity of B , we get

G(x ∗ y) = F(x ∗ y) +
1

p + q − 1
B

= pF(x) + qF(y) +
p + q

p + q − 1
B

⊂ p

(
F(x) +

1
p + q − 1

B

)
+ q

(
F(x) +

1
p + q − 1

B

)

= pG(x) + qG(y), x, y ∈ X.

We have

G ◦ σn
∗(x) = F ◦ σn

∗(x) +
1

p + q − 1
B ∈ cl(Y)

for every x ∈ X and every n ∈ N , in view of the compactness of B , and

δ(G ◦ σn
∗(x)) � δ(F ◦ σn

∗(x)) +
1

p + q − 1
δ(B)

� M +
1

p + q − 1
δ(B), x ∈ X, n ∈ N.

By the Corollary 1 it follows that there exists a selection f of G such that

f (x ∗ y) = pf (x) + qf (y), x, y ∈ X,

hence f (x) ∈ F(x) + 1
p+q−1B for every x ∈ X . �

REMARK 1. The particular case p = q = 1 in Corollary 1 leads to the stability
result of R.Ger and Z. Gajda [3].

The previous results leads to the following stability result of the general linear
equation.
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COROLLARY 3. Let (X, ∗) be a square-symmetric divisible grupoid, Y a Banach
space over Rand B ∈ ccl(Y). Assume that p, q ∈ R , p + q > 1 , and b ∈ Y .

Let g : X → Y be a function such that

g(x ∗ y) − pg(x) − qg(y)− b ∈ B, x, y ∈ X. (35)

Then there exists a uniquely determined function h : X → Y such that

h(x ∗ y) = ph(x) + qh(y) + b, x, y ∈ X, (36)

and

g(x) − h(x) ∈ 1
p + q − 1

B. (37)

Proof. Define the set-valued map F : X → ccl(Y)

F(x) = g(x) +
1

p + q − 1
A, x ∈ X,

where A := b + B ∈ ccl(Y) . We have

F(x ∗ y) = g(x ∗ y) +
1

p + q − 1
A

⊂ pg(x) + qg(y) + A +
1

p + q − 1
A

= pg(x) + qg(y) +
p + q

p + q − 1
A

= pF(x) + qF(y), x, y ∈ X.

By Corollary 1 it follows that there exists a uniquely determined selection
f : X → Y of F that satisfies (33). The function h : X → Y given by

h(x) = f (x) − 1
p + q − 1

b, x ∈ X,

satisfies (36) and (37). �

REMARK 2. For the particular case when B is the closed ball of center 0 and radius
ε , in Corollary 3 one obtains a stability result proved by Z. Páles [9].

Acknowledgement. The author thanks to the referee for his observations and
suggestions.
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[9] Z. PÁLES, Hyers-Ulam stability of the Cauchy functional equation on square-symmetric grupoids, Publ.
Math. Debrecen 58/4(2001), 651–666.

[10] D. POPA, Additive selections of (α,β) -subadditive set-valued maps, Glasnik Mat. 36(2001), 11–16.
[11] TH.M. RASSIAS, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72(1978),

297–300.
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