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Abstract. We characterize the uniform non-squareness of the ψ -direct sum X ⊕ψ Y of Banach
spaces X and Y , where ψ is a convex function on the unit interval satisfying certain conditions.
As a corollary the uniform non-squareness of an �p,q -sum X ⊕p,q Y is characterized. In the
course of doing this a monotonicity property of absolute norms on C2 is shown.

1. Introduction and preliminaries

It is well known (Bonsall-Duncan [2]) that for any absolute normalized norm on
C2 , that is,

‖(z, w)‖ = ‖(|z|, |w|)‖ and ‖(1, 0)‖ = ‖(0, 1)‖ = 1, (1)

there corresponds a unique convex (continuous) function ψ on the unit interval with
some conditions. That is, for any such norm ‖ · ‖ on C

2 let

ψ(t) = ‖(1 − t, t)‖ (0 � t � 1). (2)

Then the function ψ is convex and satisfies

ψ(0) = ψ(1) = 1 and max{1 − t, t} � ψ(t) � 1 (0 � t � 1). (3)

Conversely for any convex function ψ on [0, 1] satisfying (3), define

‖(z, w)‖ψ =

⎧⎨
⎩

(|z| + |w|)ψ
(

|w|
|z|+|w|

)
if (z, w) �= (0, 0),

0 if (z, w) = (0, 0).
(4)
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Then ‖ · ‖ψ is an absolute normalized norm on C2 and satisfies (2). Thus the set Na

of all absolute normalized norms on C2 corresponds to the family Ψ of all convex
functions on [0, 1] satisfying (3) in a one-to-one fashion under the equation (2). The
�p -norms ‖ · ‖p are such examples and for any norm ‖ · ‖ in Na we have

‖ · ‖∞ � ‖ · ‖ � ‖ · ‖1 (5)

([2]). To the �p -norms correspond the convex functions

ψp(t) =

⎧⎨
⎩

{(1 − t)p + tp}1/p if 1 � p < ∞,

max{1 − t, t} if p = ∞.
(6)

Recently Takahashi, Kato and Saito [13] used absolute norms to introduce the
ψ -direct sum X ⊕ψ Y of Banach spaces X and Y as their direct sum X ⊕ Y equipped
with the norm

‖(x, y)‖ψ = ‖(‖x‖, ‖y‖)‖ψ . (7)

This extends the notion of the �p -sum X ⊕p Y and provides a plenty of concrete (non
�p -type) norms on X ⊕ Y . Thus it is quite natural to ask how various properties of
X ⊕ψ Y are described with those of X and Y and with the convex function ψ . In [13]
and [10] the strict and uniform convexity of X ⊕ψ Y are characterized (see Theorem A
below); these results were extended to ψ -direct sums of an arbitrary finite number of
Banach spaces in a recent paper of the present authors [7]. On the other hand, Saito-
Kato-Takahashi [11] showed that all absolute normalized norms on C2 are uniformly
non-square except the �1 - and �∞ -norms (see Theorem B below).

The aim of this paper is to characterize the uniform non-squareness of the space
X ⊕ψ Y . We shall show that X ⊕ψ Y is uniformly non-square if and only if X and
Y are uniformly non-square and neither ψ = ψ1 nor ψ = ψ∞ (in (6)). To do this
we shall present a monotonicity property of absolute norms on C2 . As a corollary it is
obtained that an �p,q -sum X ⊕p,q Y is uniformly non-square if and only if X and Y are
uniformly non-square, where �p,q is the Lorentz sequence space, 1 � q � p � ∞ and
neither p = q = 1 nor p = q = ∞ . This includes the well-known result for �p -sums
X⊕p Y as the case p = q . Finally several examples will be given. In particular those of
uniformly non-square spaces which are not uniformly convex, resp. not strictly convex,
are easily constructed.

Recall that a Banach space X is called uniformly non-square ([5]; cf. [1, 8])
provided there exists a δ (0<δ<1) such that, whenever ‖(x− y)/2‖ > 1− δ, ‖x‖ =
‖y‖ = 1 , one has ‖(x + y)/2‖ � 1 − δ . X is called strictly convex provided, if
‖x‖ = ‖y‖ = 1, x �= y , then ‖(x + y)/2‖ < 1 . X is called uniformly convex if for any
ε > 0 there is a δ (0 < δ < 1) such that, whenever ‖x−y‖ � ε, ‖x‖ � 1, ‖y‖ � 1 , one
has ‖(x + y)/2‖ < 1− δ. As is well known, the notion of uniform non-squareness lies
between uniform convexity and super-reflexivity and there is no implication between
uniform non-squareness and strict convexity in general (cf. [1]). A function ψ on [0, 1]
is called strictly convex if, for any s, t ∈ [0, 1], s �= t , and for any c (0 < c < 1) , one
has ψ((1 − c)s + ct) < (1 − c)ψ(s) + cψ(t) . We have the following.
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THEOREM A. ([13, 10]). Let X and Y be Banach spaces and let ψ ∈ Ψ . Then (i)
X ⊕ψ Y is strictly convex if and only if X and Y are strictly convex, and ψ is strictly
convex ([13, Theorem 1]).

(ii) X ⊕ψ Y is uniformly convex if and only if X and Y are uniformly convex, and
ψ is strictly convex ([10, Theorem 1]).

Saito-Kato-Takahashi [11] characterized those absolute norms on C2 which are
uniformly non-square as follows.

THEOREM B. ([11]). Let ψ ∈ Ψ . Then (C2, ‖ · ‖ψ) is uniformly non-square if
and only if ψ �= ψ1 and ψ �= ψ∞ .

2. Monotonicity properties of absolute norms

We discuss monotonicity properties of absolute norms on C2 for later use. The
following facts are fundamental.

LEMMA 1. ([2, p.36, Lemma 2]). Let ‖ · ‖ ∈ Na .
(i) If |p| � |r| and |q| � |s| , then ‖(p, q)‖ � ‖(r, s)‖.
(ii) If |p| < |r| and |q| < |s| , then ‖(p, q)‖ < ‖(r, s)‖ .

The next assertion for a norm ‖ · ‖ in Na is not true in general:

Let |p| � |r| and |q| � |s|. If |p| < |r| or |q| < |s|, then ‖(p, q)‖ < ‖(r, s)‖. (8)

Indeed (8) is not valid for the �∞ -norm. The norms in Na satisfying (8) are character-
ized as follows.

PROPOSITION 1. (Takahashi, Kato and Saito [13]). Let ψ ∈ Ψ . Then the following
assertions are equivalent.

(i) If |z| � |u| and |w| < |v| , or |z| < |u| and |w| � |v| , then ‖(z, w)‖ψ <
‖(u, v)‖ψ .

(ii) ψ(t) > ψ∞(t) for all t ∈ (0, 1) .
In particular if ψ is strictly convex, the assertion (i) holds true.

A more precise (component-wise) result is given in [13]. Now, take an arbitrary
ψ ∈ Ψ . We give a condition for which the foregoing assertion (i) is valid component-
wise for given (z, w) and (u, v) .

PROPOSITION 2. Let ψ ∈ Ψ and let (z, w), (u, v) ∈ C2 .
(i) Let |z| < |u| and |w| = |v| . Then ‖(z, w)‖ψ = ‖(u, v)‖ψ if and only if

‖(u, v)‖ψ = |v| .
(ii) Let |z| = |u| and |w| < |v| . Then ‖(z, w)‖ψ = ‖(u, v)‖ψ if and only if

‖(u, v)‖ψ = |u| .
Proof. (i) Assume ‖(z, w)‖ψ = ‖(u, v)‖ψ . Put

s =
|w|

|z| + |w| , t =
|w|

|u| + |w| .
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Then 0 < t < s < 1 and ψ(s)/s = ‖(z, w)‖ψ/|w| and ψ(t)/t = ‖(u, v)‖ψ/|v| .
Therefore

0 =
ψ(t)

t
− ψ(s)

s
� ψ(t)

t
− 1

s
· (1 − s)ψ(t) + (s − t)

1 − t

= (ψ(t) − t)
s − t

st(1 − t)
� 0,

and hence ψ(t) = t . Consequently we have

‖(u, v)‖ψ =
ψ(t)

t
|v| = |v|.

The converse assertion is direct from

|w| � ‖(z, w)‖ψ � ‖(u, v)‖ψ = |v| = |w|.

(ii) Let |w| < |v| . Put x̃ = (w, z), ỹ = (v, u) and let ψ̃(t) = ψ(1 − t) . Then by
applying the above argument to ‖ · ‖ψ̃ , we have the conclusion. �

3. Uniform non-squareness of X ⊕ψ Y

We need the following lemma.

LEMMA 2. Let {xn} and {yn} be non-zero sequences in a Banach space X such
that {‖xn‖} and {‖yn‖} converge to non-zero limits, respectively. Then the following
are equivalent.

(i) limn→∞ ‖xn + yn‖ = limn→∞(‖xn‖ + ‖yn‖) .

(ii) lim
n→∞

∥∥∥∥ xn

‖xn‖ +
yn

‖yn‖
∥∥∥∥ = 2 .

Proof. Let limn→∞ ‖xn‖ = a, limn→∞ ‖yn‖ = b . We may assume that 0 < a �
b . Suppose (i) to be true. Then

2 �
∥∥∥∥ xn

‖xn‖ +
yn

‖yn‖
∥∥∥∥ =

1
‖xn‖‖yn‖

∥∥∥∥‖yn‖xn + ‖xn‖yn

∥∥∥∥
=

1
‖xn‖‖yn‖

∥∥∥∥‖yn‖(xn + yn) − (‖yn‖ − ‖xn‖)yn

∥∥∥∥
� 1

‖xn‖‖yn‖

∣∣∣∣∣‖yn‖‖xn + yn‖ −
∣∣∣∣‖yn‖ − ‖xn‖

∣∣∣∣‖yn‖
∣∣∣∣∣

=
1

‖xn‖

∣∣∣∣∣‖xn + yn‖ −
∣∣∣∣‖yn‖ − ‖xn‖

∣∣∣∣
∣∣∣∣∣

→ 1
a
(a + b − |b − a|) = 2
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as n → ∞ , which asserts (ii). Conversely assume that (ii) is true. Then

‖xn‖ + ‖yn‖ � ‖xn + yn‖
� ‖yn‖

∥∥∥∥ xn

‖yn‖ +
yn

‖yn‖
∥∥∥∥

= ‖yn‖
∥∥∥∥
(

xn

‖xn‖ +
yn

‖yn‖
)
−

(
xn

‖xn‖ − xn

‖yn‖
)∥∥∥∥

� ‖yn‖
(∥∥∥∥ xn

‖xn‖ +
yn

‖yn‖
∥∥∥∥ −

∣∣∣∣ 1
‖xn‖ − 1

‖yn‖
∣∣∣∣ ‖xn‖

)
.

Since the first and the last terms tend to a + b as n → ∞ , we have the conclusion. �

Now we present the main result.

THEOREM 1. Let X and Y be Banach spaces and ψ ∈ Ψ . Then the following are
equivalent.

(i) X ⊕ψ Y is uniformly non-square.
(ii) X and Y are uniformly non-square and ψ �= ψ1, ψ∞.

Proof. If X⊕ψ Y is uniformly non-square, then clearly X, Y and (C2, ‖ · ‖ψ) are
uniformly non-square (embed them into X ⊕ψ Y ). Then by Theorem B, ψ �= ψ1 and
ψ �= ψ∞ . Let us show that the assertion (ii) implies (i). Assume that X ⊕ψ Y is not
uniformly non-square. Then we have a couple of sequences {(xn, yn)}, {(un, vn)} ∈
X ⊕ψ Y such that

‖(xn, yn)‖ψ = ‖(un, vn)‖ψ = 1 (9)

for all n ∈ N and

‖(xn + un, yn + vn)‖ψ → 2, (10)
‖(xn − un, yn − vn)‖ψ → 2 (11)

as n → ∞ . Since ‖xn‖ = ‖(xn, 0)‖ψ � ‖(xn, yn)‖ψ = 1 , the sequence {‖xn‖} is
bounded. So {‖xn‖} has a convergent subsequence. For simplicity we assume that
{‖xn‖} itself converges; the same argument works for the other sequences. Thus we
may assume that

‖xn‖ → a, ‖yn‖ → b, (12)

‖un‖ → c, ‖vn‖ → d, (13)

and
‖xn + un‖ → α, ‖yn + vn‖ → β , (14)

‖xn − un‖ → γ , ‖yn − vn‖ → δ (15)

as n → ∞ . Then clearly we have

‖(a, b)‖ψ = ‖(c, d)‖ψ = 1 (16)

and
‖(α, β)‖ψ = ‖(γ , δ)‖ψ = 2. (17)
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Hence

2 = ‖(α, β)‖ψ = lim
n→∞ ‖(‖xn + un‖, ‖yn + vn‖)‖ψ

� lim
n→∞ ‖(‖xn‖ + ‖un‖, ‖yn‖ + ‖vn‖)‖ψ

= ‖(a + c, b + d)‖ψ
� ‖(a, b)‖ψ + ‖(c, d)‖ψ = 2,

and thus we have
‖(α, β)‖ψ = ‖(a + c, b + d)‖ψ = 2. (18)

In the same way
‖(γ , δ)‖ψ = ‖(a + c, b + d)‖ψ = 2. (19)

Also it is obvious that

α � a + c, β � b + d and γ � a + c, δ � b + d.

Therefore, in view of Lemma 1, we have neither

α < a + c and β < b + d

nor
γ < a + c and δ < b + d.

Case 1. Let α = a + c, β = b + d and γ = a + c, δ = b + d . Note that
(a, b) �= (0, 0) and (c, d) �= (0, 0) by (16). Assume first that a, c > 0 . Then since

lim
n→∞ ‖xn + un‖ = α = a + c = lim

n→∞ ‖xn‖ + lim
n→∞ ‖un‖,

we have ∥∥∥∥ xn

‖xn‖ +
un

‖un‖
∥∥∥∥ → 2 as n → ∞

by Lemma 2. In the same way limn→∞ ‖xn − un‖ = γ = a + c = limn→∞ ‖xn‖ +
limn→∞ ‖un‖ and we have∥∥∥∥ xn

‖xn‖ − un

‖un‖
∥∥∥∥ → 2 as n → ∞.

This implies that X is not uniformly non-square, which contradicts our assumption. In
case of b, d > 0 , by a parallel argument we have that Y is not uniformly non-square.

Next let a, d > 0 . We may assume that b = c = 0 (the other cases have been
treated above). Then we have

α = β = 1. (20)

Indeed, α = a = ‖(a, 0)‖ψ = ‖(a, b)‖ψ = 1 . Therefore by (18) we have

2 = ‖(α, β)‖ψ = ‖(1, 1)‖ψ = 2ψ(
1
2
),

or ψ(1/2) = 1 , from which it follows that ψ = ψ1 , a contradiction. In case of
b, c > 0 , we have (20) and hence ψ = ψ1 in the same way.
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Case 2a. Let α = a + c, β < b + d and γ = a + c, δ < b + d . Then since

‖(α, β)‖ψ = ‖(a + c, b + d)‖ψ = 2, (18)

we obtain α = 2 by Proposition 2 and in the same way γ = 2 . Hence a = c = 1 as
0 � a, c � 1 . Therefore

‖xn‖ → 1, ‖un‖ → 1

and
‖xn ± un‖ → 2.

Consequently, by Lemma 2, we have∥∥∥∥ xn

‖xn‖ ± un

‖un‖
∥∥∥∥ → 2 as n → ∞,

which asserts that X is not uniformly non-square.
Case 2b. When α < a + c, β = b + d and γ < a + c, δ = b + d , by a parallel

argument to Case 2a, Y is not uniformly non-square.
Case 3a. Let α = a + c, β < b + d and γ < a + c, δ = b + d . Then as in Case

2a we have
α = a + c = 2 and δ = b + d = 2

and hence a = c = b = d = 1 . Therefore

1 = ‖(a, b)‖ψ = ‖(1, 1)‖ψ = 2ψ(
1
2
),

or ψ(1/2) = 1/2 , by which we have ψ = ψ∞ , a contradiction.
Case 3b. In the case α < a + c, β = b + d and γ = a + c, δ < b + d , we have

ψ = ψ∞ in the same way. This completes the proof. �

Now consider the Lorentz �p,q -norm ‖ · ‖p,q , 1 � q � p � ∞, q < ∞ :

‖(z1, z2)‖p,q =
{

z∗1
q + 2(q/p)−1z∗2

q
}1/q

,

where {z∗1 , z∗2} is the non-increasing rearrangement of {|z1|, |z2|} . (Note that in case
of 1 � p < q � ∞ , ‖ · ‖p,q is not a norm but a quasi-norm (cf. [6], [14, p.126]).
Clearly ‖ · ‖p,q is an absolute normalized norm and the corresponding convex function
ψp,q is given by

ψp,q(t)

⎧⎨
⎩

{(1 − t)q + 2q/p−1tq}1/q if 0 � t � 1/2,

{tq + 2q/p−1(1 − t)q}1/q if 1/2 � t � 1.
(21)

Then ψp,q yields the �p,q -sum X ⊕p,q Y :

‖(x, y)‖p,q =
{

max(‖x‖q, ‖y‖q) + 2(q/p)−1 min(‖x‖q, ‖y‖q)
}1/q

(22)
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COROLLARY 1. Let 1 � q � p � ∞ and not p = q = 1, ∞ . Then �p,q -sum
X1 ⊕p,q X2 is uniformly non-square if and only if X1 and X2 are uniformly non-square.
In particular �p -sum X1 ⊕p X2 , 1 < p < ∞ , is uniformly non-square if and only if X1

and X2 are uniformly non-square.

EXAMPLE 1. (cf. [10, 11]). Let 1/2 � α � 1 . Let

ψα(t) =
{ α−1

α t + 1 if 0 � t � α,
t if α � t � 1.

(23)

Then ψα ∈ Ψ and the norm of X ⊕ψα Y is given by

‖(x, y)‖ψα = max{‖x‖ + (2 − 1
α

)‖y‖, ‖y‖}. (24)

In particular we have

‖(x, y)‖ψα =

{ ‖x‖ + ‖y‖ if α = 1,

max{‖x‖, ‖y‖} if α = 1/2.
(25)

Thus ‖ · ‖ψα are non �p -type norms ’combining’ the �1 - and �∞ -sum norms as α
varies from 1 to 1/2. Indeed, we see (24) as follows.

‖(x, y)‖ψα =

{
(‖x‖ + ‖y‖)

{
α−1
α

‖y‖
‖x‖+‖y‖ + 1

}
if ‖y‖

‖x‖+‖y‖ � α,

(‖x‖ + ‖y‖) ‖y‖
‖x‖+‖y‖ if ‖y‖

‖x‖+‖y‖ � α

=

{
‖x‖ +

(
2 − 1

α
) ‖y‖ if ‖y‖

‖x‖+‖y‖ � α,

‖y‖ if ‖y‖
‖x‖+‖y‖ � α.

Noting that ‖x‖ +
(
2 − 1

α
) ‖y‖ � ‖y‖ if and only if ‖y‖/(‖x‖ + ‖y‖) � α , we have

(24).
Now, according to Theorem 1, X ⊕ψα Y is uniformly non-square if and only if

X and Y are uniformly non-square and neither α = 1 nor α = 1/2 . Assume next
that X and Y are uniformly convex. Then, since ψα is not strictly convex, X ⊕ψα Y
is not uniformly convex by Theorem A (ii). Thus, if 1/2 < α < 1 , then X ⊕ψα Y
is an example of uniformly non-square spaces which are not uniformly convex. In the
same way, if X and Y are uniformly non-square and 1/2 < α < 1 , then X ⊕ψα Y is
uniformly non-square but not strictly convex by Theorem 1 and Theorem A (i).

EXAMPLE 2. (cf. [10]). Let 1 � q < p � ∞ and 21/p−1/q < λ < 1 . Let
ψp,q,λ = max{ψp, λψq} , where ψp is as in (6). Then ψp,q,λ ∈ Ψ and, as is easily
seen, the norm of X ⊕ψp,q,λ Y is given by

‖(x, y)‖ψp,q,λ = max{‖(x, y)‖p, λ‖(x, y)‖q}. (26)

Indeed, ψp and λψq meet in (0, 1) (note that ψp < ψq , and ψp and ψq have their
minimums 21/p−1 and 21/q−1 respectively), and ψp,q,λ is convex, so ψp,q,λ ∈ Ψ .
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According to Theorem 1, X⊕ψp,q,λ Y is uniformly non-square if and only if X and
Y are uniformly non-square.

PROBLEM. For ψ -direct sums of an arbitrary finite number of Banach spaces
X1, X2, · · · , Xn the situation seems not simple. Characterize the uniformnon-squareness
of (X1 ⊕ X2 ⊕ · · · ⊕ Xn)ψ (cf. [7, 12]).
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