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Abstract. We characterize the uniform non-squareness of the y -direct sum X @y, Y of Banach
spaces X and Y, where y is a convex function on the unit interval satisfying certain conditions.
As a corollary the uniform non-squareness of an £p 4 -sum X @p 4 Y is characterized. In the

course of doing this a monotonicity property of absolute norms on C? is shown.

1. Introduction and preliminaries

It is well known (Bonsall-Duncan [2]) that for any absolute normalized norm on
C2, that is,

G w)ll = [ICJzl, DIl and {}1(1,0)]f = [[(0, DIl = 1, (1)
there corresponds a unique convex (continuous) function Y on the unit interval with
some conditions. That is, for any such norm || - || on C? let

w() = (1=t O<z<1). (2)

Then the function v is convex and satisfies
y0)=w(l)=1 and max{l -} <y <1 (0<r<1). (3)
Conversely for any convex function ¥ on [0, 1] satisfying (3), define

(Il + whw (k) i Gow) # (0,0),
if (z,w) = (0,0).

4)

1z w)lly =
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Then || - ||, is an absolute normalized norm on C? and satisfies (2). Thus the set N,
of all absolute normalized norms on C? corresponds to the family ¥ of all convex
functions on [0, 1] satisfying (3) in a one-to-one fashion under the equation (2). The
¢, -norms || - ||, are such examples and for any norm || - || in N, we have

- lloo < U< AP 1 (5)

([2]). To the £, -norms correspond the convex functions

{(1 =0 + 3P if 1 < p < 0,

v (1) = ) (6)
max{1l —,1} if p = oc.

Recently Takahashi, Kato and Saito [13] used absolute norms to introduce the
y -direct sum X @y ¥ of Banach spaces X and Y as their direct sum X ® Y equipped
with the norm

[1Ges V)l = [1CIL 11D - (7)

This extends the notion of the ¢,-sum X &, ¥ and provides a plenty of concrete (non
¢, -type) norms on X @ Y. Thus it is quite natural to ask how various properties of
X @, Y are described with those of X and Y and with the convex function y . In [13]
and [10] the strict and uniform convexity of X ®,, ¥ are characterized (see Theorem A
below); these results were extended to y -direct sums of an arbitrary finite number of
Banach spaces in a recent paper of the present authors [7]. On the other hand, Saito-
Kato-Takahashi [11] showed that all absolute normalized norms on C? are uniformly
non-square except the ¢; - and /., -norms (see Theorem B below).

The aim of this paper is to characterize the uniform non-squareness of the space
X @y Y. We shall show that X ®y, Y is uniformly non-square if and only if X and
Y are uniformly non-square and neither ¥ = y; nor ¥ = Y (in (6)). To do this
we shall present a monotonicity property of absolute norms on C?. As a corollary it is
obtained that an ¢, ,-sum X @, , Y is uniformly non-square if and only if X and Y are
uniformly non-square, where ¢, , is the Lorentz sequence space, 1 < g < p < oo and
neither p = g = 1 nor p = g = oo. This includes the well-known result for £, -sums
X ®,Y asthecase p = g. Finally several examples will be given. In particular those of
uniformly non-square spaces which are not uniformly convex, resp. not strictly convex,
are easily constructed.

Recall that a Banach space X is called uniformly non-square ([5]; cf. [1, 8])
provided there exists a 0 (0 <8 < 1) such that, whenever ||(x —y)/2|| > 1—9, ||x|| =
lly] = 1, one has ||(x +)/2|| < 1 —8. X is called strictly convex provided, if
x|l = llyll = 1, x # y, then ||(x +y)/2|| < 1. X is called uniformly convex if for any
€ > 0 thereisa d (0 < & < 1) suchthat, whenever ||x—y|| > ¢, ||x|| < 1, ||y|| < 1,o0ne
has ||(x+y)/2|| < 1 — 6. Asis well known, the notion of uniform non-squareness lies
between uniform convexity and super-reflexivity and there is no implication between
uniform non-squareness and strict convexity in general (cf. [1]). A function y on [0, 1]
is called strictly convex if, for any s, € [0,1], s # ¢, and forany ¢ (0 < ¢ < 1), one
has w((1 —c¢)s+ct) < (1 — )y (s) + cy(z) . We have the following.
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THEOREM A. ([13,10]). Let X and Y be Banach spaces andlet y € ¥. Then (i)
X @y Y is strictly convex if and only if X and Y are strictly convex, and v is strictly
convex ([13, Theorem 1]).

(ii) X @y Y is uniformly convex if and only if X and Y are uniformly convex, and
v is strictly convex ([10, Theorem 1]).

Saito-Kato-Takahashi [11] characterized those absolute norms on C? which are
uniformly non-square as follows.

THEOREM B. ([11]). Let w € ¥. Then (C2,|| - ||) is uniformly non-square if
and only if W # y1 and Y # Yoo .

2. Monotonicity properties of absolute norms

We discuss monotonicity properties of absolute norms on C? for later use. The
following facts are fundamental.

LEMMA 1. ([2, p.36, Lemma 2]). Let || - || € N,.
(i) If |p| < |r| and |q| < |5, then || (p, q)|| < [|(r;5)]-
(i) If |p| < |rl and |q| <'s|, then [|(p,q)[| < |(r;s)].

The next assertion for anorm || - || in N, is not true in general:

Let |p| < |r| and |q| < |s|. If [p| < |r| or |g| <|s|, then [|(p, )| < [|(r,5)I|.  (8)

Indeed (8) is not valid for the ¢, -norm. The norms in N, satisfying (8) are character-
ized as follows.

PROPOSITION 1. (Takahashi, Kato and Saito [13]). Let v € Y. Then the following
assertions are equivalent.

(i) If [z < [ul and |w| < |v], or |z| < [u] and |w| < |v], then ||(z,w)[ly <
G2t v) -

(ii) w(t) > yoo(t) forall t € (0,1).

In particular if v is strictly convex, the assertion (1) holds true.

A more precise (component-wise) result is given in [13]. Now, take an arbitrary
v € W. We give a condition for which the foregoing assertion (i) is valid component-
wise for given (z,w) and (u,v).

PROPOSITION 2. Let w € ¥ and let (z,w), (u,v) € C>.

(i) Let |z] < |u| and |w| = |v|. Then |(z,w)|ly = ||(u,v)|ly if and only if
)y = v,

(ii) Let |2| = [u] and w| < |v|. Then [[(zw)lly = [, v)lly if and only if
1)1y = [u]

Proof. (i) Assume |[|(z, w)ly = [|(u, v)[y . Put

_ vl _
5= 1= .
|| + [w] Jul + |w|
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Then 0 < ¢ < s < 1 and y(s)/s = [[(z,w)ly/|w| and y(t)/t = |[(u,v)]ly/[V].
Therefore

v()  w(s) > v() 1 (A—s)y()+(s—1)

t ) t ) 1—1¢

0=

and hence () = 7. Consequently we have

v (1)

G, )y = ==l = vl.

The converse assertion is direct from
wl < [z w)lly < ([, v)lly = [v] = [w].

(ii) Let |w| < |v|. Put ¥ = (w,2), § = (v,u) andlet (¢) = w(1 — ). Then by
applying the above argument to || - ||z, we have the conclusion. [J

3. Uniform non-squareness of X @, Y

We need the following lemma.

LEMMA 2. Let {x,} and {y,} be non-zero sequences in a Banach space X such
that {||xa||} and {||ys||} converge to non-zero limits, respectively. Then the following
are equivalent.

(1) Timy— oo (]2 4+ Yol = Timy— oo ([|2a]] + [|yal]) -

.. . Xn Yn
(ii) lim —+—‘—2
=0 || [1xa]| Iyl
Proof. Let lim,_. ||%,]| = a, lim,—o ||yn|| = . We may assume that 0 < a <
b. Suppose (i) to be true. Then
Xn Yn 1
| —— X, + |Ix
> e+ el = e+
1
= W ‘|Yn|(xn +¥n) = (Iyall = 1%al[)yn
n n
1
m HynHHxn +ynH - ||ynH - ||xn|| HynH
n n
= |l = [l = B ‘
n

1
(a+b—1|b—a|)=2

a
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as n — oo, which asserts (ii). Conversely assume that (ii) is true. Then

[l + [lyall = % er,,H

Yn
>
> Wl | 1o |yn|’
yn xn -xn
ol | (o * o)~ (e~ )
M Tl T al) ~ ol ™ Tou
Yn 1 1
>||y|(] \— - ||x|).
- " ”an ”yn” ”xn” HYnH "

Since the first and the last terms tend to a + b as n — oo, we have the conclusion. [
Now we present the main result.

THEOREM 1. Let X and Y be Banach spaces and y € Y. Then the following are
equivalent.

(i) X @y Y is uniformly non-square.

(ii) X and Y are uniformly non-square and W # Y, Woo.

Proof. If X, Y is uniformly non-square, then clearly X, Y and (C2, ||-||,,) are
uniformly non-square (embed them into X &, Y'). Then by Theorem B, y # y; and
Y # Yoo . Let us show that the assertion (ii) implies (i). Assume that X @, ¥ is not
uniformly non-square. Then we have a couple of sequences {(xu, )}, {(tn,vn)} €
X @y Y such that

||(Xn,)’n)Hq/ = \l(M;17V;1)||w =1 )
forall n € N and

‘|(xn+un>yn+vn)||‘lf - 27 (10)

H(xn*”myn*vn)nvf — 2 (11)
as n — oo. Since ||x,| = ||(x,0)|ly < |[(xn;¥0)]ly = 1, the sequence {||x,||} is

bounded. So {||x,||} has a convergent subsequence. For simplicity we assume that
{||x4]|} itself converges; the same argument works for the other sequences. Thus we
may assume that

Xl = @, [[yall = b, (12)
]| = ¢, |[vall — d, (13)
and
||xn + “nH — Q, ||yn + VnH - B, (14)
X0 = unll =7, llyn = vall — & (15)

as n — oco. Then clearly we have

1@, D)Ly = [I(e; d)l[y = 1 (16)

and

(et B)lly = I(¥; 8)lly = 2. (17)
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Hence
2= (@, B)ly = Tim ([l -+, v+ val) v

i ([l [ = flealls Alyall + vl Dl
l(a+ec,b+d)ly

N

< @, b)lly + [l d)lly =2,
and thus we have
I(et; B)lly = ll(a+ ¢, b+ d)l[y =2. (18)
In the same way
1(v; &)y = (@ +c,b+d)[ly = 2. (19)

Also it is obvious that
oa<at+ce,f<b+d and y<a+c, 6 <b+d.
Therefore, in view of Lemma 1, we have neither
a<a+c and B<b+d

nor
Yy<a+c¢ and O <b-+d.

Case 1. Let o =a+c, B=b+dand y =a+c, § = b+ d. Note that
(a,b) # (0,0) and (c,d) # (0,0) by (16). Assume first that a,c > 0. Then since

lim ||x, +up|| = x=a+c= lim ||x,| + lim |u,,
n—o0o n—oo n—oo
we have
L ‘ L2 asn— oo
[l [loan|
by Lemma 2. In the same way lim, oo [|X; — ]| = ¥ = @ + ¢ = lim, o ||x]| +
lim,,, o ||| and we have
2 - | 2 oo
[l [loan]

This implies that X is not uniformly non-square, which contradicts our assumption. In
case of b,d > 0, by a parallel argument we have that Y is not uniformly non-square.
Next let a,d > 0. We may assume that b = ¢ = 0 (the other cases have been
treated above). Then we have
a=p=1. (20)
Indeed, @ = a = ||(a,0)||y = ||(a, )|y = 1. Therefore by (18) we have

2= (@ B)lly = 10, Dy = 20(3).

or y(1/2) = 1, from which it follows that y = y;, a contradiction. In case of
b,c > 0, we have (20) and hence W = y; in the same way.
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Case2a. Llet o =a+c, B<b+dand y =a+c, § <b+d. Then since
(e, B)lly = lla+c, b+d)|ly =2, (18)

we obtain o = 2 by Proposition 2 and in the same way ¥y = 2. Hence a =c =1 as
0 < a, ¢ < 1. Therefore
1l = 1, | — 1

and
lxn £ wa]] — 2.

Consequently, by Lemma 2, we have

which asserts that X is not uniformly non-square.

Case 2b. When v < a+c, f=b+d and y <a+c, § =b+d, by aparallel
argument to Case 2a, Y is not uniformly non-square.

Case3a. Let o =a+c, B<b+dand y <a-+c, § =b+d. Then as in Case
2a we have

Xn Un

(R} (| 24|

)

‘HZ asn — oo

ad=a+c=2 and S=b+d=2

and hence a = c = b =d = 1. Therefore
1
L= (@ 5)lly = (L, Dlly = 2w (3),

or y(1/2) = 1/2, by which we have ¥ = ., a contradiction.
Case 3b. Inthecase o« <a+c, B=b+dand y =a+c, 6 <b+d,wehave
W = WY, in the same way. This completes the proof. [

Now consider the Lorentz £, ,-norm || - [|,4, 1 < g <p < 00, g < 00:

1/q
I, 2)llpg = {2t + 261257}

where {z}, z3 } is the non-increasing rearrangement of {|z1], |z2|}. (Note that in case
of 1 <p < g< oo, |-|pg is notanorm but a quasi-norm (cf. [6], [14, p.126]).
Clearly || - |54 is an absolute normalized norm and the corresponding convex function
W, 4 1s given by
{(1 —1)7 29~} Ve if 0 <1< 1/2,
V(1) (21)
{19 420771 (1 —p)1}/a if 1/2< e < L.

Then v, , yields the £, ,-sum X @, , Y':

1 14
1)l = {max(e], [y]19) + 267~ min(|lx], (1)} (22)
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COROLLARY 1. Let 1 < g < p < oo andnot p =g = 1,00. Then {,,-sum
X1 @p.q X> is uniformly non-square if and only if X; and X, are uniformly non-square.
In particular £, -sum X; ©p X5, 1 < p < 00, is uniformly non-square if and only if X,
and X, are uniformly non-square.

EXAMPLE 1. (cf. [10, 11]). Let 1/2 < ov < 1. Let

=iy ] fog<r<a
_ o 9
w“(t)_{ t if a <<l (23)

Then v, € ¥ and the norm of X @, Y is given by

1106 )y = max{[|x]| + (2 - é)lly\L 13- (24)

In particular we have
([ + 1yl if o =1,
||(x7y)HWa = ) (25)
max{||x[|, [[y[|} ife=1/2.

Thus || - ||y, are non /,-type norms ’combining’ the ¢;- and (., -sum norms as o
varies from 1 to 1/2. Indeed, we see (24) as follows.

et bl ) s bl
G, . { (Il -+ |y”){a IS 1} if = <a
’ o vl . y
(HXH + HyH) =+ if IEERIR > o
— { ”xH + (2 - _) Hy” lf ‘l:‘h I < a,
: Yy
IVl it T = &

Noting that [lx|| + (2 — £) [lyll > [ly|l if and only if [[y|l/(|lxl| + ly]}) < e, we have
(24).

Now, according to Theorem 1, X @y, Y is uniformly non-square if and only if
X and Y are uniformly non-square and neither o« = 1 nor o = 1/2. Assume next
that X and Y are uniformly convex. Then, since y, is not strictly convex, X @, ¥
is not uniformly convex by Theorem A (ii). Thus, if 1/2 < o0 < 1, then X @&y, ¥
is an example of uniformly non-square spaces which are not uniformly convex. In the
same way, if X and Y are uniformly non-square and 1/2 < o0 < 1, then X @, Y is
uniformly non-square but not strictly convex by Theorem 1 and Theorem A (i).

EXAMPLE 2. (cf. [10]). Let 1 < ¢ < p < oo and 2'/P717 < A < 1. Let
Vp i = max{y,, Ay,}, where y, is asin (6). Then y,,, € ¥ and, as is easily
seen, the norm of X Dy, i ¥ is given by

1)l = max{[[ (e, y)llps A1(69)llg}- (26)

Indeed, y, and Ay, meetin (0, 1) (note that y, < y,, and y, and y, have their
minimums 2'/7~! and 2!/971 respectively), and W, is convex,so Y, € V.
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According to Theorem 1, X Dy, 42 Y is uniformly non-square if and only if X and

Y are uniformly non-square.

PROBLEM. For y -direct sums of an arbitrary finite number of Banach spaces

X1,Xs,- -+, X, the situation seems not simple. Characterize the uniform non-squareness
of (X1 ©Xo® - ®Xp)y (cf. [7,12]).
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