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VARIATIONAL INEQUALITIES AND OPTIMAL EQUILIBRIUM

DISTRIBUTIONS IN TRANSPORTATION NETWORKS

LAURA SCRIMALI

(communicated by R. Agarwal)

Abstract. We deal with equilibrium problems in transportation networks within a variational
framework. In particular, we present some paradoxical results which show how some changes
in input data can be successfully exploited by the traffic manager in order to optimize the traffic
distribution thus minimizing the total cost.

1. Introduction

This paper aims to analyze carefully some paradoxical phenomena in transporta-
tion networks, see [5, 6]. In fact, it is observed that the policy interventions of the
traffic manager are often influenced by the study of the stability and sensitivity of
the traffic network equilibria. Therefore, our interest is devoted to seeing how some
changes in input data can affect the equilibrium assignment, especially in the presence
of route-capacity constraints. Starting from famous Fisk’s paradox (see [7]), we give
the conditions under which we obtain the paradoxical result for which the increase in
the travel demand leads to a decrease in the total travel cost (see [4, 11]). Thus, we
deduce that capacity restrictions can be successfully exploited by the traffic manager
in order to optimize the traffic distribution and, overall to keep the travel cost below a
certain threshold.

In section 2, by using the variational inequality theory, we deal with a basic model
where no dependence on time is required. We also give a complete characterization
of equilibrium patterns in the presence of capacity constraints on routes. Finally, a
sufficient condition under which the paradoxical decrease in the travel cost occurs is
presented (see Theorem 1).

In section 3 we consider the time-dependent case and, after introducing the time-
dependent variational inequality expressing the problem, we give a sufficient condition
which allows us to have the paradox (see Theorem 2).

In section 4 we propose an example which is interesting from a theoretical point of
view, since it clarifies how the paradoxical phenomenon can be obtained in a particular
network.
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In section 5 we present the paradox in a time-dependent and elastic model of
transportation networks, i.e. when the travel demand depends on time as well as on the
equilibrium pattern (see Theorem 3), while in the last section, we provide an example.

2. The static model

Let us consider a traffic network, where N is the set of nodes and W is the set
of the Origin/Destination pairs wj, j = 1, . . . , l . Let us denote by R = {Rr, r =
1, . . . , m} the set of all the routes of the network and by Rj the set of the routes
which connect a given O/D pair wj . Let us introduce the pair-route incidence matrix
Φ = (ϕjr)j=1,...,l r=1,...,m , where ϕjr = 1 if Rr ∈ Rj and ϕjr = 0 otherwise. We
consider the flow vectors F ∈ R

m
+ , where Fr, r = 1, ..., m , denotes the flow on route

Rr . Moreover, we assume that route flows have to satisfy some capacity restrictions,
λr � Fr � μr, r = 1, . . . , m , as well as the usual demand requirements,

∑m
r=1 ϕjrFr =

ρj, j = 1, . . . , l , where λ ,μ ∈ R
m
+ and ρ ∈ R

l
+ . Thus the set of feasible flows is

given by:

K =
{
F ∈ R

m
+ : λr � Fr � μr, r = 1, . . . , m;

m∑
r=1

ϕjrFr = ρj, j = 1, . . . , l
}
,

under condition that Φλ � ΦF � Φμ .
Let us assign a cost function C : K → R

m
+ , then it results that (see [12]):

DEFINITION. H ∈ R
m
+ is an equilibrium flow if and only if it solves the following

variational inequality:

H ∈ K, C(H)(F − H) � 0, ∀F ∈ K.

It is well-known that unconstrained equilibrium flows satisfy Wardrop’s principle
(see [13]), which we formulate as follows:

DEFINITION. H ∈ K is an equilibrium flow if ∀ωj ∈ W it results that:

Cr(H) = min
Rr∈Rj

Cr(H) if Hr > 0,

Cr(H) > min
Rr∈Rj

Cr(H) if Hr = 0.

Nevertheless, in the presence of capacity constraints, we can refer to a generalized
form of the above principle (see [9, 10]).

DEFINITION. A flow H ∈ K is an equilibrium flow if and only if

∀wj ∈ W, ∀Rq, Rs ∈ Rj,

Cq(H) < Cs(H) ⇒ Hq = μqorHs = λs. (1)

Now, let us set:
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Cj(H) = max
Rr∈Bj

Cr(H),

where
Bj = {Rr : Rr ∈ Rj, Hr > λr},

and let us introduce the generalized costs:

C̃r(H) =
{

Cr(H) + Lj
r = Cj(H) if Rr ∈ Bj ,

Cr(H) if Rr /∈ Bj, Rr ∈ Rj ,

where
Lj

r = Cj(H) − Cr(H), Rr ∈ Bj.

Hence, the generalized principle (1) becomes:

DEFINITION. H ∈ K is an equilibrium vector if

∀wj ∈ W∀Rq, Rs ∈ Rj,

C̃r(H) > C̃s(H) ⇒ Hr = λr. (2)

It is worth noting that (2) allows us to neglect the upper bounds of route flows.
Moreover (2) coincides with Wardrop’s classic principle if we shift the flows, setting
H̃r = Hr − λr and ρ̃j = ρj −

∑l
j=1 ϕjrλr . Therefore, we can confine our study to the

case λr = 0 and apply the classic principle directly.
Now, let us suppose we increase the travel demands for the O/D pairs wνh , h =

1, . . . , k , with k < l . Thus, we have to deal with another model of network, whose set
of feasible flows is:

K
∗ =

{
F∗ ∈ R

m
+ : λr � F∗

r � μr, r = 1, . . . , m;
m∑

r=1

ϕjrF
∗
r = ρj,

j = 1, . . . , l, j �= ν1, . . . , νk,
m∑

r=1

ϕνhrF
∗
r = ρ∗

νh
, h = 1, . . . , k

}
where ρ∗

νh
= ρνh + d∗

h , d∗
h > 0, h = 1, . . . , k and Φλ � ΦF∗ � Φμ .

The variational inequality which expresses the equilibrium problem is:

H∗ ∈ K
∗, C∗(H∗)(F∗ − H∗) � 0, ∀F∗ ∈ K

∗.

Let us construct the generalized costs C̃∗
r (H∗) even for the modified network, as done

before, then let us set:˜̃
Cj(H) = min

Rr∈Rj

C̃r(H); C̃j(H∗) = min
Rr∈Rj

C̃∗
r (H∗).

Our purpose is to find the conditions which imply the following paradoxical result:
the increase in the travel demand leads to a decrease in the total travel cost. To this end
we prove the theorem:
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THEOREM 1. A sufficient condition which makes the travel cost decrease is given
by:

l∑
j=1

˜̃
Cj(H)ρj >

l∑
j=1

C̃j(H∗)ρj +
k∑

h=1

C̃νh(H∗)d∗
h .

Proof. By applying Wardrop’s principle, we have that the difference between the
total cost in the initial network and in the modified one results in:

C∗(H∗)H∗ − C(H)H =
l∑

j=1

∑
Rr∈Rj

C̃∗
r (H∗)H∗

r −
l∑

j=1

∑
Rr∈Rj

C̃r(H)Hr =

=
l∑

j=1

( ∑
Rr∈Rj

C̃∗
r (H∗)=C̃j(H∗)

C̃∗
r (H∗)H∗

r +
∑

Rr∈Rj

C̃∗
r (H∗)>C̃j(H∗)

C̃∗
r (H∗)H∗

r +

−
∑

Rr∈Rj

C̃r(H)=
˜̃
Cj(H)

C̃r(H)Hr −
∑

Rr∈Rj

C̃r(H)>
˜̃
Cj(H)

C̃r(H)Hr

)
=

=
l∑

j=1

(
C̃j(H∗)

∑
Rr∈Rj

H∗
r − ˜̃

Cj(H)
∑

Rr∈Rj

Hr

)
=

=
∑

j�=ν1,...,νk

C̃j(H∗)ρj −
l∑

j=1

˜̃
Cj(H)ρj +

k∑
h=1

C̃νh(H∗)(ρνh + d∗
h ) =

=
l∑

j=1

C̃j(H∗)ρj −
l∑

j=1

˜̃
Cj(H)ρj +

k∑
h=1

C̃νh(H∗)d∗
h .

Thus we are entitled to deduce the following sufficient condition which allows us
to have the paradox:

l∑
j=1

˜̃
Cj(H)ρj >

l∑
j=1

C̃j(H∗)ρj +
k∑

h=1

C̃νh(H∗)d∗
h . (3)

We observe that if cost functions fulfill the strong monotonicity condition, then it
is possible to derive a more general relationship which provides the decrease in the cost.
We find indeed the following result, whose proof we omit:

THEOREM 2. Let C be a strongly monotone function, namely

∃α > 0s.t.
[
C(F1) − C(F2)

]
(F1 − F2) � α‖F1 − F2‖2 ∀F1, F2 ∈ K,

then the paradoxical behavior is obtained if:
1. C(F)(F − H) + C∗(H∗)H∗ � α‖F − H‖2 ∀F ∈ K , or equivalently if
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2. C∗(H∗)H∗ � α‖F − H‖2 ∀F ∈ K.

In particular if H∗ ∈ K , the paradox occurs when

C∗(H∗)H∗ � α‖H∗ − H‖2.

3. The time-dependent model

In this section we extend the previous results to the case of time-dependent traffic
networks. Let us consider, at each t ∈ [0, T] , a traffic network which has the same
geometry as the static model before presented, and let us assign a route-flow vector
F(t) ∈ R

m
+, ∀t ∈ [0, T] . Due to technical reasons, our functional setting is the reflexive

Banach space L2(0, T; Rm
+) . We assume that route flows have to satisfy some time-

dependent capacity constraints and demand requirements. Therefore, the set of feasible
flows is given by:

K =
{
F ∈ L2(0, T; Rm

+) : λr(t) � Fr(t) � μr(t) a.e. in [0, T],

r = 1, . . . , m;
m∑

r=1

ϕjrFr(t) = ρj(t) a.e. in [0, T], j = 1, . . . , l
}
,

where λ (t), μ(t) ∈ L2(0, T; Rm
+), λ (t) � μ(t) a.e. in [0, T] and Φλ (t) � ΦF(t) �

Φμ(t) a.e. in [0, T] . Moreover, let C : K → L2(0, T; Rm
+) the cost function, then we

have that (see [1]):

DEFINITION. H ∈ L2(0, T; Rm
+) is an equilibrium flow if and only if it satisfies the

following variational inequality:

H ∈ K

∫ T

0
C(H(t))(F(t) − H(t))dt � 0, ∀F ∈ K.

Now, let us increase the travel demands for the O/D pairs wνh , h = 1, . . . , k , with
k < l . Hence, the set of feasible flows of the modified network is:

K
∗ =

{
F∗ ∈ L2(0, T; Rm

+) : λr(t) � F∗
r (t) � μr(t) a.e. in [0, T],

r = 1, . . . , m;
m∑

r=1

ϕjrF
∗
r (t) = ρj(t) a.e. in [0, T],

j = 1, . . . , l, j �= ν1, . . . , νk,

m∑
r=1

ϕνhrF
∗
r (t) = ρ∗

νh
(t)

a.e. in [0, T], h = 1, . . . , k
}
.

where ρ∗
νh

(t) = ρνh(t) + d∗
h , d∗

h > 0, h = 1, . . . , k and Φλ (t) � ΦF∗(t) � Φμ(t)
a.e. in [0, T] .
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The variational inequality associated with the new equilibrium problem assumes
the form:

H∗ ∈ K
∗,

∫ T

0
C∗(H∗(t))(F∗(t) − H∗(t))dt � 0, ∀F∗ ∈ K

∗.

Let us denote the total cost in the first network by
∫ T

0 C(H(t))H(t)dt and the total

cost in the modified network by
∫ T

0 C∗(H∗(t))H∗(t)dt .
The following theorem gives a sufficient condition which guarantees the paradox.

We inform the reader that the syymbols have the same meaning as the ones introduced
in section 2 for the static case.

THEOREM 3. The total cost decreases after the increase in the travel demands if,
it results that:∫ T

0

( l∑
j=1

C̃j(H∗(t))ρj(t) −
l∑

j=1

˜̃
Cj(H(t))ρj(t) +

k∑
h=1

C̃νh(H∗(t))d∗
h

)
dt < 0.

The proof of the above theorem is on the lines of Theorem 1 and therefore will be
omitted.

4. An example

Let us consider a time-dependent traffic network as in Figure 1, where the set of
nodes is N = {P1, P2, P3} and the set of links, which coincides with the set of origin-
destination pairs, is L = {(P3, P2), (P3, P1), (P2, P1)} . The set of routes connecting
the O/D pairs is R = {R1, R2, R3, R4} , where R1 = P3P2, R2 = P3P1, R3 =
P2P1, R4 = P3P2 ∪ P2P1 .

Let us assume that link costs are:

c1(f (t)) = f 1(t),
c2(f (t)) = f 2(t) + α,

c3(f (t)) = f 3(t),

where f (t) = (f 1(t), f 2(t), f 3(t)) is the link flow vector and α is a non negative
constant.
Since link flows can be expressed in terms of the route flows Fr, r = 1, . . . , 4 , we find
the following relationships:

f 1(t) = F1(t) + F4(t),
f 2(t) = F2(t),
f 3(t) = F3(t) + F4(t).

Thus, the route costs C1(F(t)), C2(F(t)), C3(F(t)), C4(F(t)) are given by:

C1(F(t)) = F1(t) + F4(t),
C2(F(t)) = F2(t) + α,

C3(F(t)) = F3(t) + F4(t),
C4(F(t)) = F1(t) + F3(t) + 2F4(t).
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We assume that the route flows have to satisfy some capacity constraints so that
the set of all feasible flows is given by:

K = {F ∈ L2(0, T; R4
+) : λr(t) � Fr(t) � μr(t)a.e. in [0, T],

r = 1, 2, 3; F1(t) = ρ1(t), F2(t) + F4(t) = ρ2(t),
F3(t) = ρ3(t)a.e. in [0, T]},

where λ (t) � μ(t) ∈ L2(0, T; R3
+) , λ1(t) � ρ1(t) � μ1(t), ρ2(t) > λ2(t), λ3(t) �

ρ3(t) � μ3(t) a. e. in [0, T] . For simplicity, we confine our study to the case
ρ2(t) > μ2(t) and apply the computational procedure shown in [8].

The variational inequality which expresses the equilibrium problem is:

H ∈ K

∫ T

0
C(H(t))(F(t) − H(t))dt � 0, ∀F ∈ K. (4)

Deducing F4(t) from F2(t)+F4(t) = ρ2(t) the variational inequality (4) becomes:

H̃ ∈ K̃

∫ T

0
Γ(H̃(t))(F̃(t) − H̃(t))dt � 0, ∀F̃ ∈ K̃, (5)

with
K̃ = {F̃ ∈ L2(0, T) : λ2(t) � F2(t) � μ2(t)a.e. in [0, T]}

and
Γ(H̃(t)) = C2(H̃(t)) − C4(H̃(t)).

It is immediate to show that if H̃ satisfies the system:{
Γ(H̃) = 0
H̃ ∈ K̃

(6)

then it solves (5). We find that if the following condition holds:

3λ2(t) + α − 2ρ2(t) � ρ1(t) + ρ3(t) � 3μ2(t) + α − 2ρ2(t) a.e. in [0, T], (7)

the solution of the system: ⎧⎪⎪⎨⎪⎪⎩
C2(H̃(t)) = C4(H̃(t))
H1(t) = ρ1(t)
H3(t) = ρ3(t)
H2(t) + H4(t) = ρ2(t)

is given by: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H1(t) = ρ1(t)

H2(t) = ρ1(t)+2ρ2(t)+ρ3(t)−α
3

H3(t) = ρ3(t)

H4(t) = −ρ1(t)+ρ2(t)−ρ3(t)+α
3 .
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Now, let us increase the travel demand for the pair (P3, P2) so as to have the new
travel demand vector: (ρ1(t) + d, ρ2(t), ρ3(t)), d > 0 . If

3λ2(t) + α − 2ρ2(t) � ρ1(t) + d + ρ3(t) � 3μ2(t) + α − 2ρ2(t) a.e. in [0, T],

then the solution H∗(t) = (H∗
1 (t), H∗

2 (t), H∗
3 (t), H∗

4 (t)) is given by:⎧⎪⎪⎨⎪⎪⎩
H∗

1 (t) = H1(t) + d
H∗

2 (t) = H2(t) + d
3

H∗
3 (t) = H3(t)

H∗
4 (t) = H4(t) − d

3 .

The new cost functions are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C∗

1 (H∗(t)) = C1(H(t)) + 2d
3

C∗
2 (H∗(t)) = C2(H(t)) + d

3

C∗
3 (H∗(t)) = C3(H(t)) − d

3

C∗
4 (H∗(t)) = C4(H(t)) + d

3 .

It is easy to show that under convenient conditions the increase in the travel demand
can make the total cost decrease. If we denote the total cost in the initial network by∫ T

0 C(H(t))H(t)dt and the travel cost in the modified one by
∫ T

0 C∗(H∗(t))H∗(t)dt , we
have that:

∫ T

0
C∗(H∗(t))H∗(t)dt =

∫ T

0

[
C(H(t))H(t) +

d
3
(2(2ρ1(t) +

ρ2(t) − ρ3(t)) + α) +
2d2

3

]
dt.

The paradox occurs if:∫ T

0
C∗(H∗(t))H∗(t)dt −

∫ T

0
C(H(t))H(t)dt < 0,

namely

ρ̄3(t) > 2ρ̄1(t) + ρ̄2(t) +
α
2

+ d,

where ρ̄j(t) = 1
T

∫ T
0 ρj(t)dt, j = 1, 2, 3 represents the travel demand on average with

respect to time. A numerical example can be obtained by choosing: T = 1 , ρ1(t) = t ,
ρ2(t) = 10 t + 5 , ρ3(t) = 4 t + 30 , λ2(t) = 7 t , μ2(t) = 9 t + 4 , α = 30 , d = 2 .

5. The elastic demand model

We consider a time-dependentmodel of traffic networks and suppose that the travel
demand depends not only on time but also on the equilibrium pattern. Our functional
setting is again the space L2(0, T; Rm

+) .
Let us assume that:
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a) C : [0, T] × L2(0, T; Rm
+) → R

m
+ are the route cost function;

b) ρ : [0, T] × L2(0, T; Rm
+) → R

m
+ are the elastic demand, depending on the

equilibrium pattern;
c) C(t, v) is measurable in t ∀v ∈ L2(0, T; Rm

+) , continuous in v for t a.e. in
[0, T] ,

∃γ ∈ L2(0, T) : |C(t, v)| � γ (t) + |v|;
d) ρ(t, v) is measurable in t ∀v ∈ L2(0, T; Rm

+) , continuous in v for t a.e. in
[0, T] ,

∃ψ ∈ L1(0, T) : |ρ(t, v)| � ψ(t) + |v|2;
e) ∃h(t) � 0 a.e. in [0, T] , h ∈ L2(0, T) :

∀v1, v2 ∈ L2(0, T; Rm
+), |ρ(t, v1) − ρ(t, v1)| � h(t)|v1 − v2|;

f) λ (t), μ(t) ∈ L2(0, T; Rm
+), λ (t) � μ(t) a.e. in [0, T] are the capacity restric-

tions.

Then if D is a non-empty, compact, convex subset of L2(0, T; Rm
+) , the set of

feasible flows is the set-valued function defined as follows:

K : D → 2L2(0,T;Rm
+ );

K(H) =
{

F ∈ L2(0, T; Rm
+) : λr(t) � Fr(t) � μr(t)a.e. in [0, T],

r = 1, 2, . . . , m;
m∑

r=1

ϕjrFr(t) =
1
T

∫ T

0
ρj(t, H(τ))dτ

a.e. in [0, T], j = 1, 2, . . . , l
}

;

where Φλ (t) � ΦF(t) � Φμ(t) a.e. in [0, T] . We refer to a relaxed formulation of
the equilibrium problems (see [2]), where the demand requirements,

∑m
r=1 ϕjrFr(t) =

1
T

∫ T
0 ρj(t, H(τ))dτ , are considered on average with respect to time.

DEFINITION. H ∈ L2(0, T; Rm
+) is an equilibrium flow if and only if it solves the

following quasi-variational inequality:

H ∈ K(H)
∫ T

0
C(t, H(t))(F(t) − H(t))dt � 0, ∀F ∈ K(H).

Under the above assumptions on C and ρ , and if K(H) ⊂ E, ∀H ∈ E , then the
quasi-variational inequality associated with the equilibrium problem admits a solution
(see [2]).

If we increase the travel demands for the O/D pairs wνh , h = 1, . . . , k , with
k < l , we obtain the new set of feasible flows:
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K
∗(H∗) =

{
F∗ ∈ L2(0, T; Rm

+) : λr(t) � F∗
r (t) � μr(t) a.e. in [0, T],

r = 1, 2, . . . , m;
m∑

r=1

ϕjrF
∗
r (t) =

1
T

∫ T

0
ρj(t, H(τ))dτ

a.e. in [0, T], j = 1, 2, . . . , l, j �= ν1, . . . , νk,

m∑
r=1

ϕνhrF
∗
r (t) =

=
1
T

∫ T

0
ρ∗

h (t, H(τ))dτ a.e. in [0, T], h = 1, 2, . . . , k
}

;

where Φλ (t) � ΦF∗(t) � Φμ(t) a.e. in [0, T] . Let H∗ ∈ K
∗(H∗) be an equilibrium

solution, then it results:∫ T

0
C∗(t, H∗(t))(F∗(t) − H∗(t))dt � 0, ∀F∗ ∈ K

∗(H∗).

Therefore, the following theorem can be deduced:

THEOREM 4. A sufficient condition which allows us to have a decrease in the
travel cost is given by:∫ T

0

( l∑
j=1

C̃j(t, H∗(t))ρ̄j(t) −
l∑

j=1

˜̃
Cj(t, H(t))ρ̄j(t) +

k∑
h=1

C̃νh(t, H∗(t))d∗
h

)
dt < 0,

where ρ̄j(t) =
1
T

∫ T

0
ρj(t, H(τ))dτ .

6. An example

In this section we present the example of a time-dependent and elastic model of
traffic networks. Let us consider the same network considered in section 4, and let us
assume we have the same cost functions. Let the set of feasible flows be:

K(H) =
{

F ∈ L2(0, T; R4
+) : λr(t) � Fr(t) � μr(t) a.e. in [0, T],

r = 1, 2, 3; F1(t) =
1
T

∫ T

0
t dτ; F2(t) + F4(t) =

=
1
T

∫ T

0
(t + εH2(τ))dτ, F3(t) =

2
T

∫ T

0
t dτa.e. in [0, T]

}
;

where Φλ (t) � ΦF(t) � Φμ(t) a.e. in [0, T] and ε > 0 . The equilibrium flow is a
solution of the quasi-variational inequality if:

H ∈ K(H),
∫ T

0

4∑
r=1

Cr(H(t))(Fr(t) − Hr(t))dt � 0, ∀F ∈ K(H). (8)
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Following the procedure shown in [3, 8], we set:

F4(t) = t +
ε
T

∫ T

0
H2(τ)dτ − F2(t);

Ẽ =
{

H̃ ∈ L2(0, T) : λ2(t) � H2(t) � μ2(t)a.ein[0, T];

H2(t) � t +
ε
T

∫ T

0
H2(τ)dτa.ein[0, T]

}
;

K̃(H) =
{

F̃ ∈ L2(0, T) : λ2(t) � F2(t) � μ2(t) a.e ∈ [0, T];

F2(t) � t +
ε
T

∫ T

0
H2(τ)dτ a.e ∈ [0, T]

}
;

Γ(F̃(t), H̃(t)) = C2(F̃(t), H̃(t)) − C4(F̃(t), H̃(t))

3F2(t) + α − 5t − 2ε
T

∫ T

0
H2(τ)dτ.

Thus, the problem (8) can be written as:

H̃ ∈ K̃(H̃),
∫ T

0
Γ(H̃(t), H̃(t))(F̃(t) − H̃(t)dt � 0 ∀F̃ ∈ K̃(H̃). (9)

It is immediate to show that if H̃ satisfies the system:{
Γ(H̃, H̃) = 0
H̃ ∈ K̃,

then it solves (9). Thus we find the equilibrium solution:(
t,

5
3

t +
5εT

3(3 − 2ε)
− α

3 − 2ε
, 2 t,−2

3
t +

5εT
6(3 − 2ε)

+
α(1 − ε)
3 − 2ε

)
under these conditions:

λ2(t) � 5
3

t +
5εT

3(3 − 2ε)
− α

3 − 2ε
� μ2(t),

2
3

t − 5εT
6(3 − 2ε)

− α(1 − ε)
3 − 2ε

� 0 a.e. in [0, T].

Now, let us increase the travel demand for the pair (P3, P2) , adding the positive
quantity d .
The equilibrium solution H∗(t) = (H∗

1 (t), H∗
2 (t), H∗

3 (t), H∗
4 (t)) is given by:⎧⎪⎪⎨⎪⎪⎩

H∗
1 (t) = H1(t) + d

H∗
2 (t) = H2(t) + d

3−2ε
H∗

3 (t) = H3(t)
H∗

4 (t) = H4(t) − (1−ε)d
3−2ε ,
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if the following relationships hold:

λ2(t) � 5
3

t +
5εT

3(3 − 2ε)
− α

3 − 2ε
+

d
3 − 2ε

� μ2(t),

2
3

t − 5εT
6(3 − 2ε)

− α(1 − ε)
3 − 2ε

+
(1 − ε)d
3 − 2ε

� 0 a.e. in [0, T].

Moreover the new cost functions are:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C∗
1 (H∗(t)) = C1(H(t)) + (2−ε)d

3−2ε

C∗
2 (H∗(t)) = C2(H(t)) + d

3−2ε

C∗
3 (H∗(t)) = C3(H(t)) − (1−ε)d

3−2ε

C∗
4 (H∗(t)) = C4(H(t)) + d

3−2ε .

We have that the paradoxical decrease in the total cost occurs if:∫ T

0
C∗(H∗(t))H∗(t)dt −

∫ T

0
C(H(t))H(t)dt < 0,

namely if
(2ε2 − 6ε − 3)T − d(2ε2 − 6ε + 6) + α(4ε − 3) > 0

A numerical example can be obtained by choosing: T = 1 , ε = 3 , λ2(t) = t+12 ,
μ2(t) = 2 t + 18 , α = 50 , d = 4 .
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