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A SIMPLE PROOF FOR SOME IMPORTANT

PROPERTIES OF THE PROJECTION MAPPING
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Abstract. In this paper, we give a simple proof for an important property of projection mapping
under general G -norm.

1. Introduction

Let Ω be a nonempty closed convex subset of Rn and F be a continuousmonotone
mapping from Rn into itself. A variational inequality problem, denoted by VI (Ω, F) ,
is to determine a vector u∗ ∈ Ω such that

(u − u∗)TF(u∗) � 0, ∀u ∈ Ω. (1.1)

VI (Ω, F) problem includes nonlinear complementarity problems (when Ω = Rn
+ )

and system of nonlinear equations (when Ω = Rn ), and thus it has many important
applications [4]. A typical situation where problem (1.1) can be reformulated as an
optimization problem is that F(u) is the gradient of a differentiable function f : Rn →
Rn , in which case Problem (1.1) is equivalent to the problem

min
x
{f (x)|x ∈ Ω}.

Among the existing methods for nonlinear variational inequality problems, the simplest
one is the Goldstein–Levitin–Polyak projection method [5, 11], which starts with any
u0 ∈ Ω , and iteratively updates uk+1 according to the formula

uk+1 = PΩ[uk − βkF(uk)], (1.2)

where βk is a chosen positive step size and PΩ(v) denotes the projection of v onto Ω .
For any β > 0 , denote

e(u, β) := u − PΩ[u − βF(u)].

Since solving VI (Ω, F) is equivalent to finding a zero point of e(u, β) , ‖e(u, 1)‖ is
usually viewed as an error bound which measures how much u fails to be a solution
point. In projected gradient methods for constrained minimization problems [1, 3],
merit functionmethods [12, 13] and projection-typemethods for variational inequalities
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[6, 7, 8, 9, 10], ‖e(u, β)‖ plays an important role in convergence analysis. Especially,
the properties

‖e(u, β̃)‖ � ‖e(u, β)‖, ∀β̃ � β > 0 (1.3)

and
‖e(u, β̃)‖

β̃
� ‖e(u, β)‖

β
, ∀β̃ � β > 0 (1.4)

are very important and have been studied by Gafni and Bertsekas (Lemma 1 in [3]),
Calamai and Moré (Lemma 2.2 in [1]) and Peng and Fukushima (Lemma 3.3 in [13]).
In this paper, we give a simple proof for such properties in the sense of projection under
G -norm.

2. Preliminaries

Let G be a symmetric positive definite matrix. PΩ,G(v) denotes the unique
solution of the minimization problem

min{‖v − u‖G | u ∈ Ω}.
In other words,

PΩ,G(v) = argmin{‖v− u‖G | u ∈ Ω}.
LEMMA 1. For all u ∈ Ω , we have

{v − PΩ,G(v)}TG{u − PΩ,G(v)} � 0, ∀u ∈ Ω. (2.1)

Proof. First, according to the definition of PΩ,G(v) , we have

‖v − PΩ,G(v)‖G � ‖v− w‖G ∀w ∈ Ω.

For u ∈ Ω and θ ∈ (0, 1) , it holds

θu + (1 − θ)PΩ,G(v) = PΩ,G(v) + θ(u − PΩ,G(v)) ∈ Ω

and
‖v− PΩ(v)‖2

G � ‖v − PΩ,G(v) − θ(u − PΩ,G(v))‖2
G.

Hence, we have

[v − PΩ,G(v)]TG[u − PΩ,G(v)] � θ
2
‖u − PΩ,G(v))‖2

G ∀u ∈ Ω and θ ∈ (0, 1).

Let θ → 0+ , the assertion is proved. �
We define

eG(u, β) = u − PΩ,G[u − βG−1F(u)]. (2.2)

LEMMA 2. Solving VI (Ω, F) is equivalent to finding a zero point of eG(u, β) .

Proof. i). Since u is a solution of VI (Ω, F) , u ∈ Ω . Setting v := u−βG−1F(u)
in (2.1), we get (

eG(u, β) − βG−1F(u)
)T

GeG(u, β) � 0
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and consequently
‖eG(u, β)‖2

G � eG(u, β)T(βF(u)). (2.3)

Because PΩ[u−G−1F(u)] ∈ Ω and u is a solution of VI (Ω, F) , it follows from (1.1)
that

{PΩ[u − G−1F(u)] − u}TF(u) � 0,

and hence
eG(u, β)TF(u) � 0. (2.4)

Combining (2.3) and (2.4) we get eG(u, β) = 0 .
ii). Conversely, setting v = u − βG−1F(u) in(2.1) we get

{eG(u, β) − βG−1F(u)}TG{u′ − PΩ,G[u − βG−1F(u)]} � 0, ∀u′ ∈ Ω. (2.5)

Because eG(u, β) = 0 , we have u = PΩ,G(·) ∈ Ω and PΩ,G[u − βG−1F(u)] = u .
Substituting it in (2.5) we get

u ∈ Ω, (u′ − u)TF(u) � 0, ∀u′ ∈ Ω

This means that u is a solution of VI (Ω, F) .

3. The main Theorem

THEOREM 1. For any u ∈ Rn and β̃ � β > 0 , we have

‖eG(u, β̃)‖G � ‖eG(u, β)‖G (3.1)

and
‖eG(u, β̃)‖G

β̃
� ‖eG(u, β)‖G

β
. (3.2)

Proof. Let t = ‖eG(u, β̃)‖/‖eG(u, β)‖ , we need only to prove that 1 � t � β̃/β .
Notice that it’s equivalent expression is

(t − 1)(t − β̃/β) � 0. (3.3)

According to the basic property of the projection mapping, we have

(v − PΩ,G(v))TG(PΩ,G(v) − w) � 0 ∀w ∈ Ω. (3.4)

Setting w := PΩ,G[u − β̃G−1F(u)] and v := u − βF(u) in (3.4), and using

PΩ,G[u − βG−1F(u)] − PΩ,G[u − β̃G−1F(u)] = eG(u, β̃) − eG(u, β),

we obtain
{eG(u, β) − βG−1F(u)}TG{eG(u, β̃) − eG(u, β)} � 0. (3.5)

Similarly, we have

{β̃G−1F(u) − eG(u, β̃)}TG{eG(u, β̃) − eG(u, β)} � 0. (3.6)
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Multiplying (3.5) and (3.6) by β̃ and β , respectively, and then adding them, we get

{β̃eG(u, β) − βeG(u, β̃)}TG{eG(u, β̃) − eG(u, β)} � 0 (3.7)

and consequently

β̃‖eG(u, β)‖2
G + β‖eG(u, β̃)‖2

G � (β + β̃)eG(u, β)TGeG(u, β̃). (3.8)

From Cauchy-Schwarz inequality, we have

eG(u, β)TGeG(u, β̃) � ‖eG(u, β)‖G‖eG(u, β̃)‖G

Then

β̃‖eG(u, β)‖2
G + β‖eG(u, β̃)‖2

G � (β + β̃)‖eG(u, β)‖G‖eG(u, β̃)‖G (3.9)

Dividing (3.9) by ‖eG(u, β)‖2
G we obtain

β̃ + β t2 � (β + β̃)t

and thus (3.3) holds and the theorem is proved. �

RE F ER EN C ES
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