
Mathematical
Inequalities

& Applications
Volume 7, Number 4 (2004), 471–490

LORENTZ SPACES FOR DECREASING

REARRANGEMENTS OF FUNCTIONS ON TREES

JOSEP L. GARCIA-DOMINGO AND JAVIER SORIA

(communicated by L.-E. Persson)

Abstract. We characterize the existence of a norm in the Lorentz spaces defined on trees, for
non-linear decreasing rearrangements, as well as other functional properties (quasinormability,
relationship with rearrangement invariant spaces, etc.). The main tool is the characterization of
the saturation in Hardy-Littlewood’s inequality for linearly decreasing functions.

1. Introduction

Let (X,μ) be a measure space. For every 0 < p < ∞ and every weight in
the positive real line, the Lorentz space Λp

X(u) is defined as the set of μ -measurable
functions f such that the functional

‖f ‖Λp
X(u) =

(∫ ∞

0
f �(t)pu(t) dt

)1/p

(1)

is finite, where

f �(t) = inf {λ : μ({x ∈ X : |f (x)| > λ}) � t} , t > 0,

is the classical decreasing rearrangement. The Lorentz spaces were introduced in 1951
by G.G. Lorentz ([Lo]) in the case X = (0, l) and μ the Lebesgue measure, and they
are generalizations of the Lp and Lp,q spaces. In his paper, G.G. Lorentz proved that
in the case p � 1 , the functional defined in (1) is a norm if and only if the weight u is
decreasing.

In [GS], we introduced a new decreasing rearrangement of functions defined in a
homogeneous tree, which takes strongly into account the geometric structure of the tree.
In this work, we consider the weighted Lorentz spaces related to the new decreasing
rearrangement and we characterize some normability properties of these spaces in terms
of the weight. It is important to remark that the classical techniques do not work in
the context of a tree due to the lack of algebraic structure and the non-existence of a
total order, and trivial facts for the classical rearrangement of functions become difficult
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in the tree (see for example the monotonic condition proved in [GS, Proposition 19]).
Instead, we use combinatorial techniques.

In Section 2 we recall the main notations and most important results given in [GS].
In Section 3 we study the relationship between the classical and the new rearrangement,
pointing out the advantages of the second (see Corollary 3.4). We also address the
validity of the Hardy-Littlewood inequality and introduce the class of linearly decreasing
functions, which plays a fundamental role in the theory. Lorentz spaces are defined in
Section 4, where we prove our main result (Theorem 4.9): what are the conditions on
the weight to obtain a norm.

We also want to mention the works of A.R. Pruss [Pr1] and [Pr2], where a decreasing
rearrangement on homogeneous trees is given by means of a “spiral-like" ordering. We
point out that this rearrangement is not useful in our context because it does not satisfy
condition (iii) of [GS, Definition 1]. See also [L] for applications of this “spiral-like"
order to obtain geometric information of the tree. Other recent works dealing with
extensions to trees of classical results in Analysis are, for example, [CFPR], [EHL], and
[NS].

2. Definitions and previous results

We adopt the definitions and some of the notations of [C] and [FTN]: a tree T is a
connected graph without circuits or cycles. We identify a tree with the set of its vertices.
A tree is called homogeneous of degree q + 1 if every vertex has q + 1 neighbor
vertices.

In a tree, there exists a unique chain joining two vertices x and y . We call this
chain a geodesic and we denote it by [x, y] (or [y, x] ). The distance between x and y
is the number of edges in the geodesic [x, y] , that is, the length of [x, y] . As usual, we
denote it by d(x, y) . Now, the vertices x and y are neighbors if d(x, y) = 1 .

A rooted tree To is a tree with a fixed reference vertex o called origin of the tree.
An infinite chain is an infinite sequence x0, x1, x2, . . . of vertices such that xi and xi+1

are neighbors and xi �= xi+2 for all i � 0 . The boundary of a rooted tree ∂To is the set
of all infinite chains starting at o . The boundary can be viewed as the set of points at
infinity.

For every x in T , we write the geodesic joining o to x by

{x(0) = o, x(1), . . . , x(n) = x} := [o, x],

where k = d(o, x(k)) and n = d(o, x) . The confluent vertex of the vertices x and y is
the unique vertex c(x, y) such that the geodesics [o, c(x, y)] , [c(x, y), x] and [c(x, y), y]
meet only at c(x, y) . If x ∈ [o, y] , we set c(x, y) = x . The tent of x , T(x) , and its
shadow in ∂To , I(x) , are defined by

T(x) = {y ∈ To : x ∈ [o, y]} ,
I(x) = {ω ∈ ∂To : x ∈ [o,ω)} .

We can define a partial order structure on To : the vertex x is greater than or equal
to the vertex y , if y belongs to [o, x] . We denote it by y �o x . In other words:

y �o x⇔ y ∈ [o, x]⇔ x ∈ T(y).
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A function defined on a tree is a discrete function evaluated on each vertex. We are
interested in monotone functions. A function is decreasing if f (x) � f (y) whenever
y �o x . A set of vertices E in T is a decreasing set if whenever x ∈ E , we have that
y ∈ E , for all y such that y �o x , that is, χE is a decreasing function. If E is a finite
set of vertices in To , we denote by |E| its cardinal.

We now give a summary of the results introduced in [GS]. In view of the so-called
“Layer-cake” formula (see [LL] and (4)), to define a decreasing rearrangement of a
positive function, it is enough to introduce a decreasing rearrangement for finite sets of
vertices. The definition of our rearrangement initially depends on the choice of what is
called an order in the boundary of the tree. It is defined by means of a suitable bijection,
called admissible map (see Definition 2 in [GS]), between the boundary of the tree and
an interval in the real line minus the q -adic numbers N(q) :

σ : ∂To −→ [0, (q + 1)q−1] \ N(q). (2)

DEFINITION 2.1. Let σ be an admissible map as in (2). Given ω and ω ′ in
∂To , we define ω �σ ω ′ if and only if σ(ω) � σ(ω ′).

In the sequel, an admissible map σ will be called an order in ∂To . For two given
disjoint sets A and B in ∂To , we will write A <σ B , if x <σ y for all x ∈ A and all
y ∈ B . Then, we can use this boundary order σ to introduce the order notation of the
so-called boundary vertices in every finite set E ,

∂E := {e1, e2, · · · , en}σ , (3)

where, for every i = 1, . . . , n , T(ei) ∩ E = {ei} , I(ei) <σ I(ei+1) if i �= n and
n = n(E) = |∂E| . (See Figure 1 for an example.)

DEFINITION 2.2. Let σ be an order in ∂To , and let E be a finite set of vertices in
To with boundary ∂E = {e1, e2, · · · , en}σ . Set R(o,σ,0)(E) := E, and then recursively
define, for every 0 � k � n− 1 , the sets

R(o,σ,k+1)(E) :=
(R(o,σ,k)(E) \ [o, ek+1]

) ∪ [o, ek+1(s)],

where s + 1 = s(k) + 1 =
∣∣R(o,σ,k)(E) ∩ [o, ek+1]

∣∣ . Then, the final set

R(o,σ)(E) := R(o,σ,n)(E),

is the decreasing rearrangement of E .

See Figure 1 for a graphic example on a homogeneous tree of degree 3, where the
chosen order σ on ∂To is such that the boundary of every finite set is ordered from left
to right.
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Figure 1: A set E and its decreasing rearrangement E∗ , and a function f and its decreasing
rearrangement f ∗ . We use the order σ from left to right.

REMARK 2.3. It is proved in [GS] that this rearrangement is canonical, up to
automorphisms of the tree. In the sequel, we will not pronounce the dependence on
either the origin of the tree or its order in the boundary, and we will simply denote
Rk(E) = R(o,σ,k)(E) , E∗ = R(o,σ)(E) , and y � x instead of y �o x . Observe that ∗
refers to the new rearrangement and � to the classical one.

Let M0 be the set of functions f defined on the tree such that the level sets
{x ∈ T : |f (x)| > λ} are finite for all λ > 0 . For a function f ∈ M0 , its decreasing
rearrangement is the function defined by means of the “Layer-cake” formula:

f ∗(x) =
∫ ∞

0
χ{y∈T:|f (y)|>λ}∗(x) dλ , (4)

for all x ∈ T .
By using the properties of the rearrangement proved in [GS, Proposition 23], it

makes sense to extend the definition of the decreasing rearrangement to functions with
non finite level sets, just by a density argument: if (En)n is a sequence of finite sets in T
such that En ⊂ En+1 and T = ∪n�0En , for a general function f in the tree, consider the
sequence of functions (f n)n defined by f n = f χEn and then set f ∗ = limn→∞(f χEn)∗

pointwise. This shows that we can reduce our study to functions with finite support.
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One of the main results in [GS] is the existence of an equivalent expression for f ∗

in (4), which is more intuitive and easier to handle. For a positive function f with finite
support, set E = supp(f ) and ∂E = {e1, e2, . . . , en}σ , and define for each 1 � k � n :

f �
k (y) =

⎧⎨
⎩

f �
k−1(y) if y ∈ Rk(E) ∩ [o, ek]c,

(f �
k−1 · χ[o,ek ])

∗(y) if y ∈ Rk(E) ∩ [o, ek],
(5)

where f �
0 = f . Observe that supp(f �

k ) = Rk(E) . Then (see [GS, Theorem 27]),

f ∗ = f �
n . (6)

In fact, what we are doing is to recursively rearrange the restriction of the function to
each geodesic [o, ek] . (See Figure 1.)

3. The Hardy-Littlewood inequality

The classical Hardy-Littlewood inequality for measurable functions f and g de-
fined in T is ∑

x∈T

|f (x)g(x)| �
∫ ∞

0
f �(t)g�(t) dt. (7)

A consequence of this inequality is that in the measure space (T, |.|) , which is resonant
(with respect to the classical rearrangement, see [BS]), for each measurable f and g in
(T, |.|) , the identity

sup
∑
x∈T

|f (x)h(x)| =
∫ ∞

0
f �(t)g�(t) dt, (8)

holds, where the supremum is taken over all measurable functions h on T such that
h� = g� . Our purpose is to give the same type of results but using our decreasing
rearrangement on the tree, and our motivation is the proof of G.G. Lorentz in [Lo] of
the characterization as a norm of the natural functional that defines the Lorentz spaces.
We observe that we can state his result in the following way: if p � 1 , the following
are equivalent

(i) The weight u is a decreasing function in [0,∞) .
(ii) For all Lebesgue measurable functions f in (0, l) , the equality

sup
{h: h�=u}

∫ l

0
|f (t)h(t)| dt =

∫ ∞

0
f �(t)u(t) dt,

holds.
(iii) The functional ‖.‖Λp

(0,l)(u) in (1), for X = (0, l) and μ the Lebesgue measure, is
a norm.

It is natural to ask if there is any relationship between both rearrangements. The
following result gives some information about this. The proof uses standard arguments
and is omitted.

PROPOSITION 3.1. For every measurable function f in M0 , we have (f ∗)�(t) =
f �(t) , for all t > 0.
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This proposition shows that if f ∗ = g∗ then f � = g� , and it is trivial to show that
the converse is not true in general.

PROPOSITION 3.2. For all f ∈ M0 and for all finite sets of vertices E ⊂ T the
inequality ∑

x∈E

|f (x)| �
∑
x∈E∗

f ∗(x)

holds.

Proof. We use the notation f ∗(x) =
∑∞

n=1 bnχF∗
n
(x), (whenever f (x) =

∑∞
n=1 bn

χFn(x), where Fn ⊂ Fn+1 , bn > 0 and
∑∞

n=1 bn < ∞ ), and the monotony of the
rearrangement proved in [GS, Proposition 19]:

∑
x∈E

|f (x)| =
∞∑

n=1

bn |E ∩ Fn| =
∞∑
n=1

bn |(E ∩ Fn)∗| �
∞∑
n=1

bn |E∗ ∩ F∗
n | =

∑
x∈E∗

f ∗(x).

�
We obtain for our rearrangement the Hardy-Littlewood inequality.
THEOREM 3.3. (Hardy-Littlewood inequality) For all f and g in M0 , the in-

equality ∑
x∈T

|f (x)g(x)| �
∑
x∈T

f ∗(x)g∗(x)

holds.

Proof. We use Proposition 3.2:

∑
x∈T

|f (x)g(x)| =
∞∑
n=1

bn

(∑
x∈Fn

|g(x)|
)

�
∞∑

n=1

bn

(∑
x∈F∗

n

g∗(x)
)

=
∑
x∈T

f ∗(x)g∗(x).

�
As a consequence of this theorem, Proposition 3.1 and (7), we obtain:

COROLLARY 3.4. For all measurable functions f and g in M0 , we have

∑
x∈T

|f (x)g(x)| �
∑
x∈T

f ∗(x)g∗(x) �
∫ ∞

0
f �(t)g�(t) dt.

Observe that the new rearrangement gives better estimates than the classical one.
Another important consequence of Theorem 3.3 is that the inequality

∑
x∈T

|f (x)h(x)| �
∑
x∈T

f ∗(x)g∗(x)

holds for all functions h ∈ M0 such that h∗ = g∗ . In view of (8), it is natural to
consider the following question: is it possible to get the equality

sup
∑
x∈T

|f (x)h(x)| =
∑
x∈T

f ∗(x)g∗(x), (9)
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where the supremum is taken over all functions h ∈ M0 such that h∗ = g∗ ? Now
the answer is negative for a general decreasing function g , even for a characteristic
function of a decreasing set (this fact reflects that the classical rearrangement heavily
depends on the total order structure of the real line). But it is not difficult to see that
there exist decreasing functions g in the tree such that (9) holds. Our purpose now is
to identify the case of equality in (9). We first fix our attention to the functions with
finite support, and we begin by looking at functions with support in one geodesic from
the origin o to a fixed vertex e . In this case, our rearrangement is equivalent to the
classical rearrangement of discrete functions defined on N , with support in the interval
[0, N] for a fixed N , simply by considering the bijection

[o, e] = {o = e(0), e(1), . . . , e(N) = e} ≡ [0, N],

such that e(i) ←→ i . The measure space ([0, N], |.|) is strongly resonant and this
means that, for fixed f and g , the equality

∑
x∈[o,e]

|f (x)h(x)| =
∑

x∈[o,e]

f ∗(x)g∗(x), (10)

holds for a suitable h . In fact, this h can be constructed by permuting the values of g∗ ,
by using the permutation that takes f into f ∗ . To be precise, consider the permutation
ϕf : [o, e] −→ [o, e] such that

|f (x)| = f ∗(ϕf (x)),

for all x ∈ [o, e] . Then, h(x) = g∗(ϕf (x)) satisfies equality (10) (by considering a
change of variable x = ϕf (y) ), and trivially h∗ = g∗ . We observe that the permutation
ϕf , for a measurable f , plays an important role in order to obtain equality (10). In
the “linear" case of [o, e] , we trivially have that if g is decreasing, then g(ϕf (.))∗ = g
for all f . In fact, the reverse implication is also true, and we can trivially state that g
is decreasing if and only if g(ϕf (.))∗ = g for all f . Thus, a monotony property of g
is equivalent to an invariancy notion of g . We fix now our attention on functions with
general finite support not necessarily contained in a geodesic.

DEFINITION 3.5. Let f be a positive function with finite support E ⊂ T . A
rearranging transformation for f is a bijection ϕf : E −→ E∗ such that f (x) =
f ∗(ϕf (x)), for all x ∈ E .

In view of (5) and (6), we can decompose ϕf into the composition of rearranging
transformations for every geodesic from o to each vertex in the boundary of E . To be
precise, if n = |∂E| ,

ϕf = ϕf ,n ◦ ϕf ,n−1 ◦ · · · ◦ ϕf ,1,

where each ϕf ,k is a mapping ϕf ,k : Rk−1(E) −→ Rk(E) such that
• ϕf ,k is the identity out of [o, ek] , that is

ϕf ,k · χRk−1(E)\[o,ek]
= Id.

• Each ϕf ,k is the rearranging transformation for f �
k restricted to [o, ek] , that is:

(i) ϕf ,k : Rk−1(E) ∩ [o, ek]←→ Rk(E) ∩ [o, ek].
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(ii) f �
k (y) =

⎧⎨
⎩

f �
k−1(y) if y ∈ Rk(E) \ [o, ek],

f �
k−1(ϕ

−1
f ,k (y)) if y ∈ Rk(E) ∩ [o, ek].

In other words, each ϕf ,k is the rearranging transformation for f �
k ·χ[o,ek ] , extended

to all Rk−1(E) as the identity. These bijections are not unique in general, unless we
require that ϕf ,k(x) � ϕf ,k(y) if x � y , whenever f �

k−1(x) = f �
k−1(y) . We keep this

condition for granted, so that ϕf is also unique for every f . For a finite set of vertices
E , we define

Φ(E) = {ϕ : E←→ E∗ : ∃f s.t.ϕ = ϕf } ,

and
Φ =

⋃
{E⊂T:|E|<∞}

Φ(E).

Thus, Φ is the set of all the rearranging transformations in the tree. In general, for a
decreasing positive function g , the equality

g(ϕf (.))∗ = g (11)

does not hold. Consequently, g must be something better than decreasing in order to
have (9) or (11). The unexpected solution is given by considering a new order structure
in the tree. We recall that for two given disjoint sets A and B in ∂To , we write A <σ B ,
if x <σ y for all x ∈ A and all y ∈ B .

DEFINITION 3.6. Given two vertices x and y in T , we define x � y if and only
if x � y or I(x) �σ I(y).

It is very important to observe that this is a total order, compatible with the natural
partial order (although it is not a locally finite order), and that it depends on the choice
of σ . We give now some lemmas that will lead to the final result of this section. In
what follows, we will use the notation (x, y] = [x, y] \ {x} , or [x, y) = [x, y] \ {y} , for
two vertices x and y in T .

LEMMA 3.7. Let f be a positive function in T with finite support E , and
∂E = {e1, e2, . . . , en}σ its boundary. If x, y ∈ E ∩ [o, e1] satisfy that f (x) � f (y),
then ϕf (x)�ϕf (y).

Proof. If ϕf (x) and ϕf (y) lie in the same geodesic, we trivially have that ϕf (x) �
ϕf (y), because of the hypothesis and that f ∗ is decreasing. Suppose that ϕf (x) and
ϕf (y) do not lie in the same geodesic. Take the decomposition

ϕf = ϕf ,n ◦ ϕf ,n−1 ◦ · · · ◦ ϕf ,1,

and write yj = ϕf ,j ◦ · · · ◦ ϕf ,1(y) and xj = ϕf ,j ◦ · · · ◦ ϕf ,1(x) . By hypothesis, there
exists 1 � k � n such that xk and yk are vertices of the same geodesic and xk � yk,
but xk+1 and yk+1 are not in the same geodesic. This can only happen if (see Figure 2)

yk ∈ Rk(E) ∩ (c(ek, ek+1), ek],

and
xk+1 ∈ Rk+1(E) ∩ (c(ek, ek+1), ek+1],
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since then, by definition of ϕf ,k+1 we have

yk+1 = ϕf ,k+1(yk) = yk ∈ (c(ek, ek+1), ek],

and then xk+1 and yk+1 do not lie in the same geodesic. Hence, by construction
xk+1 � yk+1.

ek
ek+1

yk

xk

c(ek, ek+1)

ek
ek+1

c(ek, ek+1)

xk+1

yk+1

�
ϕf,k+1

Figure 2: The situation of xk and yk , and the action of ϕf ,k+1 .

Now, we claim that
ϕf (x) � xk+1. (12)

Thus,
ϕf (x) � xk+1 � yk+1 = ϕf (y),

where the last equality is due to the fact that ϕf ,j = Id in (c(ek, ek+1), ek] for all
j � k + 1 . We now prove the claim. Two possibilities can happen: first, if xk+1 ∈
(c(ek+1, ek+2), ek+1] , then ϕf (x) = xk+1, because ϕf ,j = Id in (c(ek+1, ek+2), ek+1] for
all j � k + 2 , and so we have an equality in (12). Second, if xk+1 ∈ [o, c(ek+1, ek+2)]
and if it does not exist y ∈ (c(ek+1, ek+2), ek+2] such that f �

k+1(xk+1) � f �
k+1(y), then

xk+2 = ϕf ,k+2(xk+1) = xk+1,

and nothing changes in this rearrangement. If there exists y ∈ (c(ek+1, ek+2), ek+2] such
that f �

k+1(xk+1) � f �
k+1(y), then necessarily

xk+2 = ϕf ,k+2(xk+1) ∈ T(xk+1),

and thus xk+2 � xk+1. Repeating this argument, we obtain

ϕf (x) = xn � xn−1 � . . . xk+1. �

LEMMA 3.8. Let E be a finite set in T , and n = |∂E| . If

ϕ = ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 ∈ Φ(E),

then ϕ′ := ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ∈ Φ(D), where D = R1(E) \ (c(e1, e2), e1] .
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Proof. Observe that |D| = n − 1 since ∂D = ∂E \ {e1} . Hence, there exists f
supported in E such that ϕ = ϕf . If we set g = f �

1 · χD, then we get

g∗ = f ∗ · χE∗\(c(e1,e2),e1],

and g(x) = g∗(ϕ′(x)), for all x ∈ D . �
Before proving the next important result, we define a new decreasing property for

functions in the tree.

DEFINITION 3.9. A function g is linearly decreasing if g(x) � g(y) , whenever
x � y.

We observe that if g is linearly decreasing, then g is decreasing. The basic result
of this section is the following:

THEOREM 3.10. If g is a linearly decreasing positive function, then

(g ◦ ϕ)∗(y) = g(y), (13)

for all ϕ ∈ Φ , and for all y in the support of ϕ .

Proof. Take ϕ ∈ Φ(E) for a certain finite set E . We prove the theorem by
induction on |∂E| . If |∂E| = 1 , then E is contained into a geodesic [o, e] , and we
are done, because if g is linearly decreasing, it is decreasing. Suppose it is true for
|∂E| = n− 1 . Fix E such that ∂E = {e1, e2, . . . , en}σ . If ϕ ∈ Φ(E) , we know that

ϕ = ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1,

where ϕi = ϕf ,i for a certain f supported in E . Set h = g ◦ ϕ , which is supported
in E . Then, there exists ϕh ∈ Φ(E) such that h(x) = h∗(ϕh(x)), for all x ∈ E .
Its decomposition is ϕh = ϕh,n ◦ ϕh,n−1 ◦ · · · ◦ ϕh,1. We claim that ϕ1 = ϕh,1. Take
x, y ∈ E ∩ [o, e1] and suppose that ϕ1(x) < ϕ1(y) . Then, f (x) � f (y) , and by
Lemma 3.7, we have that ϕ(x)�ϕ(y) , and then

h(x) = g(ϕ(x)) � g(ϕ(y)) = h(y),

because g is linearly decreasing. Therefore,

ϕh,1(x) < ϕh,1(y).

Since this is true for all x and y in E ∩ [o, e1] , which is a finite set, we have proved the
claim. Using the claim and that ϕ1 = Id in R1(E) \ [o, e1] ⊂ E \ [o, e1] , we have:

h�
1 (y) =

⎧⎨
⎩

h(y) if y ∈ R1(E) \ [o, e1],

h(ϕ−1
h,1 (y)) if y ∈ R1(E) ∩ [o, e1]

= g(ϕn ◦ · · · ◦ ϕ2(y)), (14)

for all y ∈ R1(E) . So, for y ∈ E∗ \ (c(e1, e2), e1] , we get

h∗(y) = (h�
1 )∗(y) = (g(ϕn ◦ · · · ◦ ϕ2(.))∗(y). (15)



LORENTZ SPACES FOR DECREASING REARRANGEMENTS OF FUNCTIONS ON TREES 481

If R1(E) ∩ (c(e1, e2), e1] �= ∅ , using (14) and that ϕj = Id in R1(E) ∩ (c(e1, e2), e1]
for j � 2 , we get for y ∈ R1(E) ∩ (c(e1, e2), e1] :

h∗(y) = h�
1 (y) = g(ϕn ◦ · · · ◦ ϕ2(y)) = g(y).

This equality, (15) and the fact that E∗∩(c(e1, e2), e1] = R1(E)∩(c(e1, e2), e1] finally
lead to:

h∗(y) = h∗(y) · χE∗∩(c(e1,e2),e1](y) + h∗(y) · χE∗\(c(e1,e2),e1](y)
= g(y) · χE∗∩(c(e1,e2),e1](y) + (g(ϕn ◦ · · · ◦ ϕ2(.)))∗(y) · χE∗\(c(e1,e2),e1](y)
= g(y) · χE∗∩(c(e1,e2),e1](y) + g(y) · χE∗\(c(e1,e2),e1](y)
= g(y),

wherewe have used in the third equality Lemma3.8 and the hypothesis of induction. �
The last result of this section is connected to the question equipped with equality

(9).

THEOREM 3.11. If g is a positive function in T such that (g ◦ ϕ)∗ = g, in the
support of ϕ , for all ϕ ∈ Φ , then

∑
x∈T

f ∗(x)g(x) = sup
{h: h∗=g}

∑
x∈T

|f (x)h(x)| ,

for all measurable functions f .

Proof. Set C =
∑

x∈T f ∗(x)g(x) . It is enough to see that for all ε > 0 , there
exists a function h such that h∗ = g and

C − ε <
∑
x∈T

|f (x)h(x)| .

Set Ek = {x ∈ T : |x| � k} and f k = |f | · χEk . By [GS, Proposition 23 (viii) ], we
know that

f ∗
k ↗ f ∗,

since f k ↗ |f | . By the Monotone Convergence Theorem, and observing that E∗
k = Ek

for all k � 0 , there exists n such that

C − ε <
∑
x∈En

f ∗
n (x)g(x). (16)

By hypothesis, we know that hn = g ◦ ϕf n satisfies h∗n = g · χEn , and
∑
x∈En

f n(x)hn(x) =
∑
x∈En

f ∗
n (x)g(x),

because trivially
∑
x∈En

f ∗
n (x)g(x) =

∑
y∈En

f ∗
n (ϕf n(y))g(ϕf n(y)) =

∑
y∈En

f n(y)hn(y).
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This equality and (16) lead to

C − ε <
∑
x∈En

f n(x)hn(x).

Define h = hn · χEn + g · χT\En . We claim that h∗ = g, and using the last inequality,
we get

C − ε <
∑
x∈En

f n(x)hn(x) �
∑
x∈T

f (x)h(x),

as we wanted to prove. We now prove the claim. Since we know that

h∗ = lim
k

(h · χEk)
∗,

it is enough to prove that (h · χEm)∗ = g · χEm , for all m � n . We denote ∂En = Tn =
{e1, e2, . . . , er}σ , with r = (q + 1)qn−1 . If we decompose

ϕf n = ϕr ◦ ϕr−1 ◦ · · · ◦ ϕ1,

then (g ◦ ϕf n)
�
k (ek) = g(ek), because we know that (g ◦ ϕf n)

∗ = g and ϕj = Id
in Rj−1(E) \ [o, ej] for all j , and in our case ek ∈ Rj−1(E) \ [o, ej] for all j �
k + 1 . Now, to finish the proof, we only need to observe that g is a decreasing
function because of the hypothesis, and to consider the following trivial fact at each
geodesic rearrangement: let {a1, . . . , ak} be a sequence of positive real numbers and
{a∗1 , . . . , a∗k} its decreasing rearrangement; let us add some new values {b1, . . . , bm}
to the sequence satisfying bi � bi+1 , for all 1 � i � m and b1 � a∗k . Then, the
rearrangement of {a1, . . . , ak, b1, . . . , bm} is {a∗1 , . . . , a∗k , b1, . . . , bm} . �

As a consequence of the last two results, we can state the following corollary:

COROLLARY 3.12. If g is a positive linearly decreasing function, then∑
x∈T

f ∗(x)g(x) = sup
{h: h∗=g}

∑
x∈T

|f (x)h(x)| ,

for all measurable functions f .

We will show in Theorem 4.9 that the converse also holds.

4. The Lorentz spaces

We consider now the study of the functional properties of the Lorentz spaces on
the tree, defined in terms of the new rearrangement. Our goal is to characterize the
normability of the defining functional (see Theorem 4.9).

DEFINITION 4.1. Let 0 < p < ∞ be a real number and u a positive function
defined in T , that is, a weight. The Lorentz space Δp

T(u) is the set of measurable
functions f defined in T such that the functional

‖f ‖Δp
T (u) =

(∑
x∈T

f ∗(x)p u(x)
)1/p

is finite.
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We observe that the simple functions with finite support are in Δp
T(u) . If u ∈

L1(T) , then L∞(T) ⊂ Δp
T(u) and all simple functions are in Δp

T(u) . We give some
basic properties, with trivial proof derived from [GS, Proposition 23].

PROPOSITION 4.2. For measurable functions f , g and f k , k � 1 , defined in T ,
we have:

(i) If |f | � |g| , then ‖f ‖Δp
T (u) � ‖g‖Δp

T (u) .

(ii) ‖λ f ‖Δp
T (u) = |λ | ‖f ‖Δp

T (u) .

(iii) If 0 � f k ↗ f pointwise, then ‖f k‖Δp
T (u) ↗ ‖f ‖Δp

T (u) .

(iv) ‖lim infk |f k|‖Δp
T (u) � lim infk ‖f k‖Δp

T (u) .

We will use the notation U(E) =
∑
x∈E

u(x), for every set E ⊂ T and for every

weight u in T . We describe the functional in a new way that will be useful later on.

LEMMA 4.3. For all f ∈ Δp
T(u) , we have

‖f ‖Δp
T (u) =

(∫ ∞

0
p λ p−1U({|f | > λ}∗) dλ

)1/p

.

Proof. By [GS, Proposition 23 (vii) ], we have:

‖f ‖Δp
T (u) =

(∑
x∈T

(|f |p)∗(x))u(x)
)1/p

.

We use the definition (4) of the decreasing rearrangement and then we apply Fubini’s
Theorem obtaining:

‖f ‖Δp
T (u) =

(∑
x∈T

(∫ ∞

0
χ{|f |p>λ}∗(x) dλ

)
u(x)

)1/p

=
(∑

x∈T

(∫ ∞

0
p ξ p−1χ{|f |>ξ}∗(x) dξ

)
u(x)

)1/p

=
(∫ ∞

0
p ξ p−1

( ∑
x∈{|f |>ξ}∗

u(x)
)

dξ
)1/p

. �

Our Lorentz spaces have the property of completeness. The proof is standard and
is omitted.

PROPOSITION 4.4. Suppose u(o) �= 0 , and let {f k : k � 0} be a sequence of
measurable functions defined in T . If

lim
m,n
‖f m − f n‖Δp

T (u) = 0,

then there exists a function f ∈ Δp
T(u) defined in T such that

lim
n
‖f − f n‖Δp

T (u) = 0.
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The classical Lorentz spaces are generalizations of the classical Lebesgue spaces,
in the sense that Λp

X(1) = Lp(X,μ). In view of this, it is logical to ask if this relation
holds true in the case of our Lorentz spaces. Next proposition gives an answer to this
question.

PROPOSITION 4.5. For 0 < p <∞ , we have Δp
T(1) = Lp(T, |.|).

Proof. Using [GS, Proposition 23 (vi) , (vii) ], that |E| = |E∗| for all E ⊂ T , and
Fubini’s Theorem, we get

‖f ‖Lp(T,|.|) =
∑
x∈T

|f (x)|p =
∫ ∞

0

∣∣{|f |p > λ
}∣∣ dλ =

∫ ∞

0
|{(f ∗)p > λ}| dλ

=
∑
x∈T

(f ∗(x))p = ‖f ‖Δp
T (1) . �

As a consequence we have Λp
T(1) = Δp

T(1) . However, the spaces Λp
T(v) ( v a

weight in [0,∞) ) and Δp
T(u) (u a weight in T ) are not equal in general. The clas-

sical Lorentz spaces are rearrangement invariant spaces, that is ‖f ‖Λp
X(u) = ‖g‖Λp

X(u) ,

whenever f and g are equimeasurable functions, in the sense that μ({|f | > λ}) =
μ({|g| > λ}), for all λ > 0 . In fact, two functions f and g are equimeasurable if
and only if f � = g� . The Lorentz spaces Δp

T(u) are not rearrangement invariant spaces
in this sense in general, because it is easy to find f and g in T such that f � = g� but
f ∗ �= g∗ . Furthermore:

PROPOSITION 4.6. The space Δp
T(u) is a rearrangement invariant space if and

only if the weight u is constant in T \ {o} .
Proof. Suppose first that u is constant in T \ {o} . Take two equimeasurable

functions f and g in (T, |.|) , that is

|{|f | = λ}| = |{|g| = λ}| . (17)

We can assume that their supports are finite. We have:

‖f ‖Δp
T (u) = (f ∗(o))pu(o) + C

∑
x 
=o

(f ∗(x))p,

‖g‖Δp
T (u) = (g∗(o))pu(o) + C

∑
x 
=o

(g∗(x))p.

By (17), f ∗(o) = g∗(o) and using also Proposition 4.5, we get:
∑
x 
=o

(f ∗(x))p = ‖f ‖Lp(T,|.|) − (f ∗(o))p

= ‖g‖Lp(T,|.|) − (g∗(o))p

=
∑
x 
=o

(g∗(x))p,
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and thus
‖f ‖Δp

T (u) = ‖g‖Δp
T (u) .

Let us see the converse implication. Suppose that Δp
T(u) is a rearrangement invariant

space. We first show that necessarily, u is radial. Take x and y two different vertices
such that d(o, x) = d(o, y). Then f = χ[o,x] and g = χ[o,y] are equimeasurable
functions and thus

U([o, x]) = ‖f ‖Δp
T (u) = ‖g‖Δp

T (u) = U([o, y]).

This equality implies that u is radial. Now take x ∈ T , and y such that y /∈ [o, x] and
d(o, y) = 1 . Set E = ([o, x] \ {x}) ∪ {y} , f = χE and g = χ[o,x] . Then f and g are
equimeasurable functions satisfying f ∗ = f and g∗ = g , and thus

U([o, x]) = ‖g‖Δp
T (u) = ‖f ‖Δp

T (u) = U([o, x])− u(x) + u(y),

that is, u(x) = u(y) . This equality and the fact that u is radial lead to u = C in
T \ {o} . �

However, we always have an inclusion between these two spaces.

PROPOSITION 4.7. If u is a weight in T , then Λp
T(u�) is a subspace of Δp

T(u∗) .

Proof. We simply apply Corollary 3.4:

‖f ‖pΔp
T (u∗)

=
∑
x∈T

(f ∗(x))p u∗(x) =
∑
x∈T

(|f |p)∗(x) u∗(x)

�
∫ ∞

0
(|f |p)�(t) u�(t) dt =

∫ ∞

0
(f �(t))p u�(t) dt

= ‖f ‖Λp
T (u�) .

We have used the well-known fact (|f |p)�(x) = (f �(x))p , also valid for the new
rearrangement (see [GS, Proposition 23 (vii) ]). �

We focus our attention on the functional ‖.‖Δp
T (u) , and we study what kind of

conditions are required on the weight u such that it becomes a quasi-norm or a norm.
We observe that we trivially have ‖f ‖Δp

T (u) = 0⇔ f ≡ 0. In the classical context, M.J.

Carro and J. Soria ([CS]) characterized the weights u such that the functional ‖.‖Λp
X(u)

in (1) is a quasi-norm, if X is non-atomic. Later, J.A. Raposo ([R] or [CRS]) completed
this result for all X . In our case, we have the following characterization.

THEOREM 4.8. The functional ‖.‖Δp
T (u) is a quasi-norm if and only if there exists

a constant C > 0 such that

0 < U((E ∪ D)∗) � C(U(E∗) + U(D∗)), (18)

for all sets E and D such that E ∪ D �= ∅ .
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Proof. Suppose that condition (18) holds. By Lemma 4.3, if ‖f ‖Δp
T (u) = 0 , then

U({|f | > λ}∗) = 0,

for all λ > 0 , and by hypothesis,

{|f | > λ} = ∅,

for all λ , that is, f ≡ 0 . Also by Lemma 4.3 and applying our hypothesis, we have:

‖f + g‖pΔp
T (u)

=
∫ ∞

0
p λ p−1U({|f + g| > λ}∗) dλ

�
∫ ∞

0
p λ p−1U(({|f | > λ/2} ∪ {|g| > λ/2})∗) dλ

� C

(∫ ∞

0
p λ p−1U({|f | > λ/2}∗) dλ +

∫ ∞

0
p λ p−1U({|g| > λ/2}∗) dλ

)

= 2C

(∫ ∞

0
p λ p−1U({|f | > λ}∗) dλ +

∫ ∞

0
p λ p−1U({|g| > λ}∗) dλ

)

= 2C(‖f ‖pΔp
T (u)

+ ‖g‖Δp
T (u))

p,

where we have used the monotonic property E∗ ⊂ D∗ if E ⊂ D (see [GS, Proposition
19]). Now, suppose that the functional is a quasi-norm. Take E and D such that
E ∪ D �= ∅ . Then,

U((E ∪ D)∗)1/p = ‖χE∪D‖Δp
T (u) � C(‖χE‖Δp

T (u) + ‖χD‖Δp
T (u))

= C(U(E∗)1/p + U(D∗)1/p). �

We study now when the functional ‖.‖Δp
T (u) is a norm. In the classical context,

this problem was solved by G.G. Lorentz ([Lo]) in the case X = (0, l) and p � 1 . The
general case is completely characterized by J.A. Raposo ([R] or the bookmanuscript
[CRS]). In all cases, the necessary and sufficient condition on the weight so that ‖.‖Λp

X(u)

becomes a norm is that u must be a decreasing function. It is not difficult to see that,
in our context, the weight u must be also a decreasing function on the tree in order to
get a norm. But a very simple example shows that this condition on u is not enough.
So, it seems natural to think that u must be something better than decreasing. In view
of the results of the previous section, we guess that u has to be a linearly decreasing
function. The positive answer is given in the next theorem. Recall that Φ is the set of
all the rearranging transformations in the tree.

THEOREM 4.9. Let u be a weight in T .
(i) If 0 < p < 1 , the functional ‖.‖Δp

T (u) is a norm if and only if supp(u) = {o} .
(ii) If p � 1 , the following are equivalent:

(a) u is linearly decreasing in T .
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(b) For all ϕ ∈ Φ , the equality

(u ◦ ϕ)∗(y) = u(y)

holds for all y in the support of ϕ .
(c) For all measurable functions f in T , the equality

sup
{h: h∗=u}

∑
x∈T

|f (x)h(x)| =
∑
x∈T

f ∗(x)u(x)

holds.
(d) The functional ‖.‖Δp

T (u) is a norm.

Proof.
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Figure 3: The functions f , g , f + g and their rearrangements.
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We first prove that if ‖.‖Δp
T (u) is a norm, then u is linearly decreasing, for all

0 < p < ∞ . If x � y , it is well-known that in this “linear" case we have that
u(x) � u(y) (see [Lo] or [R]). Take x � y and 0 < a < b < c < d , set 2m = a + b
and consider the functions f and g of Figure 3. Observe that f ∗ = g∗ . The triangle
inequality gives, after cancelations

((a + b)p − (2a)p) u(x) � ((2b)p − (a + b)p) u(y).

If we set 1 < λ = b/a , the inequality becomes

((1 + λ )p − 2p) u(x) � ((2λ )p − (1 + λ )p) u(y).

Now, observe that

lim
λ→1

(2λ )p − (1 + λ )p

(1 + λ )p − 2p
= 1,

and thus, u(x) � u(y) . This proves (d)⇒ (a) in part (ii) .

(i) The sufficiency is obvious. Suppose that the functional is a norm. Set f = χ{o}
and g = λχ{x} with 0 < λ < 1 and x a neighbor vertex of o such that x � y for all
y �= 0 in T . Then f ∗ = f , g∗ = λχ{o} and (f + g)∗ = f + g = χ{o} + λχ{x} . The
triangle inequality gives

‖f + g‖Δp
T (u) =

(
u(o) + λ pu(x)

)1/p

� u(o)1/p + (λ pu(o))1/p = ‖f ‖Δp
T (u) + ‖g‖Δp

T (u) .

From this, we have

(
u(o) + λ pu(x)

)1/p

− u(o)1/p

λ
� u(o)1/p <∞.

If u(x) �= 0 , then

lim
λ→0

(
u(o) + λ pu(x)

)1/p

− u(o)1/p

λ
=∞,

because p < 1 , getting a contradiction. Thus, u(x) = 0 and since u is linearly
decreasing, u = u(o)χ{o} .

(ii) (a)⇒ (b) This is Theorem 3.10.
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(b)⇒ (c) This is Theorem 3.11.
(c)⇒ (d) We apply [GS, Proposition 23 (vii) ], and the hypothesis (twice):

‖f + g‖Δp
T (u) =

(∑
x∈T

(f + g)∗(x)pu(x)
)1/p

=
(∑

x∈T

(|f + g|p)∗(x)u(x)
)1/p

= sup
{h: h∗=u}

(∑
x∈T

|f (x) + g(x)|p h(x)
)1/p

� sup
{h: h∗=u}

(∑
x∈T

|f (x)|p h(x)
)1/p

+ sup
{h: h∗=u}

(∑
x∈T

|g(x)|p h(x)
)1/p

=
(∑

x∈T

(f ∗(x))pu(x)
)1/p

+
(∑

x∈T

(g∗(x))pu(x)
)1/p

= ‖f ‖Δp
T (u) + ‖g‖Δp

T (u) . �

Taking into account Propositions 4.4 and 4.7, we obtain:

COROLLARY 4.10. For 1 � p <∞ ,
(i) Δp

T(u) is a Banach space if and only if u is linearly decreasing in T .
(ii) If u is a linearly decreasing weight in T , Λp

T(u�) is a proper Banach subspace
of the Banach space Δp

T(u) .

In view of Theorem 4.9, it is now clear that the property of beingBanach depends on
the choice of the origin and the order of the rearrangement, since the linearly decreasing
property on a weight is not invariant under the change of either the origin or the order
in ∂To .

REMARK 4.11. It is possible to extend these results to the cases of finite or regular
trees. A tree is finite if the number of edges is finite, and it is regular if, for every vertex,
the number of neighbor vertices is greater than or equal to 2, and is bounded above by
an absolute constant. To handle these cases, the main idea is to embed the tree into a
suitable homogeneous tree and to rearrange the embedded sets of vertices.

In the case of a finite rooted tree, it is easy to choose an order in ∂To simply by
listing the boundary vertices (without considering the compatibility conditions on the
boundary of the tree of [GS, Definition 2]). So, we can use this listing order to rearrange
sets and, therefore, functions. A natural question arises: can we have the same previous
theorem for this rearrangement? If the listing order coincides with an admissible order,
the result remains true. But it is easy to see that there are listing orders that are not
admissible, for which Theorem 4.9 fails to be true, as stated.
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