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Abstract. Let S = {x1, x2, . . . , xn} be a set of distinct positive integers and [xi, xj] denote

the least common multiple of xi and xj . The matrix [S−1] = (sij) , where sij = 1
[xi,xj]

, is

called the reciprocal least common multiple (reciprocal LCM) matrix on S. In this paper, we
investigate some matrix norms of the reciprocal LCM matrix and one of its generalizations on
S = {1, 2, . . . , n} in terms of the Riemann zeta function.

1. Introduction

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers and (xi, xj) denote
the greatest common divisor of xi and xj . The matrix (S) = (sij), where sij = (xi, xj) ,
is called the greatest common divisor (GCD) matrix on S [4].

Beslin and Ligh [4] showed that the GCD matrix is positive definite and

det(S) = φ(x1)φ(x2) . . .φ(xn),

where φ is Euler’s totient, if S is factor-closed. S is said to be factor-closed if all
positive divisors of every element of S is in S.

Z. Li [10] calculated the value of the determinant of the GCD matrix on S in terms
of Euler’s totient when S arbitrary.

Beslin and Ligh [5] proved that det(S) = B(x1)B(x2) . . .B(xn) , where B is defined
as

B(xi) =
∑
d |xi
d � | xj
xj<xi

φ(d)

on S when S is gcd-closed. S = {x1, x2, . . . , xn} is said to be gcd-closed if (xi, xj) ∈ S
for all xi, xj ∈ S [5, 6].

The n × n matrix [S] = (sij), where sij = [xi, xj] , the least common multiple of
xi and xj , is called the least common multiple (LCM) matrix on S [3]. In that paper,
Beslin defined the matrix (S−1) = (sij) , where sij = 1

(xi,xj)
, and called it the reciprocal
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GCD matrix on S . Beslin also investigated the structure of the LCM matrix on S and
showed that the determinant of the LCM matrix is

x2
1 x2

2 . . . x2
n g(x1)g(x2) . . . g(xn),

where the arithmetic function g is defined as g(n) = 1
n

∑
d|n

dμ(d) , if S is factor closed.

The inverses of GCD and LCM matrices on factor-closed sets and the inverses of
GCD matrices on gcd-closed sets are calculated in [6]. The inverses of LCM matrices
on gcd-closed sets are calculated in [9].

Haukkanen, Wang and Sillanpää gave a brief review of papers relating to GCD and
LCM matrices (see [8]).

In [1] E. Altinisik and D. Tasci presented a generalization of the reciprocal LCM
matrix, and gave also some inequalities on the determinant of such matrices (see The-
orem 4 in [1]). D. Bozkurt and S. Solak [7] have shown that the Euclidean norm of the
reciprocal LCM matrix [S−1] on S = {1, 2, . . . , n} possesses the upper bound

∥∥[S−1]
∥∥

2
�

√
5π2

6
− 4.

The main purpose of this paper is to improve this upper bound. We apply a technique
different from that by D. Bozkurt and S. Solak [7] to obtain a sharper upper bound given
as ∥∥[S−1]

∥∥
2

�
√

15
6

π.

We, in fact, obtain a more general result which gives an upper bound for the �p norm
of the matrix [S−r] on S = {1, 2, . . . , n} with rp > 1.

2. The main results

DEFINITION 1. Let S = {x1, x2, . . . , xn} be a set of distinct positive integers.

The n × n matrix [S−1] =
(

1
[xi, xj]

)
is called the reciprocal least common multiple

(reciprocal LCM) matrix on S.

Throughout this paper, [S−1] denotes the reciprocal LCM matrix defined on the

set S = {1, 2, . . . , n}. Let r be a positive real number. The matrix [S−r] =
(

1
[i, j]r

)

defined on S = {1, 2, . . . , n} is a generalization of the reciprocal LCM matrix. Now
we investigate the �p norm of [S−r].

DEFINITION 2. Let A = (aij)n×n be in Mn(C). The �p norm of A is

‖A‖p =

⎛
⎝ n∑

i,j=1

|aij|p
⎞
⎠

1/p

, (1 � p < ∞).
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THEOREM 3. Let [S−r] be a generalization of the reciprocal LCM matrix and
rp > 1. Then

lim
n→∞

∥∥[S−r]
∥∥

p
=

ζ(rp)3/p

ζ(2rp)1/p
,

where ζ(s) is the Riemann zeta function.

Proof. The �p norm of [S−r] is

∥∥[S−r]
∥∥

p
=

⎛
⎝ n∑

i,j=1

1
[i, j]rp

⎞
⎠

1/p

.

Then

lim
n→∞

∥∥[S−r]
∥∥p

p
=

∞∑
i,j=1

1
[i, j]rp

=
∞∑
i=1

∞∑
j=1

(i, j)rp

irpjrp
.

For any positive integer m , it is well known that mr =
∑
d|m

Jr(d) , where Jr is Jordan‘s

totient (see [2],[11]). Then

lim
n→∞

∥∥[S−r]
∥∥p

p
=

∞∑
i=1

1
irp

∞∑
j=1

1
jrp

∑
d|(i,j)

Jrp(d)

=
∞∑
i=1

1
irp

∑
d|i

Jrp(d)
drp

∞∑
k=1

1
krp

= ζ(rp)
∞∑
i=1

1
irp

∑
d|i

Jrp(d)
drp

= ζ(rp)
∞∑
i=1

Jrp(i)
irp

∞∑
k=1

1
(ik)rp

= ζ(rp)2
∞∑
i=1

Jrp(i)
i2rp

.

By using the relation Jrp(i) = irp
∑
d|i

μ(d)
drp , we have

lim
n→∞

∥∥[S−r]
∥∥p

p
= ζ(rp)2

∞∑
i=1

1
irp

∑
d|i

μ(d)
drp

= ζ(rp)2
∞∑
i=1

μ(i)
irp

∞∑
k=1

1
(ik)rp

= ζ(rp)3
∞∑
i=1

μ(i)
i2rp

=
ζ(rp)3

ζ(2rp)
.
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Thus

lim
n→∞

∥∥[S−r]
∥∥

p
=

ζ(rp)3/p

ζ(2rp)1/p
.

Since rp > 1 it is clear that ζ(rp) and ζ(2rp) are covergent by the definition of the
Riemann zeta function. �

REMARK 4. By Theorem 3 we obtain the least upper bound for the �p norm of the
matrix [S−r] that is

∥∥[S−r]
∥∥

p
� ζ(rp)3/p

ζ(2rp)1/p
,

where rp > 1.

We compare our result given in Theorem 3 with computer calculations by using
Maple 6 for the �p norm of the matrix [S−r] for p = 5 and r = 10 .

n ζ(rp)3/p

ζ(2rp)1/p − ‖[S−r]‖p

2 0.83577× 10−24

3 0.78886× 10−30

5 0.17324× 10−38

10 0.53541× 10−52

20 0.11980× 10−65

50 0.10720× 10−84

100 0.25595× 10−99

Table 1

COROLLARY 5. Let [S−1] be the reciprocal LCM matrix. Then

lim
n→∞

∥∥[S−1]
∥∥

2
=

ζ(2)3/2

ζ(4)1/2
=

√
15
6

π,

where ζ(s) is the Riemann zeta function.

Proof. By letting p = 2 and r = 1 in Theorem 3, the proof is immediate. �

We compare our result in Corollary 5 with computer calculations by using Maple
6 in Table 2.
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n
∥∥[S−1]

∥∥
2

ζ(2)3/2

ζ(4)1/2 =
√

15π
6

2 1.322875656 2.027889338
3 1.462494065 "
4 1.570120307 "
5 1.618383968 "
10 1.785512467 "
30 1.923525230 "
50 1.958073310 "
100 1.988504622 "
200 2.005863321 "
300 2.012307249 "
400 2.015714494 "
500 2.017840069 "
600 2.017853121 "

Table 2

The following corollary gives us an upper bound for the spectral norm of [S−r].

DEFINITION 6. Let A = (aij)n×n be in Mn(C). The spectral norm of A is

‖A‖S = max
{√

λ : λ is an eigenvalue of A∗A
}

.

COROLLARY 7. Let [S−r] be a generaliztion of the reciprocal LCM matrix and
2r > 1. Then ∥∥[S−r]

∥∥
S

� ζ(2r)3/2

ζ(4r)1/2
.

Proof. By Theorem 3 we have

∥∥[S−r]
∥∥

p
� ζ(rp)3/p

ζ(2rp)1/p
.

Letting p = 2 we have ∥∥[S−r]
∥∥

2
� ζ(2r)3/2

ζ(4r)1/2
.

Since ‖A‖S � ‖A‖2 for any matrix A = (aij)n×n in Mn(C) we obtain

∥∥ [S−r]
∥∥

S
� ζ(2r)3/2

ζ(4r)1/2
. �

3. Discussion

The matrix norms of GCD, LCM and their generalizations have not hitherto been
studied in the literature by using some tools of number theory. We initiated the study of
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matrix norms of GCD and LCM matrices in a different sense. We also present an open
problem on the norms of GCD and LCM matrices.

PROBLEM 8. Can values of matrix norms of GCD and LCM matrices be obtained
in terms of arithmetical functions?
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