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SOME NEW PROOFS FOR THE AGM INEQUALITY

J. ROOIN

(communicated by P. Bullen)

Abstract. In this paper, using some techniques of mathematical analysis, we give some new
proofs for the AGM inequality.

1. Introduction

Undoubtedly, the arithmetic mean-geometric mean inequality, or briefly the AGM
inequality is themost important inequality in the classical analysis. It simply states that if
x1, x2, · · · , xn are nonnegative real numbers and λ1, λ2, · · · , λn > 0 with

∑n
i=1 λi = 1 ,

then

n∏
i=1

xλi
i �

n∑
i=1

λixi, (1)

and equality holds if and only if x1 = · · · = xn .
The important unweighted case occurs if we put λ1 = λ2 = · · · = λn = 1

n :

n
√

x1x2 · · · xn � x1 + x2 + · · · + xn

n
. (2)

There are several interesting proofs, refinements and applications of (1) and (2), each
of which has its own fascination and importance, see e.g. the references, and more than
fifty proofs have been mentioned in [4] in order of their appearances. In this paper,
using different methods, we give some new proofs for the AGM inequality in the special
case (2).

Throughout this paper, we use the following standard notations

An =
x1 + x2 + · · · + xn

n
and Gn = n

√
x1x2 · · · xn (3)

for the unweighted arithmetic and geometric means of n given nonnegative numbers
x1, x2, · · · , xn respectively.
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2. New Proofs

In this section we give three new proofs for the AGM inequality (2). The first
proof is based on a well-known inequality in analysis described in the following lemma.
The second one uses the positivity of the integral operator, and the last one deals with
some kinds of Maclaurin’s method; see [5, p. 19].

LEMMA. If n is a positive integer and 1 + h
n � 0 , then

(
1 +

h
n + 1

)n+1

�
(

1 +
h
n

)n

, (4)

and equality holds if and only if h = 0 .

Proof. Trivially equality holds in (4) if h = 0 . Let h �= 0 . If 1 + h
n = 0 ,

strict inequality holds in (4). Suppose then 1 + h
n > 0 . Now by means of Bernouli’s

inequality, we have

(1 + h
n+1 )

n+1

(1 + h
n )

n
=
(

1 +
h

n + 1

)(
1 +

h
n+1 − h

n

1 + h
n

)n

�
(

1 +
h

n + 1

)(
1 + n

h
n+1 − h

n

1 + h
n

)

= 1 +
h2

(n + 1)2(n + h)
> 1,

and the proof is completed.

Now, we show that (4) implies (2).

First proof of the AGM Inequality (2) . It is sufficient to show that

An+1
n+1 � An

nxn+1 (5)

with equality holding if and only if xn+1 = An . For, if (5) is on hand, then from the
induction hypothesis An � Gn with equality if and only if x1 = · · · = xn , we get
An+1

n+1 � Gn+1
n+1 with equality if and only if x1 = · · · = xn+1 .

Since An+1 = (nAn + xn+1)/(n + 1) , equality holds in (5) if xn+1 = An . Now let
xn+1 �= An . If xn+1 = 0 , strict inequality holds in (5). Suppose then xn+1 �= 0 . Now

by means of the above lemma with h = n
(

An−xn+1

xn+1

)
, we have

An+1
n+1 =

(
nAn + xn+1

n + 1

)n+1

= xn+1
n+1

(
1 +

nAn−xn+1

xn+1

n + 1

)n+1

> xn+1
n+1

(
1 +

An − xn+1

xn+1

)n

= xn+1A
n
n,
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and the proof is completed.
Now, using the positivity of integration, we give the second proof to the AGM

Inequality (2). For a quite different proof of the AGM inequality using positivity of
integration, see [1–2].

Second proof of the AGM Inequality (2) . Again, it is sufficient to show (5) with
equality holding if and only if xn+1 = An .

Clearly equality holds in (5) if xn+1 = An . Suppose then xn+1 �= An . If
xn+1 > An , integrating both sides of the trivial inequality

An
n <

(
nAn + t
n + 1

)n

(An < t) (6)

with respect to t from An to xn+1 yields (5) with strict inequality. Similarly, if
xn+1 < An it is sufficient to integrate both sides of the trivial inequality

An
n >

(
nAn + t
n + 1

)n

(An > t) (7)

with respect to t from xn+1 to An .
Finally, we give a proof of (2) depending on Maclaurin’s method [5, p. 19].

Third proof of the AGM Inequality (2) . Consider the continuous real-valued func-
tion f defined by

f (x) =
x1 + · · · + xn

n
(x = (x1, · · · , xn) ∈ [0,∞)n) .

For any two nonnegative real numbers M and a , put

CM,a =

{
x = (x1, · · · , xn) ∈ [0, M]n :

n∏
i=1

xi = a

}
.

Let f takes its absolute minimum on the compact set CM,a at a point u = (u1, · · · , un) ∈
CM,a . We show that u1 = · · · = un . Let, on the contrary, there exist two ui ’s, say u1

and u2 , such that u1 �= u2 . Put u1u2 = α . Two cases may occur.

Case 1. α �= 0 . Take x = (x1, · · · , xn) such that

x1 = x2 = α1/2, x3 = u3, · · · , xn = un.

Clearly, x ∈ CM,a . But since u1 �= α1/2 , we have

x1 + x2 = 2α1/2 < u1 +
α
u1

= u1 + u2,

and so f (x) < f (u) , which is a contradiction.

Case 2. α = 0 . So a = 0 . We can assume u1 = 0 < u2 . Now take
x = (x1, · · · , xn) such that

x1 = 0, x2 =
u2

2
, x3 = u3, · · · , xn = un.



520 J. ROOIN

Clearly, x ∈ CM,a . But since

x1 + x2 =
u2

2
< u1 + u2,

we have f (x) < f (u) , which again is a contradiction.
Thus, u1 = · · · = un = a1/n , and so

An = f (x) � f (u) = a1/n = Gn (x = (x1, · · · , xn) ∈ CM,a),

with equality holding if and only if x1 = · · · = xn . Now, since [0,∞)n =
⋃

M,a�0 CM,a ,
the proof is completed.

REMARK. (i) Actually (4) is equivalent to the unweighted AGM inequality (2).
For, if (2) is on hand, then from

n+1

√
1 ·
(

1 +
h
n

)n

<
1 + n

(
1 + h

n

)
n + 1

= 1 +
h

n + 1

(
1 +

h
n

� 0, h �= 0

)
,

we obtain (4) with strict inequality.
(ii) The second proof can be easily modified in order to include the general case

(1). For, if λ1, λ2, · · · , λn+1 > 0 with
∑n+1

i=1 λi = 1 , then putting

An+1 =
n+1∑
i=1

λixi, Gn+1 =
n+1∏
i=1

xλi
i ,

and

An =
n∑

i=1

λi

1 − λn+1
xi, Gn =

n∏
i=1

x
λi

1−λn+1
i ,

and integrating both sides of the trivial inequalities

A
1−λn+1
λn+1

n < [(1 − λn+1)An + λn+1t]
1−λn+1
λn+1 (An < t) (8)

and

A
1−λn+1
λn+1

n > [(1 − λn+1)An + λn+1t]
1−λn+1
λn+1 (t < An) (9)

with respect to t on [An, xn+1] and [xn+1, An] in the case of An < xn+1 and An > xn+1

respectively, we obtain

An+1 > A1−λn+1
n xλn+1

n+1 (xn+1 �= An).

Now, (1) and its equality condition follows by induction on n .
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