
Mathematical
Inequalities

& Applications
Volume 7, Number 4 (2004), 523–534

POSITIVE SOLUTIONS FOR CONTINUOUS AND DISCRETE BOUNDARY

VALUE PROBLEMS TO THE ONE–DIMENSION p –LAPLACIAN

DAQING JIANG, JIFENG CHU, DONAL O’REGAN AND R. P. AGARWAL

(communicated by V. Lakshmikantham)

Abstract. New existence results (for positive solutions) for continuous and discrete boundary
value problems to the one-dimension p -Laplacian are presented in this paper. Here we use a
well-known fixed point theorem in cones. Our results improve several recent results established
in the literature.

1. Introduction

In this paper, we discuss the existence of positive solutions to the boundary value
problem {

(φ(u′))′ + g(t)f (u) = 0, a.e. t ∈ [0, 1];
u(0) = u(1) = 0

(1.1)

and the discrete boundary value problem{
Δ(φ(Δu(i − 1))) + q(i)f (u(i)) = 0, i ∈ N;
u(0) = u(T + 1) = 0,

(1.2)

where φ(s) = |s|p−2s, p > 1, N = {1, 2, . . . , T} and T � 1 is a fixed positive integer.
It is of interest to note here that the existence of positive solutions to problem (1.1)

and (1.2) has been studied in great detail in the literature. For results the continuous
case, we refer the reader to [3, 7, 8, 11, 18, 24] (p = 2) and [5, 6, 9, 12, 16, 19, 20, 21].
For results in the discrete case, we refer the reader to [1, 2, 3, 4] (p = 2) and [22, 23].

In this paper, we present a new existence theory for the continuous case in section
2 and the discrete case in section 3. In both sections we employ a well-known fixed
point theorem in cones (see Theorem 1.1). One of the key steps is to find a function
ψ such that the appropriate operator Φ satisfies the condition u �= Φu + λψ in the
cited fixed point theorem. It seems to be difficult to utilize the norm-type expansion and
compression theorem to prove our main results (see [24] for a discussion when p = 2 ).
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As an application of our new results, we respectively consider the existence of
eigenvalues of the problem{

(φ(u′))′ + λg(t)f (u) = 0, a.e. t ∈ [0, 1];
u(0) = u(1) = 0

(1.3)

in section 2 and the problem{
Δ(φ(Δu(i − 1))) + λq(i)f (u(i)) = 0, i ∈ N;
u(0) = u(T + 1) = 0

(1.4)

in section 3.
To conclude this section, we state a fixed point theorem in cones which will be

needed in this paper.

THEOREM 1.1. ([10], [24]) Let X be a Banach space and K is a cone in X .
Assume Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2. Let

Φ : K ∩ (Ω̄2 \Ω1) → K

be a continuous and completely continuous operator such that
(i) ‖Φx‖ � ‖x‖ for x ∈ K ∩ ∂Ω1,
(ii) there exists ψ ∈ K\{0} such that x �= Φx + λψ for x ∈ K ∩ ∂Ω2 and

λ > 0.
Then Φ has a fixed point in K ∩ (Ω̄2 \Ω1).

REMARK 1.1. In Theorem 1.1, if (i) and (ii) are replaced by
(i) ∗ ‖Φx‖ � ‖x‖ for x ∈ K ∩ ∂Ω2,

and
(ii) ∗ there exists ψ ∈ K\{0} such that x �= Φx + λψ for x ∈ K ∩ ∂Ω1 and

λ > 0,
then Φ has a fixed point in K ∩ (Ω̄2 \Ω1).

2. Continuous Case

In this section we establish the existence of positive solutions to problem (1.1).
Throughout this section we will assume the following two conditions hold:

(H1) f : [0,∞) → [0,∞) is continuous.
(H2) g ∈ L1[0, 1] and g(t) � 0 a.e. for t ∈ [0, 1]; in addition, it is assumed

that there exists a ∈ (0, 1
4 ] such that g(t) > 0 a.e. for t ∈ [a, 1 − a].

Let X = C[0, 1], with the norm ‖u‖ = maxt∈[0,1] |u(t)|, so X is a Banach space.
By a solution u to (1.1) we mean a function u ∈ C1[0, 1], φ(u′) ∈ AC[0, 1] such
that u satisfies (1.1) and the boundary condition; here AC[0, 1] denotes the space of
absolutely continuous functions defined on [0,1]. Also, we define

K = {u ∈ X : u is concave on [0, 1] and u(0) = u(1) = 0}. (2.1)

One may readily verify that K is a cone in X .
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First we present some useful results.

LEMMA 2.1. ([16]) Let u ∈ K, then

u(t) � min{t, 1 − t}‖u‖ for all t ∈ [0, 1].

LEMMA 2.2. If u ∈ C1[0, 1] satisfies{
(φ(u′))′ � 0, a.e. t ∈ [0, 1],
u(0) = u(1) = 0,

then u(t) � min{t, 1 − t}‖u‖ for all t ∈ [0, 1].

Proof. Notice that (φ(u′))′ � 0 for a.e. t ∈ [0, 1] implies u is concave on [0,1],
so the result follows from Lemma 2.1. �

LEMMA 2.3. ([17]) If u, v ∈ C1[0, 1] satisfies{
(φ(u′))′ � (φ(v′))′, a.e. t ∈ [0, 1]
u(0) � v(0), u(1) � v(1),

then u(t) � v(t) for all t ∈ [0, 1].

In order to prove the existence of positive solutions to problem (1.1), we consider
the following boundary value problem{

(φ(w′))′ + g(t)f (u) = 0, a.e. t ∈ [0, 1];
w(0) = w(1) = 0,

(2.2)

for any u ∈ K , where K is a cone in X given in (2.1).
It follows from [17] that, for each fixed u ∈ K , problem (2.2) has a solution w

and (2.2) is equivalent to

w(t) =
∫ t

0
φ−1(τ +

∫ 1

s
g(r)f (u(r))dr)ds =: (Φu)(t), 0 � t � 1 (2.3)

where τ = φ(w′(1)) is a solution of the equation∫ 1

0
φ−1(τ +

∫ 1

s
g(r)f (u(r))dr)ds = 0. (2.4)

Moreover, the operator Φ : K → X is continuous and completely continuous. Now
since {

(φ((Φu)′))′ + g(t)f (u) = 0, t ∈ (0, 1);
(Φu)(0) = (Φu)(1) = 0,

and g(t)f (u) � 0 , it follows that w = Φu ∈ K, so Φ : K → K.
From Lemmas 2.1–2.3 we have the following results:

LEMMA 2.4. Let u ∈ K , then u(t) � a‖u‖ for ∀ t ∈ [a, 1 − a].
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LEMMA 2.5. Let P(t) be a solution to problem (2.2) with f (u) ≡ 1, then
(I) if w(t) is a solution to problem (2.2) with f (u) � φ(M), then w(t) �

MP(t), i.e., (Φu)(t) � MP(t) for t ∈ [0, 1];
(II) if w(t) is a solution to problem (2.2) with f (u) � φ(M), then w(t) �

MP(t), i.e., (Φu)(t) � MP(t) for t ∈ [0, 1].

Proof. Notice that for a.e. t ∈ [0, 1] we have

(φ(w′(t)))′ − g(t)f (u(t)) � −Mp−1g(t) = (φ(MP′(t)))′,

so the result in (I) follows from Lemma 2.3. Similarly we can prove (II) . �
Let V ∈ C1[0, 1] be a solution to the following problem{

(φ(V ′))′ + g(t)χ[a,1−a](t) = 0, a.e. t ∈ [0, 1];
V(0) = V(1) = 0,

(2.5)

where

χ[a,1−a](t) =
{

1, t ∈ [a, 1 − a];
0, t ∈ [0, a) ∪ (1 − a, 1] (2.6)

is the characteristic function on [a, 1 − a] .

LEMMA 2.6. Let V(t) be a solution to problem (2.5), then
(I) if w(t) is a solution to problem (2.2) with f (u(t)) � φ(M)χ[a,1−a](t), then

w(t) � MV(t), i.e., (Φu)(t) � MV(t) for t ∈ [0, 1];
(II) if w(t) is a solution to problem (2.2) with f (u(t)) � φ(M)χ[a,1−a](t), then

w(t) � MV(t), i.e., (Φu)(t) � MV(t) for t ∈ [0, 1].

The proof will be omitted only because it is similar to that of Lemma 2.5.
In order to state our main results, we let

f 0 = lim
u→0+

f (u)
up−1

and f∞ = lim
u→∞

f (u)
up−1

.

THEOREM 2.1. Suppose that (H1) and (H2) hold. In addition, we assume that
one of the following two conditions holds:

(h1) 0 � f 0 < Ap−1 and Bp−1 < f∞ � ∞;
(h2) 0 � f∞ < Ap−1 and Bp−1 < f 0 � ∞;

where A = (max0�t�1 P(t))−1 and B = (mina�t�1−a V(t))−1.
Then problem (1.1) has at least one solution u ∈ K with u(t) �≡ 0 for t ∈ (0, 1).

Proof. (I) Assume that (h1) holds.
By the first part of (h1) , there exists r > 0 such that

f (u) � (Au)p−1 for 0 � u � r.

For any u ∈ K with ‖u‖ = r, we have f (u(t)) � (Ar)p−1 for t ∈ [0, 1] .
It follows from Lemma 2.5 that

w(t) = (Φu)(t) � ArP(t) � Ar max
0�t�1

P(t) = r,



POSITIVE SOLUTIONS FOR CONTINUOUS AND DISCRETE BOUNDARY VALUE PROBLEMS . . . 527

so,
‖Φu‖ � ‖u‖, ∀ u ∈ K ∩ ∂Ω1, (2.7)

where Ω1 = {u ∈ X : ‖u‖ < r}.
By the second part of (h1) , there exists η > 0 such that

f (u) � (Bu)p−1 for u � η.

Let R = max{2r, a−1η}. For any u ∈ K with ‖u‖ = R, then it follows from Lemma
2.4 that

u(t) � aR � η for t ∈ [a, 1 − a].

As a result

f (u(t)) �
{

0, t ∈ [0, a) ∪ (1 − a, 1]
(B min

a�t�1−a
u(t))p−1, t ∈ [a, 1 − a]

= (B min
a�t�1−a

u(t))p−1χ[a,1−a](t).

Then it follows from Lemma 2.6 that we have

w(t) = (Φu)(t) � BV(t) min
a�t�1−a

u(t), t ∈ [0, 1].

Let ψ ≡ 1 for t ∈ [0, 1], so ψ ∈ K\{0}. We shall prove that

u �= Φu + λψ for u ∈ K ∩ ∂Ω2 and λ > 0, (2.8)

where Ω2 = {u ∈ X : ‖u‖ < R}.
If not, there exists u0 ∈ K ∩ ∂Ω2 and λ0 > 0 such that

u0 = Φu0 + λ0ψ .

Let μ = mint∈[a,1−a] u0(t) . Then for t ∈ [a, 1 − a] we have

u0(t) = (Φu0)(t) + λ0 � BμV(t) + λ0 � μ + λ0,

and this implies μ � μ + λ0, a contradiction.
It follows from Theorem 1.1, (2.7) and (2.8) that Φ has a fixed point u ∈

K ∩ (Ω̄2 \ Ω1) ; notice u(t) � min{t, 1 − t} r . Clearly, this fixed point is a positive
solution of (1.1).

(II) Assume that (h2) holds.
By the first part of (h2) , there exists β > 0 such that

f (u) � (Au)p−1 for u � β .

Let b = max0�u�β f (u), R � φ−1(b)/A, and it is easy to see that

max
0�u�R

f (u) � φ(AR).

For any u ∈ K with ‖u‖ = R, we have f (u(t)) � (AR)p−1.



528 DAQING JIANG, JIFENG CHU, DONAL O’REGAN AND R. P. AGARWAL

It follows from Lemma 2.5 that

w(t) = (Φu)(t) � ARP(t) � AR max
0�t�1

P(t) = R, t ∈ [0, 1],

so,
‖Φu‖ � ‖u‖, ∀ u ∈ K ∩ ∂Ω2, (2.9)

where Ω2 = {u ∈ X : ‖u‖ < R}.
By the second part of (h2) , there exists r > 0(r < R) such that

f (u) � (Bu)p−1 for 0 � u � r.

For any u ∈ K with ‖u‖ = r, then

f (u(t)) �
{

0, t ∈ [0, a) ∪ (1 − a, 1]
(B min

a�t�1−a
u(t))p−1, t ∈ [a, 1 − a]

= (B min
a�t�1−a

u(t))p−1χ[a,1−a](t).

It follows from Lemma 2.6 that (Φu)(t) � BV(t) mina�t�1−a u(t). Let ψ ≡ 1 for
t ∈ [0, 1], and we prove that

u �= Φu + λψ for u ∈ K ∩ ∂Ω1 and λ > 0, (2.10)

where Ω1 = {u ∈ X : ‖u‖ < r}.
If not, there exists u0 ∈ K ∩ ∂Ω2 and λ0 > 0 such that

u0 = Φu0 + λ0ψ .

Let μ = mint∈[a,1−a] u0(t) . Then for t ∈ [a, 1 − a] we have

u0(t) = (Φu0)(t) + λ0 � BμV(t) + λ0 � μ + λ0,

and this implies μ � μ + λ0, a contradiction.
It follows from Theorem 1.1, (2.9) and (2.10) that Φ has a fixed point u ∈

K ∩ (Ω̄2 \Ω1). Clearly, this fixed point is a positive solution of (1.1). �

COROLLARY 2.1. Assume (H1) and (H2) hold. Also suppose f 0 = 0 and
f∞ = ∞; or f 0 = ∞ and f∞ = 0. Then problem (1.1) has at least one solution u ∈ K
with u(t) �≡ 0 for t ∈ (0, 1).

As an application of Theorem 2.1 we consider the following eigenvalue problem{
(φ(u′))′ + λg(t)f (u) = 0, a.e. t ∈ [0, 1];
u(0) = u(1) = 0.

(1.3)

Consider the following conditions:

(L1) f∞ > 0, f 0 �= ∞ and Bp−1

f∞ < Ap−1

f 0
;

(L2) f 0 > 0, f∞ �= ∞ and Bp−1

f 0
< Ap−1

f∞ ;
where A and B are given in Theorem 2.1.
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THEOREM 2.2. Assume that (H1) and (H2) hold. If (L1) holds, then for ∀ λ ∈
(Bp−1

f∞ , Ap−1

f 0
), problem (1.3) has at least one solution u with u(t) � 0 for t ∈ [0, 1]

and u(t) �≡ 0 on [0,1]. The same result remains valid for ∀ λ ∈ (Bp−1

f 0
, Ap−1

f∞ ), if (L2)
holds.

Proof. If (L1) holds, then λ f∞ > Bp−1 and λ f 0 < Ap−1; if (L2) holds, then
λ f 0 > Bp−1 and λ f∞ < Ap−1. The result follows from Theorem 2.1. �

COROLLARY 2.2. Assume that (H1) and (H2) hold. Also suppose f 0 = 0 and
f∞ = ∞; or f 0 = ∞ and f∞ = 0. Then problem (1.3) has at least one solution u ∈ K
with u(t) �≡ 0 for t ∈ (0, 1) for all λ ∈ (0,∞).

3. Discrete Case

In this section, we establish the existence of positive solutions to the discrete
boundary value problem (1.2). Throughout this section it is assumed that:

(A1) q : N → (0,∞) is continuous and f : [0,∞) → [0,∞) is continuous.

REMARK 3.1. We call a map q : N → (0,∞) continuous if it is continuous as a
map of the topological space N into the topological space (0,∞) . Throughout this
paper the topology on N will be the discrete topology.

Let C(N+, R) denote the class of map u continuous on N+ , with norm ‖u‖ =
maxi∈N+ |u(i)|, here N+ = {0, 1, . . . , T + 1}, so C(N+, R) is a Banach space. By a
solution u to (1.2) we mean a function u ∈ C(N+, R) such that u satisfies (1.2) and
the boundary condition. A solution u(i) of (1.2) is called a positive solution if u(i) > 0
for i ∈ N.

LEMMA 3.1. ([1]) Let y ∈ C(N+, R) satisfy y(i) � 0 for i ∈ N+ . If u ∈
C(N+, R) satisfies {

Δ2u(i − 1) + y(i) = 0, i ∈ N
u(0) = u(T + 1) = 0,

then
u(i) � μ(i)‖u‖ for i ∈ N+;

here

μ(i) = min

{
T + 1 − i

T + 1
,

i
T

}
. (3.1)

LEMMA 3.2. If u ∈ C(N+, R) satisfies{
Δ(φ(Δu(i − 1))) � 0, i ∈ N
u(0) = u(T + 1) = 0,

then u(i) � μ(i)‖u‖ for i ∈ N+ ; here μ(i) is defined in Lemma 3.1.

Proof. Notice that Δ(φ(Δu(i − 1))) � 0 implies Δ2u(i − 1) � 0 for i ∈ N, so
the result follows from Lemma 3.1. �
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LEMMA 3.3. If u, v ∈ C(N+, R) satisfies{
Δ(φ(Δu(i − 1))) � Δ(φ(Δv(i − 1))), i ∈ N
u(0) � v(0), u(T + 1) � v(T + 1),

then
u(i) � v(i) for i ∈ N+.

Proof. Let z(i) = u(i)−v(i). If the lemma were not true, there would exist i0 ∈ N
such that z(i0) = mini∈N z(i) < 0, Δz(i0 − 1) � 0. Notice that

Δ(φ(Δu(i − 1))) � Δ(φ(Δv(i − 1))), i ∈ N.

Sum both sides of the above inequality from i0 to i (i0 � i � T) to obtain

φ(Δu(i)) − φ(Δu(i0 − 1)) � φ(Δv(i)) − φ(Δv(i0 − 1))

i.e.,
φ(Δu(i)) − φ(Δv(i)) � φ(Δu(i0 − 1)) − φ(Δv(i0 − 1)) � 0,

so,
Δz(i) = Δu(i) − Δv(i) � 0, i0 � i � T.

This implies z(i0) � z(T + 1) = 0, a contradiction. �
In order to prove the existence of positive solutions to problem (1.2), we consider

the following boundary value problem{
Δ(φ(Δw(i − 1))) + q(i)f (u(i)) = 0, i ∈ N
w(0) = w(T + 1) = 0,

(3.2)

for any u ∈ K, where K is a cone in X = C(N+, R) defined by

K = {u ∈ X : u(i) � μ(i)‖u‖ for i ∈ N+}, (3.3)

where μ(i) is given in (3.1).
It follows from [23] that, for each fixed u ∈ K , problem (3.2) has a solution w

and (3.2) is equivalent to

ω(i) = (Φu)(i) =
{

0, i = 0 or i = T + 1∑T
s=i Φ

−1(τ +
∑s

r=1 q(r)f (u(r))), i ∈ N,
(3.4)

where τ is a solution of the equation

Z(τ) = φ−1(τ) +
T∑

s=1

φ−1(τ +
s∑

r=1

q(r)f (u(r))) = 0. (3.5)

Moreover, the operator Φ : K → X is continuous and completely continuous. Now
since {

Δ(φ(Δ(Φu)(i − 1))) + q(i)f (u(i)) = 0, i ∈ N;
(Φu)(0) = (Φu)(T + 1) = 0,

and q(i)f (u(i)) � 0 , then it follows from Lemma 3.2 that w = Φu ∈ K, so Φ : K →
K.

From Lemma 3.3, we have the following result.
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LEMMA 3.4. Let P(i) be a solution to problem (3.2) with f (u) ≡ 1,
(I) if w(i) is a solution to problem (3.2) with f (u) � φ(M), then w(i) �

MP(i), i.e., (Φu)(i) � MP(i) for i ∈ N+.
(II) if w(i) is a solution to problem (3.2) with f (u) � φ(M), then w(i) �

MP(i), i.e., (Φu)(i) � MP(i) for i ∈ N+.

Proof. Notice that

Δ(φ(Δw(i − 1))) = −q(i)f (u(i)) � −Mp−1q(i) = Δ(φ(ΔMP(i − 1)))

for i ∈ N, so the result in (I) follows from Lemma 3.3. Similarly we can prove
(II). �

THEOREM 3.1. Suppose that (A1) holds. In addition, we assume that one of the
following conditions holds:

(A2) 0 � f 0 < Ap−1 and Bp−1 < f∞ � ∞ ;
(A3) 0 � f∞ < Ap−1 and Bp−1 < f 0 � ∞ ;

where A = (maxi∈N P(i))−1 and B = (mini∈N P(i))−1.
Then problem (1.2) has a solution u ∈ K with u(i) �≡ 0 for i ∈ N+.

Proof. (I) Assume that (A1) and (A2) hold.
Since 0 � f 0 < Ap−1 , we can choose r > 0 such that

f (u) � (Au)p−1 whenever 0 � u � r.

Thus, if u ∈ K with ‖u‖ = r , then

f (u(i)) � (Au(i))p−1 � (Ar)p−1, i ∈ N.

It follows from Lemma 3.4 that

ω(i) � ArP(i) � Ar max
i∈N

P(i) � r, i ∈ N+,

i.e.,
‖Φu‖ � ‖u‖, ∀ u ∈ K ∩ ∂Ω1, (3.6)

where Ω1 = {u ∈ X : ‖u‖ < r}.
Also, since Bp−1 < f∞ � ∞ , there exists η > r

T+1 such that

f (u) � (Bu)p−1 whenever u � η.

Let R = (T + 1)η > r. If u ∈ K with ‖u‖ = R , we have

u(i) � R
T + 1

= η for i ∈ N,

so f (u(i)) � (Bu(i))p−1, for i ∈ N.
Let ψ(i) ≡ 1 for i ∈ N+, so ψ ∈ ∂K\{0}. We shall prove that

u �= Φu + λψ for u ∈ K ∩ ∂Ω2 and λ > 0, (3.7)

where Ω2 = {u ∈ X : ‖u‖ < R}.
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If not, there exists u0 ∈ K ∩ ∂Ω2 and λ0 > 0 such that

u0 = Φu0 + λ0ψ .

Let α = mini∈N u0(i) . Then α � η, so we have

f (u(i)) � (Bα)p−1, for ∀ i ∈ N.

Then, for i ∈ N, it follows from Lemma 3.4 that we have

u0(i) = (Φu0)(i) + λ0 � BαP(i) + λ0 � α + λ0.

This implies α � α + λ0, a contradiction.
Now (3.6), (3.7) and Theorem 1.1 guarantee that Φ has a fixed point u ∈ K ∩

(Ω̄2 \Ω1) with r � ‖u‖ � R.
(II) Assume that (A1) and (A3) hold.
By the first part of (A3) , there exists r1 > 0 such that

f (u) � (Au)p−1 for u � r1.

Let R = (T + 1)r1, so we have, for ∀ i ∈ N,

u(i) � 1
T + 1

‖u‖ =
R

T + 1
= r1 for u ∈ K ∩ ∂Ω2, (3.8)

where Ω2 = {u ∈ X : ‖u‖ < R}.
Thus

f (u(i)) � (Au(i))p−1 � (AR)p−1, i ∈ N.

It follows from Lemma 3.4 that

ω(i) � ARP(i) � R for all i ∈ N,

i.e.,
‖Φu‖ � ‖u‖ ∀ u ∈ K ∩ ∂Ω2.

On the other hand, since Bp−1 < f 0 � ∞ , there exists r ∈ (0, r1) such that

f (u) � (Bu)p−1 for 0 � u � r.

Then for any u ∈ K with ‖u‖ = r , we have u(i) � r
T+1 for all i ∈ N.

Let ψ(i) ≡ 1 for i ∈ N+. Essentially the same reasoning used in (I), establishes

u �= Φu + λψ for u ∈ K ∩ ∂Ω1 and λ > 0, (3.9)

where Ω1 = {u ∈ X : ‖u‖ < r}.
Now from (3.8), (3.9) and Theorem 1.1 we have that Φ has a fixed point u ∈

K ∩ (Ω̄2 \Ω1) with r � ‖u‖ � R.
This completes the proof of the theorem. �
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COROLLARY 3.1. Assume that (A1) holds. Also suppose f 0 = 0 and f∞ = ∞;
or f 0 = ∞ and f∞ = 0 . Then problem (1.2) has at least one solution u ∈ K with
u(i) �≡ 0 for i ∈ N+.

As an application of Theorem 3.1 we consider the following eigenvalue problem{
Δ(φ(Δu(i − 1))) + λq(i)f (u(i)) = 0, i ∈ N,
u(0) = u(T + 1) = 0.

(1.4)

Consider the following conditions:

(S1) f∞ > 0, f 0 �= ∞ and Bp−1

f∞ < Ap−1

f 0
,

(S2) f 0 > 0, f∞ �= ∞ and Bp−1

f 0
< Ap−1

f∞ ;
where A and B are given in Theorem 3.1.

THEOREM3.2. Assume that (A1) holds. If (S1) holds, then for all λ ∈ (Bp−1

f∞ , Ap−1

f 0
),

problem (1.4) has at least one solution u with u(i) � 0 for i ∈ N+ and u(i) �≡ 0 on

N+ . The same result remains valid for all λ ∈ (Bp−1

f 0
, Ap−1

f∞ ), if (S2) holds.

Proof. If (S1) holds, then λ f∞ > Bp−1 and λ f 0 < Ap−1. If (S2) holds, then
λ f 0 > Bp−1 and λ f∞ < Ap−1. The result follows from Theorem 3.1. �

COROLLARY 3.2. Assume (A1) holds. Also suppose f 0 = 0 and f∞ = ∞; or
f 0 = ∞ and f∞ = 0. Then problem (1.4) has at least one solution u ∈ K with
u(i) �≡ 0 for i ∈ N for all λ ∈ (0,∞).
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