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INTEGRAL CHARACTERIZATIONS FOR STABILITY
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Abstract. We give necessary and sufficient conditions for uniform exponential stability of li-
near skew-product semiflows. Using the theory of Banach function spaces we obtain integral
characterizations for this concept. We extend a stability theorem obtained by Rolewicz for
evolution families, at the general case of linear skew-product semiflows.

1. Introduction

In the last decades, the theory of linear skew-product semiflows led to an important
progress in the study of the asymptotic behaviour of evolution equations and to gener-
alizations of classical results from the theory of C0 -semigroups and evolution families,
respectively. New concepts of stability, expansiveness and dichotomy, respectively,
have been introduced and characterized, giving significant answers to diverse questions
concerning the asymptotic properties of linear skew-product semiflows (see [1]–[5],
[11], [13], [15]–[18]).

Exponential stability of linear skew-product semiflows has been characterized in
[11] and in [18]. The relation between stabilizability and controllability of systems
associated to linear skew-product semiflows has been presented in [13]. In [16], the
uniform exponential expansiveness of linear skew-product flows has been expressed
in terms of the uniform complete admissibility of the pairs (c0(N, X), c0(N, X)) and
(C0(R+, X), C0(R+, X)) , respectively. Necessary and sufficient conditions for di-
chotomy of linear skew-product flows have been obtained in [1]–[5], [15], [17].

One of the most remarkable results in the stability theory of evolution equations
has been obtained by Rolewicz in [20] and it is given by

THEOREM 1.1. Let N : R∗
+ ×R+ → R+ be a function with the properties that for

every t > 0, s → N(t, s) is a continuous nondecreasing function, with N(t, 0) = 0 ,
N(t, s) > 0 , for all s > 0 , and for every s � 0, t → N(t, s) is nondecreasing. If
U = {U(t, s)}t�s�0 is a strongly continuous evolution family on a Banach space X
such that for every x ∈ X , there is α(x) > 0 with

sup
s�0

∫ ∞

s
N(α(x), ||U(t, s)x||) dt < ∞
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then U is uniformly exponentially stable.

Since in the original proof, the continuity of N has been essentially used, Neerven
proposed in [19] a similar characterization for the particular case of C0 -semigroups,
giving up the continuity of N . Neerven proved that a C0 -semigroup T = {T(t)}t�0 ,
on a Banach space X , is uniformly exponentially stable if and only if there is a nonde-
creasing function N : R+ → R+ , with N(t) > 0 , for all t > 0 and N(0) = 0 , such
that ∫ ∞

0
N(||T(t)x||) dt < ∞, ∀x ∈ X.

In fact, this result is a consequence of another result due to Neerven (see [19]) given by

THEOREM 1.2. A C0 -semigroup T = {T(t)}t�0 on the Banach space X is uni-
formly exponentially stable if and only if there exists a Banach function space B with
the property lim

t→∞ FB(t) = ∞ , such that for every x ∈ X the mapping t �→ ||T(t)x||
belongs to B .

Generalizations for the case of evolution families of Neerven’s result have been
presented in [9]. Unitary characterizations for uniform exponential stability and uniform
exponential instability of C0 -semigroups, in terms of Banach function spaces,have been
presented in [10]. More general characterizations have been obtained in [11], where the
uniform exponential stability of linear skew-product semiflows has been expressed in
terms of Banach sequence spaces and Banach function spaces, respectively. One of the
main results in [11] was

THEOREM 1.3. A linear skew-product semiflow π = (Φ,σ) on E = X × Θ is
uniformly exponentially stable if and only if there is a Banach function space B ∈
B(R+) such that the following properties hold:

(i) for every (x, θ) ∈ E the function f x,θ : R+ → R+, f x,θ(t) = ||Φ(θ, t)x||
belongs to B ;

(ii) there exists K : X → (0,∞) such that |f x,θ |B � K(x) , for all (x, θ) ∈ E .

In the present paper we extend the study begun in [11] and we generalize the
results obtained in the last mentioned paper. We will obtain very general necessary and
sufficient conditions for uniform exponential stability of linear skew-product semiflows.
As a consequence of our results, we will deduce the version of the theorem of Rolewicz,
for the case of linear skew-product semiflows. In this manner, we will also present a
new approach for the theorems of Rolewicz type.

2. Definitions and notations

2.1. Linear skew-product semiflows

Let X be a Banach space, let Θ be a compact Haussdorf space and let E = X×Θ .
We shall denote by L (X) the Banach algebra of all bounded linear operators from X
into itself.
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DEFINITION 2.1. A continuous mapping σ : Θ×R+ → Θ is called a semiflow on
Θ if σ(θ, 0) = θ and σ(θ, t + s) = σ(σ(θ, s), t) , for all (θ, s, t) ∈ Θ× R2

+.

DEFINITION 2.2. A pair π = (Φ,σ) is called linear skew-product semiflow on
E = X×Θ if σ is a semiflow on Θ and Φ : Θ×R+ → L (X) satisfies the following
conditions:

(i) Φ(θ, 0) = I , the identity operator on X , for all θ ∈ Θ ;
(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R2

+ (the cocycle
identity);

(iii) lim
t→0+

Φ(θ, t)x = x , uniformly in θ .

REMARK 2.1. If π = (Φ,σ) is a linear skew-product semiflow on E = X × Θ ,
then there are M,ω > 0 such that ||Φ(θ, t)|| � Meω t, for all (θ, t) ∈ Θ×R+ and for
every x ∈ X the mapping t �→ Φ(θ, t)x is right-continuous.

Important examples of linear skew-product semiflows can be found in [1]–[5], [13],
[15], [17], [18].

DEFINITION 2.3. A linear skew-product semiflow π = (Φ,σ) on E = X × Θ is
said to be uniformly exponentially stable if there are N, ν > 0 such that

||Φ(θ, t)|| � Ne−νt, ∀(θ, t) ∈ Θ× R+.

2.2. Banach function spaces

Let M be the linear space of all Lebesgue measurable functions f : R+ → C
identifying the functions which are equal almost everywhere.

DEFINITION 2.4. A Banach function norm is a function N : M → [0,∞] with the
following properties:

(i) N(f ) = 0 if and only if f = 0 a.e.;
(ii) if |f | � |g| a.e. then N(f ) � N(g) ;
(iii) N(αf ) = |α|N(f ) , for all α ∈ C and all f with N(f ) < ∞ ;
(iv) N(f + g) � N(f ) + N(g), for all f , g ∈ M .
If B := {f ∈ M : |f |B := N(f ) < ∞} , then (B, | · |B) is a normed linear space.

If B is complete then it is called Banach function space.

For a Banach function space B we define

FB : R∗
+ → [0,∞], FB(t) =

{ |χ[0,t)|B, if χ[0,t) ∈ B

∞, if χ[0,t) /∈ B

where χ[0,t) denotes the characteristic function of the set [0, t) . The function FB is
called the fundamental function of the Banach function space B .

In what follows we denote by B(R+) the set of all Banach function spaces B with
the property that lim

t→∞FB(t) = ∞ and there is a strictly increasing sequence (tn) ⊂ R+
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such that tn → ∞ ,

sup
n∈N

(tn+1 − tn) < ∞ and inf
n∈N

|χ[tn,tn+1)|B > 0.

EXAMPLE 2.1. Let N : R+ → [0,∞] be a nondecreasing and left-continuous
function which is not identically 0 or ∞ on (0,∞) . The Young function associated to
N is

YN(t) :=
∫ t

0
N(s)ds.

For f ∈ M we consider

MN(f ) :=
∫ ∞

0
YN(|f (s)|)ds.

The set ON := {f ∈ M : ∃ k > 0 with MN(kf ) < ∞} is a Banach function space
with respect to the norm |f |N := inf{k > 0 : MN( 1

k f ) � 1} . (ON , | · |N) is called the
Orlicz space associated to N . Trivial examples of Orlicz spaces are Lp(R+, C) , with
p ∈ [1,∞] (see [9], [19]).

REMARK 2.2. If 0 < N(t) < ∞ , for all t > 0 , then ON ∈ B(R+) (see [9]).

3. Main results

In this section we obtain characterizations for uniform exponential stability of
linear skew-product semiflows. We generalize the theorem of Rolewicz, for the case of
linear skew-product semiflows.

Let X be a Banach space, let Θ be a compact Hausdorff space and let E = X×Θ .
For x ∈ X and r > 0 we denote by D(x, r) = {y ∈ X : ||x − y|| � r} .

We denote by F the set of all nondecreasing functions N : R+ → R+ with
N(0) = 0 and N(t) > 0 , for all t > 0 .

THEOREM 3.1. Let π = (Φ,σ) be a linear skew-product semiflow on E = X×Θ .
Then π is uniformly exponentially stable if and only if there exist a function N ∈
F , x0 ∈ X and two constants K, δ ∈ (0,∞) such that∫ ∞

0
N(||Φ(θ, t)x||)dt � K, ∀(x, θ) ∈ D(x0, δ) ×Θ.

Proof. Necessity. It results for x0 = 0, δ > 0 and N(t) = t , for all t � 0 .

Sufficiency. Let M,ω > 0 be the constants given by Remark 2.1. Let t0 > 0 such
that K < t0N(1) and let M1 = Meω t0 .

For (x, θ) ∈ D(x0, δ) × Θ and t � t0 , setting yx = x/M1 and using the cocycle
identity we have that

||Φ(θ, t)yx|| � ||Φ(θ, s)x||, ∀s ∈ [t − t0, t]

so

t0N(||Φ(θ, t)yx||) �
∫ t

t−t0

N(||Φ(θ, s)x||)ds � K.
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It follows that

||Φ(θ, t)x|| � M1, ∀(x, θ) ∈ D(x0, δ) ×Θ, ∀t � t0.

Let x ∈ X with ||x|| � 1 . Since

||Φ(θ, t)δx|| � ||Φ(θ, t)(δx + x0)|| + ||Φ(θ, t)x0|| � 2M1

we obtain that

||Φ(θ, t)x|| � 2M1

δ
, ∀(x, θ) ∈ D(0, 1) ×Θ, ∀t � t0,

so

||Φ(θ, t)|| � 2M1

δ
, ∀θ ∈ Θ, ∀t � t0.

Denoting M2 = M1(2/δ+1) it follows that ||Φ(θ, t)|| � M2, for all (θ, t) ∈ Θ×R+ .
We may assume that N is left continuous - if not we can consider the function

Ñ(t) = lim
s↗t

N(s) and the proof is similar.

Let (ON , | · |N) be the Orlicz space associated to N and let YN be the Young
function. For every (x, θ) ∈ E let

f x,θ : R+ → R+, f x,θ(t) = ||Φ(θ, t)x||.
Let x ∈ X with ||x|| � δ and let γ = 1/[M2(K + 1)(||x0||+ δ + 1)] . Taking into

account that γ ∈ (0, 1) and N is nondecreasing we have that

YN(γ f x+x0 ,θ(t)) � γ f x+x0,θ(t) N(γ f x+x0 ,θ(t))

� 1
K + 1

N(||Φ(θ, t)(x + x0)||), ∀t � 0

and hence MN(γ f x+x0 ,θ) < 1 . It follows that f x+x0,θ ∈ ON and |f x+x0,θ |N � 1/γ , for
every x ∈ D(0, δ) .

Let x ∈ X \ {0} and zx = δx/||x|| . From

|f zx ,θ |N � |f zx+x0,θ |N + |f x0,θ |N � 2
γ

it follows that

|f x,θ |N � 2
γ δ

||x||, ∀(x, θ) ∈ E .

Applying Theorem 1.3 we obtain that π is uniformly exponentially stable. �
In what follows we denote by C the set of all continuous functions N ∈ F .

THEOREM 3.2. Let π = (Φ,σ) be a linear skew-product semiflow on E = X ×Θ
and let (Nm)m∈N∗ ⊂ C . If for every x ∈ X there is m ∈ N∗ such that

sup
θ∈Θ

∫ ∞

0
Nm(||Φ(θ, t)x||)dt < ∞

then π is uniformly exponentially stable.
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Proof. Let M,ω > 0 be the constants given by Remark 2.1. From hypothesis we
have that

X =
⋃

m,k∈N∗
Vm,k.

where

Vm,k = {x ∈ X : sup
θ∈Θ

∫ ∞

0
Nm(||Φ(θ, t)x||)dt � k}, ∀(m, k) ∈ N∗ × N∗.

Let (m, k) ∈ N∗ × N∗ . For every (T, θ) ∈ (0,∞) ×Θ let

W m,k
T,θ = {x ∈ X :

∫ T

0
Nm(||Φ(θ, s)x||)ds � k}.

Then
Vm,k =

⋂
θ∈Θ

⋂
T>0

W m,k
T,θ

We show that Vm,k is closed. Therefore,we prove that W m,k
T,θ is closed. Let (xn) ⊂ W m,k

T,θ
with xn → x and let ε > 0 . Let Tx = MeωT(||x|| + 1) . Using the continuity of Nm

on [0, Tx] it follows that there exists ξ ∈ (0, 1) such that for every s1, s2 ∈ [0, Tx] with
|s1 − s2| � ξ we have |Nm(s1) − Nm(s2)| < ε/T.

Let n0 ∈ N such that ||xn0 − x|| � ξ/MeωT . Then we deduce that ||Φ(θ, s)x||,
||Φ(θ, s)xn0 || ∈ [0, Tx] and

| ||Φ(θ, s)x|| − ||Φ(θ, s)xn0 || | � ||Φ(θ, s)(x − xn0)|| � ξ , ∀s ∈ [0, T].

It follows that∫ T

0
Nm(||Φ(θ, s)x||)ds �

∫ T

0
Nm(||Φ(θ, s)xn0 ||)ds + ε � k + ε, ∀ε > 0.

We obtain that x ∈ W m,k
T,θ , so W m,k

T,θ is closed, for every (T, θ) ∈ (0,∞)×Θ . Then we
deduce that Vm,k is closed, for every (m, k) ∈ N∗ × N∗ .

Now, using the theoremof Baire it results that there exists (m0, k0) ∈ N∗×N∗ such
that there are x0 ∈ Vm0,k0 and δ > 0 with D(x0, δ) ⊂ Vm0,k0 . Thus, from Theorem 3.1
applied for N = Nm0 we conclude that π is uniformly exponentially stable. �

As a consequence of the above result we obtain the version of Rolewicz’s theorem,
for the case of uniform exponential stability of linear skew-product semiflows.

THEOREM 3.3. Let N : R∗
+ × R+ → R+ be a function such that for every t >

0, N(t, ·) ∈ C and for every s � 0, N(·, s) is nondecreasing. Let π = (Φ,σ) be a
linear skew-product semiflow on E = X × Θ . If for every x ∈ X there is α(x) > 0
such that

sup
θ∈Θ

∫ ∞

0
N(α(x), ||Φ(θ, t)x||)dt < ∞

then π is uniformly exponentially stable.

Proof. It immediately follows from Theorem 3.2, taking Nm = N(1/m, ·) , for all
m ∈ N∗ . �
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