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DECAY BOUNDS FOR SOLUTIONS OF SECOND ORDER

PARABOLIC PROBLEMS AND THEIR DERIVATIVES II

L. E. PAYNE AND G. A. PHILIPPIN

Abstract. Extending the investigations initiated in an earlier paper, the authors deal in this paper
with the solution to an initial-boundary value problem for amore general quasilinear heat equation
in which the nonlinearity is such that the solution, without appropriate data restrictions, may blow
up at some finite time. For such an equation they determine conditions on the data and geometry
sufficient to insure that the solution remains bounded and then derive exponential decay bounds
for the solution and its spatial gradient.
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