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HARDY’S INEQUALITY FOR JACOBI EXPANSIONS

YUICHI KANJIN AND KUNIO SATO

(communicated by Marshall Ash)

Abstract. If an analytic function F(z) =
∑∞

n=0 anzn belongs to the Hardy space on the unit
disc, then the sequence of coefficients satisfies

∑∞
n=0 |an|/(n + 1) < ∞ , which is well-known

as Hardy’s inequality. This type of inequality is obtained with respect to the Jacobi expansions.

Hardy’s inequality [2] says that there exists a constant C such that
∑∞

n=0 |an|/(n+
1) � C‖F‖H1 for F(z) =

∑∞
n=0 anzn in H1(D) , where H1(D) is the Hardy space

on the unit disc D which consists of the analytic functions F(z) on D satisfying
‖F‖H1 = sup0<r<1

∫ 2π
0 |F(reiθ)| dθ < ∞ . For our purpose, we restate this inequality

in terms of the real Hardy space. Let �H1 be the real Hardy space, that is, the space
consisting of the boundary functions f (θ) = limr→1 �F(reiθ) of F ∈ H1(D) and
‖f ‖�H1 = ‖F‖H1 with real F(0) . Then, Hardy’s inequality turns to

∞∑
n=−∞

|cn|
|n| + 1

� C‖f ‖�H1 (1)

for f (θ) ∼ ∑∞
n=−∞ cneinθ in �H1 , where C is a constant independent of f . The

purpose of this note is to obtain this type of inequality with respect to the Jacobi
expansions.

Let R(α,β)
n (θ) be the Jacobi functions defined by

R(α,β)
n (θ) = t(α,β)

n P(α,β)
n (cos θ)

(
sin

θ
2

)α+1/2 (
cos

θ
2

)β+1/2

,

where P(α,β)
n (x) is the Jacobi polynomial of degree n and of order α, β > −1, and

t(α,β)
n =

(
(2n + α + β + 1)Γ(n + α + β + 1)Γ(n + 1)

Γ(n + α + 1)Γ(n + β + 1)

)1/2

.

Then, the system {R(α,β)
n }∞n=0 is complete and orthonormal in L2(0, π) with respect to

the ordinary Lebesgue measure dθ . For a function f on (0, π) , we have the Jacobi
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expansion

f (θ) ∼
∞∑
n=0

c(α,β)
n (f )R(α,β)

n (θ), c(α,β)
n (f ) =

∫ π

0
f (θ)R(α,β)

n (θ) dθ.

We remark that

R(−1/2,−1/2)
n (θ) =

{ √
2/π (n = 0),√
1/π cos nθ (n > 0),

(2)

R(1/2,1/2)
n (θ) =

√
1/π sin(n + 1)θ (n � 0),

that is, the Jacobi expansions are the cosine and sine expansions when (α, β) =
(−1/2,−1/2) and (α, β) = (1/2, 1/2) . We refer to the work of Szegö [4] for the
Jacobi polynomials.

Let H1(0, π) be the space defined by

H1(0, π) = {h|(0,π); h ∈ �H1, even}.

We endow the space H1(0, π) with the norm ‖f ‖H1(0,π) = ‖h‖�H1 , where f = h|(0,π) .
Our theorem is as follows:

THEOREM . Let α, β � −1/2 . Then, the Jacobi coefficients c(α,β)
n (f ) of a

function f ∈ H1(0, π) satisfy

∞∑
n=0

|c(α,β)
n (f )|
n + 1

� C‖f ‖H1(0,π), (3)

where C is a constant independent of f .

Another well-known inequality for the Hardy space is Paley’s inequality:

{ ∞∑
k=1

(|cnk |2 + |c−nk |2)
}1/2

� C‖f ‖�H1 for f (θ) ∼
∞∑

n=−∞
cne

inθ in �H1,

where {nk}∞k=1 is an Hadamard sequence, that is, a sequence of positive integers such
that nk+1/nk � ρ with a constant ρ > 1 . In [3], we have established an analogue of
this inequality with respect to the Jacobi expansions by proving the following Lipschitz
property of the Jacobi functions:

LEMMA . ([3]) Let α, β � −1/2 . Then, there exists a constant C such that

|R(α,β)
n (θ1) − R(α,β)

n (θ2)| � Cnδ |θ1 − θ2|δ (4)

for 0 � θ1 < θ2 � π , where δ = min{α + 1/2, β + 1/2} if 0 < α + 1/2 < 1 or
0 < β + 1/2 < 1 , and δ = 1 otherwise, and C is independent of θ1, θ2 and n .
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The atomic decomposition of functions in the real Hardy space allows us to apply
the lemma to proving the theorem. An atom is a real valued function a supported in an
interval I satisfying |a(θ)| � |I|−1 almost everywhere and

∫
a(θ)dθ = 0 , where |I|

is the length of I . We may refer to [1] for the atomic decomposition.
Proof of the theorem. Let f ∈ H1(0, π) . Then, there exist a sequence {aj}∞j=0 of

atoms and a sequence {λj}∞j=0 of real numbers such that

f (θ) =
∞∑
j=0

λjaj(θ) a.e.θ, (5)

∞∑
j=0

|λj| � C‖f ‖H1(0,π) (6)

with a constant C independent of f . Here and below, C denotes a positive constant
which may differ at each different occurrence. Further, we may assume that Ij ⊂ [0, π] ,
where Ij is the support interval of aj . For this, see [1, p. 608,the last line to p. 609, line
9].

It follows from (5) and (6) that

c(α,β)
n (f ) =

∞∑
j=0

λjc
(α,β)
n (aj).

Here, we used the fact |R(α,β)
n (θ)| � C with a constant C depending only on α and β

for 0 � θ � π and α, β � −1/2 (see [4, (7.32.5)]). Thus, we have

∞∑
n=0

|c(α,β)
n (f )|
n + 1

�
∞∑
j=0

|λj|
∞∑
n=0

|c(α,β)
n (aj)|
n + 1

.

By (6), we see that it is enough to show

∞∑
n=0

|c(α,β)
n (a)|
n + 1

� C (7)

for every atom a with C not depending on atoms. In order to prove this inequality, let
us evaluate c(α,β)

n (a) . Let I = [b, b + h] be the support interval of a . We have

|c(α,β)
n (a)| =

∣∣∣∣∣
∫ b+h

b
a(θ)

(
R(α,β)

n (θ) − R(α,β)
n (b)

)
dθ

∣∣∣∣∣
by the fact

∫
a(θ) dθ = 0 . Our lemma leads to

|c(α,β)
n (a)| � C

∫ b+h

b
|a(θ)|nδ (θ − b)δ dθ,
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where δ means the one in the lemma. By Schwarz’s inequalitywe see that the right-hand
side of the inequality is bounded by Cnδ‖a‖2hδ+1/2 , where ‖a‖2 = (

∫ |a(θ)|2 dθ)1/2 .
Since atoms satisfy the fact h � ‖a‖−2

2 , it follows that

|c(α,β)
n (a)| � Cnδ‖a‖−2δ

2 . (8)

To estimate the sum on the left-hand side of (7), we choose γ as γ = ‖a‖2
2 and

write
∞∑

n=0

|c(α,β)
n (a)|
n + 1

=

⎛
⎝∑

n�γ

+
∑
n>γ

⎞
⎠ |c(α,β)

n (a)|
n + 1

. (9)

For the sum
∑

n>γ , we use Parseval’s identity and Schwarz’s inequality and get

∑
n>γ

|c(α,β)
n (a)|
n + 1

� ‖a‖2

(∑
n>γ

1
(n + 1)2

)1/2

� C‖a‖2γ−1/2 � C. (10)

We apply (8) to estimating the sum
∑

n�γ . It follows that

∑
n�γ

|c(α,β)
n (a)|
n + 1

� C‖a‖−2δ
2

∑
n�γ

nδ

n + 1
� C‖a‖−2δ

2 γ δ � C. (11)

Combining (10) and (11), we get (7), which completes the proof. �

REMARK 1. The theoremdoes not hold ifwe substitute the Lebesgue space L1(0, π)
for the Hardy space H1(0, π) , that is, there exists a function f ∈ L1(0, π) such that the
series

∑∞
n=0 |c(α,β)

n (f )|/(n + 1) diverges. We show this. Assume that

∞∑
n=0

|c(α,β)
n (f )|
n + 1

< ∞

for all f ∈ L1(0, π) . Then, by the closed graph theorem, we have

∞∑
n=0

|c(α,β)
n (f )|
n + 1

� C‖f ‖L1(0,π),

with C independent of f . For θ0 ∈ (0, π) , we put

f k(θ) =
{

k (|θ − θ0| < 1/(2k) and θ ∈ (0, π)),
0 (otherwise)

for k = 1, 2, . . . . Since ‖f k‖L1(0,π) � 1 , the assumption implies that there exists a
constant C such that

∞∑
n=0

|c(α,β)
n (f k)|
n + 1

� C
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for every k . By the fact limk→∞ c(α,β)
n (f k) = R(α,β)

n (θ0) , we have
∞∑

n=0

|R(α,β)
n (θ0)|
n + 1

� lim inf
k→∞

∞∑
n=0

|c(α,β)
n (f k)|
n + 1

� C. (12)

Here, we use the following inequality

|R(α,β)
n (θ0)| � C

∣∣∣∣cos

(
nθ0 +

2(α + β + 1)θ0 − π(2α + 1)
4

)∣∣∣∣− C′

n sin θ0
,

where C and C′ are independent of n and may depend on α, β and θ0 (see [4,
(8.21.18)]). Taking θ0 = 2π/3 , for example, we get

∞∑
n=0

|R(α,β)
n (θ0)|
n + 1

= ∞,

which contradicts (12).

REMARK 2. Our inequality (3) with (α, β) = (−1/2,−1/2) implies the classical
Hardy inequality (1). For, if f ∈ �H1 , then ˜f ∈ �H1 by the definition of �H1 , where
˜f (θ) ∼ −i

∑∞
n=−∞ sgn(n)cneinθ is the conjugate function of f (θ) ∼ ∑∞

n=−∞ cneinθ .
Let f e and ˜f e be the even parts of f and ˜f , respectively. Then, f e and ˜f e belong to
H1(0, π) . By (2), we have the following relation: c0 = π−1/2c(−1/2,−1/2)

0 (f e) and

cn =

⎧⎨
⎩

(2π)−1/2
(
c(−1/2,−1/2)
n (f e) + ic(−1/2,−1/2)

n ( ˜f e)
)

(n > 0),

(2π)−1/2
(
c(−1/2,−1/2)
−n (f e) − ic(−1/2,−1/2)

−n ( ˜f e)
)

(n < 0).

This allows to deduce (1) from (3) with (α, β) = (−1/2,−1/2) .

RE F ER EN C ES

[1] R. R. COIFMAN AND G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math.
Soc. 83 (1977) 569–645.

[2] G. H. HARDY AND J. E. LITTLEWOOD, Some new properties of Fourier constants, Math. Ann. 97 (1926),
159–209.

[3] Y. KANJIN AND K. SATO, Paley’s inequality for the Jacobi expansions, Bull. London Math. Soc. 33
(2001), 483–491.
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