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LIONS–PEETRE TYPE COMPACTNESS

RESULTS FOR SEVERAL BANACH SPACES

FERNANDO COBOS ∗ and RAÚL ROMERO †

(communicated by J. Bergh)

Abstract. Working with interpolation methods associated to polygons, a result of Cobos and
Peetre guarantees that the interpolated operator is compact provided all but two restrictions of
the operator (located in adjacent vertices) are compact. We characterize here those intermediate
spaces that satisfy the conclusion of Cobos-Peetre result for all operators. We also establish some
results on rank-one interpolation spaces.

1. Introduction

Inequalities play a central role in interpolation theory. For instance, the interpo-
lation property of compact operators by the real method can be stated as a convexity
inequality between measures of non-compactness of the restrictions of the operator to
the spaces in the couple (see the papers by Edmunds and Teixeira [25] and by Cobos,
Fernández-Martı́nez and Martı́nez [6]). Central results of the article by Cobos, Cwikel
and Matos [4] are also stated in terms of inequalities. They investigated to what ex-
tent the classical compactness results of Lions and Peetre [20] can hold for arbitrary
intermediate spaces A . This time inequalities involve measures of non-compactness
and also the functions ψA, ρA which describe the “position” of the intermediate space
within the Banach couple. This research was continued by Cobos, Manzano, Martı́nez
and Matos [10] and Cobos, Fernández-Cabrera, Martı́nez and Pustylnik [5]. Our aim
here is to study these problems in the context of N -tuples of Banach spaces, by using
the K - and J -functionals associated to a convex polygon in the plane.

In 1991,whenCobos andPeetre [11] introduced the interpolationmethods A(α,β),q;K ,
A(α,β),q;J defined by means of a polygon (we shall recall the definitions in Section 2.),
they also established the following compactness result of Lions-Peetre type.

THEOREM 1.1. Let Π = P1 · · ·PN be a convex polygon in R
2 , let Pk, Pk+1 be

two fixed adjacent vertices of Π , let (α, β) be an interior point of Π and 1 � q � ∞ .
Assume that A = {A1, . . . , AN} is a Banach N -tuple, that B is a Banach space and
that T is a linear operator.

Mathematics subject classification (2000): 46B70.
Key words and phrases: Interpolation methods associated to polygons, compactness of interpolated

operators, rank-one interpolation spaces.
∗ Supported in part by Ministerio de Ciencia y Tecnologı́a of Spain (BFM 2001-1424).
† Supported in part by grant Beca FPI of the Universidad Complutense de Madrid.

c© � � , Zagreb
Paper MIA-07-57

557



558 F. COBOS AND R. ROMERO

(i) If T : Aj �→ B is bounded for 1 � j � N and T : Aj �→ B is compact for all
1 � j � N with j �= k, k + 1 , then T : A(α,β),q;K �→ B is also compact.

(ii) If T : B �→ Aj is bounded for all 1 � j � N and T : B �→ Aj is compact for all
1 � j � N with j �= k, k + 1 , then T : B �→ A(α,β),q;J is compact as well.

Related results can be found in [9], [3] and [7]. In this paper we investigate the
validity of Theorem 1.1 for arbitrary intermediate spaces. Among other things we
characterize those intermediate spaces A such that T : A �→ B is compact for all
operators T ∈ L (A, B) with T : Aj �→ B compactly for j �= k, k + 1 . We also derive
a corresponding result when the N -tuple A is the target of operators. The results
extend [4], Thms. 3.15 and 3.17 to the setting of N -tuples of Banach spaces (N � 3) .
Theorems of [4] are closely related to [10], Thms. 3.7 and 3.8. However, it is not
possible to extend the results of [10] to our context, as we show here by means of
examples.

Our techniques are based on ideas introduced in [4] and [5], combined with the
geometrical elements which are peculiar to the functionals associated to polygons. We
shall also use versions of the functions ψA, ρA with two arguments.

In the case of Banach couples, the functions ψA, ρA are connected with the notion
of rank-one interpolation space. In fact, a necessary and sufficient condiciton for A to
be a rank-one interpolation space with respect to the couple A is that for some C > 0 it
holds ψA(t) � CρA(t) for all t > 0 (see the papers by Dmitriev [13] and by Pustylnik
[23]). However, in our setting of N -tuples, we show that the corresponding inequality
characterizes rank-one interpolation spaces only if A is a triple, that is, N = 3 .

The organization of the paper is as follows. In Section 2. we recall some basic facts
on interpolation methods associated to polygons and on measure of non-compactness.
Section 3. contains the compactness results. Finally, in Section 4., we study rank-one
interpolation spaces.

2. Preliminaries

Let Π = P1 · · ·PN be a convex polygon in the affine plane R
2 , with vertices

Pj = (xj, yj) , j = 1, . . . , N . Let A = {A1, . . . , AN} be a Banach N -tuple, that is,
a family of N Banach spaces Aj all of them continuously embedded in a common
Hausdorff topological vector space. It will be useful to imagine each space Aj as sitting
on the vertex Pj . By means of the polygon Π we define the following family of
equivalent norms on Σ(A) = A1 + · · · + AN

K(t, s; a) = inf
{ N∑

j=1

txj syj‖aj‖Aj : a =
N∑

j=1

aj, aj ∈ Aj

}
, t, s > 0.

Similarly, in Δ(A) = A1 ∩ · · · ∩ AN , we consider the family of equivalent norms

J(t, s; a) = max
{
txj syj‖a‖Aj : 1 � j � N

}
, t, s > 0.

Note that ‖ · ‖Σ(A) = K(1, 1; ·) and ‖ · ‖Δ(A) = J(1, 1; ·) .
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Given (α, β) in the interior of Π , (α, β) ∈ IntΠ , and 1 � q � ∞ , the K -space
A(α,β),q;K is formed by all a ∈ Σ(A) for which the norm

‖a‖(α,β),q;K =
(∫ ∞

0

∫ ∞

0

(
t−αs−βK(t, s; a)

)q dt
t

ds
s

)1/q

is finite (the integral should be replaced by the supremum if q = ∞ ). On the other
hand, the J -space A(α,β),q;J consists of all those a ∈ Σ(A) which can be represented as

a =
∫ ∞

0

∫ ∞

0
u(t, s)

dt
t

ds
s

,

where u(t, s) is a strongly measurable function with values in Δ(A) and satisfies
(∫ ∞

0

∫ ∞

0

(
t−αs−βJ(t, s; u(t, s))

)q dt
t

ds
s

)1/q

< ∞.

The norm in A(α,β),q;J is

‖a‖(α,β),q;J = inf
{( ∫ ∞

0

∫ ∞

0

(
t−αs−βJ(t, s; u(t, s))

)q dt
t

ds
s

)1/q}
,

where the infimum is taken over all representations of a as before.
These spaces were introduced by Cobos and Peetre in [11]. When Π is equal

to the simplex {(0, 0), (1, 0), (0, 1)} , then the spaces coincide with (the first non-
trivial case of) spaces studied by Sparr [24]. If Π coincides with the unit square
{(0, 0), (1, 0), (1, 1), (0, 1)} , we recover spaces investigated by Fernandez [17].

In contrast to the case of the classical real method for couples, where K - and
J -spaces coincide to within equivalence of norms (see [1] or [26]), K - and J -spaces for
N -tuples (N � 3) do not coincide in general. We only have the continuous inclusion
A(α,β),q;J ↪→ A(α,β),q;K . For example, if Π is the unit square and �1(wn) is the weighted
�1 -space with weights wn , then (see [8], Example 2.8)

(
�1

( 1√
n

)
, �1

(1
n

)
, �1

( 1√
n

)
, �1

(1
n

))
( 1

2 , 1
2 ),1;J

= �1

( 1√
n

)
, but

(
�1

( 1√
n

)
, �1

(1
n

)
, �1

( 1√
n

)
, �1

(1
n

))
( 1

2 , 1
2 ),1;K

= �1

(1 + log n
n

)
.

Let B = {B1, . . . , BN} be another Banach N -tuple. We write T ∈ L (A, B)
to mean that T is a linear operator from Σ(A) to Σ(B) whose restriction to each Aj

defines a bounded operator from Aj into Bj (j = 1, . . . , N) . We put

‖T‖A,B = max{‖T‖Aj,Bj : j = 1, . . . , N}.
If T ∈ L (A, B) , it is easy to see that the restriction of T to A(α,β),q;K gives a bounded
operator T : A(α,β),q;K �→ B(α,β),q;K . The same holds for J -spaces.

If the N -tuple A (respectively, B ) reduce to a single Banach space, that is, if
A1 = · · · = AN = A (respectively B1 = · · · = BN = B ), then we write T ∈ L (A, B)
(respectively, T ∈ L (A, B) ).
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We say that a Banach space A is intermediate with respect to the Banach N -tuple
A if Δ(A) ↪→ A ↪→ Σ(A) , with continuous inclusions. To work with the intermediate
space A , the following functions will be useful

ρA(t, s) = inf{J(t, s; a) : a ∈ Δ(A), ‖a‖A = 1},
ψA(t, s) = sup{K(t, s; a) : a ∈ A, ‖a‖A = 1}.

These functions are versions with two parameters of the functions used in [4] (see also
[13] and [22]).

We end this section by recalling that given a bounded linear operator T between
the Banach spaces A and B , the (ball) measure of non-compactness of T is defined by

γ (TA,B) = inf
{

r > 0 : T(UA) ⊆
n⋃

j=1

{yj+εUB} for some finite set {y1, . . . , yn} ⊆ B
}
,

where UA and UB denote the closed unit balls of the spaces A and B respectively (see
[2] or [15]).

3. Intermediate spaces and compactness

We start by establishing compactness results of Lions-Peetre type for general
intermediate spaces with respect to a given N -tuple.

THEOREM 3.1. Let Π = P1 · · ·PN be a convex polygonwith vertices Pj = (xj, yj) ,
let A = {A1, . . . , AN} be a Banach N -tuple and let A be an intermediate space with
respect to A . For any Banach space B and any operator T ∈ L (B, A) , we have

γ (TB,A) � 2 inf
t,s>0

max
1�j�N

{ txj syj

ρA(t, s)
γ (TB,Aj)

}
. (1)

Proof. For j = 1, . . . , N , take any kj > γ (TB,Aj) and let {aj
1, . . . , a

j
nj} be a finite

set in Aj so that

T(UB) ⊆
nj⋃

r=1

{aj
r + kjUAj}. (2)

Consider the intersections
N⋂

j=1
{aj

rj + kjUAj} and take one element w(r1, . . . , rN) in

N⋂
j=1

{aj
rj + kjUAj} if the last set is not empty. Let W be the set formed by all those

w(r1, . . . , rN) . The set W is contained in Δ(A) , it is finite and not empty because, by
(2),

T(UB) ⊆
⋃

1�r1�n1···
1�rN�nN

N⋂
j=1

{aj
rj

+ kjUAj}.
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Given any b ∈ UB we can find w ∈ W such that ‖Tb − w‖Aj � 2kj , for
j = 1, . . . , N . Whence, for any t, s > 0 , we get

‖Tb−w‖A � J(t, s; Tb − w)
ρA(t, s)

= max
1�j�N

{ txj syj

ρA(t, s)
‖Ta−w‖Aj

}
� 2 max

1�j�N

{ txj syj

ρA(t, s)
kj

}
.

This implies that

γ (TB,A) � 2 inf
t,s>0

max
1�j�N

{ txj syj

ρA(t, s)
γ (TB,Aj)

}
.

�

When the N -tuple is in the domain of the operator, the corresponding result reads
as follows.

THEOREM 3.2. Let Π = P1 · · ·PN be a convex polygonwith vertices Pj = (xj, yj) ,
let A = {A1, . . . , AN} be a Banach N -tuple and let A be an intermediate space with
respect to A . For any Banach space B and any operator T ∈ L (A, B) , we have

γ (TA,B) � N inf
t,s>0

max
1�j�N

{ψA(t, s)
txj syj

γ (TAj,B)
}
. (3)

Proof. For j = 1, . . . , N , take any kj > γ (TAj,B) and let {bj
1, . . . , b

j
nj} be a finite

set in B such that

T(UAj) ⊆
nj⋃

r=1

{bj
r + kjUB}. (4)

Let t, s > 0 . Given any a ∈ UA and any ε > 0 , there is a representation a =
N∑

j=1
aj of

a with aj ∈ Aj and

N∑
j=1

txj syj‖aj‖Aj � K(t, s; a) + ε � ψA(t, s) + ε.

It follows that aj ∈ t−xj s−yj(ψA(t, s) + ε)UAj , j = 1, . . . , N , and so, using (4), we can
find 1 � rj � nj such that

∥∥∥Taj − ψA(t, s) + ε
txj syj

bj
rj

∥∥∥
B

� ψA(t, s) + ε
txj syj

kj.

Consequently,

∥∥∥Ta −
N∑

j=1

ψA(t, s) + ε
txj syj

bj
rj

∥∥∥
B

�
N∑

j=1

{ψA(t, s) + ε
txj syj

kj

}
� N max

1�j�N

{ψA(t, s) + ε
txj syj

kj

}
.

This yields

γ (TA,B) � N inf
t,s>0

max
1�j�N

{ψA(t, s)
txj syj

γ (TAj,B)
}
.

�
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Assume that for some (α, β) ∈ IntΠ and some M > 0 the intermediate space A
satisfies that

ψA(t, s) � Mtαsβ for all t, s > 0, (5)

(respectively, Mtαsβ � ρA(t, s) for all t, s > 0.) (6)

In this case, using [8], Thm. 1.9, we can rewrite inequality (3) as

γ (TA,B) � NM max
{
γ (TAi,B)ciγ (TAj ,B)

cjγ (TAk ,B)ck : {i, j, k} ∈ Pα,β
}
. (7)

Here Pα,β is the collection of all triples {i, j, k} such that (α, β) belongs to the
triangle with vertices Pi, Pj, Pk and ci, cj, ck are the barycentric coordinates of (α, β)
with respect to Pi, Pj, Pk . Similarly, if (6) holds, then (1) says

γ (TB,A) � 2
M

max
{
γ (TB,Ai)

ciγ (TB,Aj)
cjγ (TB,Ak)

ck : {i, j, k} ∈ Pα,β
}
. (8)

It is easy to check that condition (5) is equivalent to the continuous embedding
A ↪→ A(α,β),∞;K . On the other hand, using the discrete description of the space A(α,β),1;J ,
it can be verified that (6) is equivalent to the continuous embedding A(α,β),1;J ↪→ A . In
the terminology of Nikolova [21], condition (5) means that the space A is of the class
Kα,β(A) , and condition (6) means that A is of the class Jα,β(A) .

Formulae (7) and (8) shows that Theorems 3.1 and 3.2 comprise Theorem 1.1.
These results apply, in particular, to Sparr spaces and to Fernandez spaces. But they also
apply to extensions of the complex method. For example, they work for the extension
given by Favini [16] to triples of Banach spaces [A1, A2, A3]α,β , and for the extension
given by Fernandez [18] and Dore, Guidetti and Venni [14] to 4-tuples of Banach spaces
[A1, A2, A3, A4][(α,β),q] . Indeed, if Cα,β denotes any of these extensions of the complex
method, one can check that

A(α,β),1;J ↪→ Cα,β(A) ↪→ A(α,β),∞;K .

Next we want to characterize those arbitrary intermediate spaces A that satisfy
the conclusion of Theorem 1.1 for all operators T and all Banach spaces B . We first
establish two auxiliary results.

LEMMA 3.3. Let Π = P1 · · ·PN be a convex polygon with vertices Pj = (xj, yj) ,
and let Pk, Pk+1 be two fixed adjacent vertices of Π . Then there exist sequences of
positive numbers {tn}, {sn} such that for all 1 � j � N with j �= k, k + 1 , we have

lim
n→∞ t

xk−xj
n s

yk−yj
n = 0 = lim

n→∞ t
xk+1−xj
n s

yk+1−yj
n

and
t
xk−xk+1
n s

yk−yk+1
n = 1 for all n ∈ N.

Proof. Let ax+by = c be the equation of the line through Pk and Pk+1 . Since the
vertices Pk, Pk+1 are adjacent, the polygon lies in a side of the line, say in ax + by > c
(see Figure 1).
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Figure 1.

For any 1 � j � N with j �= k, k + 1 , it follows that a(xk − xj) + b(yk − yj) < 0
and a(xk+1 − xj) + b(yk+1 − yj) < 0 . Put {tn} = {ena}, {sn} = {enb} . Then

t
xk−xk+1
n s

yk−yk+1
n = en(a(xk−xk+1)+b(yk−yk+1)) = e0 = 1,

t
xk−xj
n s

yk−yj
n = en(a(xk−xj)+b(yk−yj)) → 0 as n → ∞

and
t
xk+1−xj
n s

yk+1−yj
n = en(a(xk+1−xj)+b(yk+1−yj)) → 0 as n → ∞.

�

LEMMA 3.4. Let Π = P1 · · ·PN be a convex polygon with vertices Pj = (xj, yj) ,
and let Pk, Pk+1 be two fixed adjacent vertices of Π . Assume that A = {A1, . . . , AN}
is a Banach N -tuple and that A is an intermediate space with respect to A . Let
a ∈ Σ(A) . Then the following conditions are equivalent.

(i) inf
t,s>0

max
{K(t, s; a)

txk syk
,
K(t, s; a)
txk+1syk+1

}
= 0 .

(ii) The element a belongs to
∑

1�j�N
j�=k,k+1

Aj

Σ(A)
, the closure of W =

∑
1�j�N
j�=k,k+1

Aj in Σ(A) .

Proof. For every t, s > 0 , we have

max
{K(t, s; a)

txk syk
,
K(t, s; a)
txk+1syk+1

}
�

inf

a=
N∑
j=1

aj

{txk syk‖ak‖Ak + txk+1syk+1‖ak+1‖Ak+1
}

min{txk syk , txk+1syk+1}

� inf

a=
N∑
j=1

aj

{‖ak‖Σ(A) + ‖ak+1‖Σ(A)} � inf
a′∈W

{‖a − a′‖Σ(A)}.

This shows that (i) implies (ii) .
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Assume now that (ii) holds. Let {tn}, {sn} be the sequences constructed in
Lemma 3.3, and put un = 1/tn, vn = 1/sn . Then

lim
n→∞ u

xj−xk
n v

yj−yk
n = 0 = lim

n→∞ u
xj−xk+1
n v

yj−yk+1
n . (9)

Given any ε > 0 , we can find a′ =
∑

1�j�N
j�=k,k+1

a′j ∈ W such that ‖a − a′‖Σ(A) � ε . Let

Ma′ = max{‖a′j‖Aj : 1 � j � N, j �= k, k + 1} . We have

K(un, vn; a)
uxk

n vyk
n

� K(un, vn; a − a′)
uxk

n vyk
n

+
∑

1�j�N
j�=k,k+1

u
xj−xk
n v

yj−yk
n ‖a′j‖Aj

� max
1�j�N

{uxj−xk
n v

yj−yk
n }‖a − a′‖Σ(A) + Ma′

∑
1�j�N
j�=k,k+1

u
xj−xk
n v

yj−yk
n

� max
1�j�N
j�=k,k+1

{1, u
xj−xk
n v

yj−yk
n }ε + Ma′

∑
1�j�N
j�=k,k+1

u
xj−xk
n v

yj−yk
n .

Using (9), we get that K(un, vn; a)/uxk
n vyk

n � 2ε for n big enough. Whence, we have
that lim

n→∞(K(un, vn; a)/uxk
n vyk

n ) = 0 . A similar argument yields that

lim
n→∞(K(un, vn; a)/u

xk+1
n v

yk+1
n ) = 0.

Consequently, (i) is satisfied. �

We can now characterize those intermediate spaces that satisfy the conclusion of
Theorem 1.1/ (ii) for all Banach spaces B and all operators T .

THEOREM 3.5. Let Π = P1 · · ·PN be a convex polygonwith vertices Pj = (xj, yj) ,
and let Pk, Pk+1 be two fixed adjacent vertices of Π . Assume that A = {A1, . . . , AN}
is a Banach N -tuple and that A is an intermediate space with respect to A . Then the
following are equivalent.

(i) inf
t,s>0

max
{ txk syk

ρA(t, s)
,
txk+1syk+1

ρA(t, s)

}
= 0.

(ii) For every Banach space B, if T ∈ L (B, A) is such that T : B �→ Aj is

compact for all 1 � j � N with j �= k, k + 1, then T : B �→ A is compact.

(iii) If T ∈ L (�1, A) is such that T : �1 �→ Aj is compact for all 1 � j � N with

j �= k, k + 1, then T : �1 �→ A is compact.

Proof. By Theorem 3.1 we get that (i) implies (ii) . Clearly, (ii) implies (iii) .
To show that (iii) implies (i) , let us suppose that (i) does not hold, that is,

inf
t,s>0

max
{ txk syk

ρA(t, s)
,
txk+1syk+1

ρA(t, s)

}
> δ > 0.
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Then, taking M = 1/δ , for all t, s > 0 we can find at,s ∈ Δ(A) with ‖at,s‖A = 1 and
J(t, s; at,s) � M max{txk syk , txk+1syk+1} . It follows that

‖at,s‖Aj � M max{txk−xj syk−yj , txk+1−xjsyk+1−yj}, for j = 1, . . . , N.

Let {tn}, {sn} be the sequences given by Lemma 3.3 and put an = atn,sn . We have
‖an‖A = 1 , ‖an‖Ak � M , ‖an‖Ak+1

� M and

lim
n→∞ ‖an‖Aj = 0 for all 1 � j � N with j �= k, k + 1. (10)

Consider the operator T ∈ L (�1, A) defined by T{λn} =
∞∑
n=1

λnan . This operator

satisfies that T : �1 �→ Aj is compact for all 1 � j � N with j �= k, k + 1 , because

T : �1 �→ Aj is the limit of the sequence of finite-rank operators Rm{λn} =
m∑

j=1
λjaj .

However, the image by T of the sequence of unit vectors {en} does not have any
convergent subsequence in A . Indeed, if this were the case, since {Ten} = {an} ,
we could find a ∈ A and a subsequence {an′} of {an} such that {an′} → a in A .
Hence ‖a‖A = 1 . On the other hand, (10) implies that {an′} → 0 in Σ(A) . Since
A ↪→ Σ(A) , it follows that a = 0 , which contradicts ‖a‖A = 1 . So, T : �1 �→ A is
not compact. This shows that (iii) does not hold and establishes that (iii) implies (i) . �

Next we turn our attention to the case when the N -tuple A is in the domain of the
operators. We need to impose a mild additional assumption on A and the intermediate
space A .

THEOREM 3.6. Let Π = P1 · · ·PN be a convex polygonwith vertices Pj = (xj, yj) ,
and let Pk, Pk+1 be two fixed adjacent vertices of Π . Assume that A = {A1, . . . , AN}
is a Banach N -tuple and that A is an intermediate space with respect to A such that

inf
t,s>0

max
{K(t, s; a)

txk syk
,
K(t, s; a)
txk+1syk+1

}
= 0, for all a ∈ A. (11)

Then the following are equivalent.

(i) inf
t,s>0

max
{ψA(t, s)

txk syk
,
ψA(t, s)
txk+1syk+1

}
= 0.

(ii) For every Banach space B, if T ∈ L (A, B) is such that T : Aj �→ B is

compact for all 1 � j � N with j �= k, k + 1, then T : A �→ B is compact.

(iii) If T ∈ L (A, �∞) is such that T : Aj �→ �∞ is compact for all 1 � j � N

with j �= k, k + 1, then T : A �→ �∞ is compact.

Proof. According to Theorem 3.2, condition (i) implies (ii) . Obviously, (ii)
implies (iii) . It remains to show that (iii) implies (i) . Let us suppose that (i) does
not hold, that is,

inf
t,s>0

max
{ψA(t, s)

txk syk
,
ψA(t, s)
txk+1syk+1

}
> δ > 0.
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Then, for all t, s > 0 , there exists at,s ∈ A with ‖at,s‖A = 1 and

max
{K(t, s; at,s)

txk syk
,
K(t, s; at,s)
txk+1syk+1

}
> δ. (12)

Let {tn}, {sn} be the sequences constructed in Lemma 3.3 and put un = 1/tn, vn =
1/sn . It follows from the second part of the proof of Lemma 3.4 that, for any a ∈ A ,

lim
n→∞

K(un, vn; a)
uxk

n vyk
n

= 0 = lim
n→∞

K(un, vn; a)
u

xk+1
n v

yk+1
n

. (13)

Put an = aun,vn and consider the sequence of norms on Σ(A) defined by

‖a‖n = max
{K(un, vn; a)

uxk
n vyk

n
,
K(un, vn; a)
u

xk+1
n v

yk+1
n

}
.

According to (12), we have

‖an‖A = 1 and ‖an‖n > δ for all n ∈ N, (14)

and, by (13),
lim

n→∞ ‖am‖n = 0 for every m ∈ N. (15)

Using theHahn-Banach theorem, for each n ∈ N , there is a linear functional f n on Σ(A)
such that f n(an) = ‖an‖n and |f n(a)| � ‖a‖n for all a ∈ Σ(A) . Let T ∈ L (A, �∞)
be the operator defined by Ta = {f n(a)} . By the definition of ‖ · ‖n , it is clear that

‖f n‖A∗
j

� max{uxj−xk
n v

yj−yk
n , u

xj−xk+1
n v

yj−yk+1
n }.

Hence, ‖f n‖A∗
k

� 1, ‖f n‖A∗
k+1

� 1 and lim
n→∞ ‖f n‖A∗

j
= 0 for all 1 � j � N with

j �= k, k + 1 . It follows that T : Aj �→ �∞ is compact for all 1 � j � N with
j �= k, k + 1 , because it is the limit of a sequence of finite-rank operators. However,
T : A �→ �∞ is not compact. Indeed, if T were compact, the sequence {Tan} would
have a convergent subsequence in �∞ , say {Tan′} . Using (14), for n′ and m′ big
enough, we get

δ
2

� ‖Tan′ − Tam′‖�∞ � |f n′(an′ − am′)| � |f n′(an′)| − |f n′(am′)|
� ‖an′‖n′ − ‖am′‖n′ > δ − ‖am′‖n′ .

Whence, ‖am′‖n′ > δ/2 for every m′, n′ sufficiently big, which contradicts (15).
Consequently, (iii) does not hold.

The proof is complete. �

Lemma 3.4 explains the meaning of (11). Note that condition (11) holds if Δ(A)
is dense in A , or if Δ(A) is dense in Ak + Ak+1 . Theorem 3.6 is not valid in general
without condition (11) as the following example shows.
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COUNTEREXAMPLE 3.7. Let Π be the simplex {(0, 0), (1, 0), (0, 1)} , let A =
{X, �1, �2} , where X is the subspace of �∞ formed by all the sequences having the first
coordinate equal to 0, and let A = c0 . For every Banach space B , if T ∈ L (A, B)
satisfies that T : X �→ B is compact, then T : c0 �→ B is compact. Indeed, let P ∈
L (c0, X) be the projection given by P{ξn} = {0, ξ2, ξ3, . . .} , let e1 = {1, 0, 0, . . .} ,
and consider the operators R, S ∈ L (c0, B) defined by R{ξn} = ξ1Te1 , S{ξn} =
T(P{ξn}) . Compactness of T : X �→ B implies that S : c0 �→ B is compact.
Moreover, the operator R is also compact because its rank is 1. Since T = R + S ,
we derive that T : c0 �→ B is compact. Consequently, statement (ii) in Theorem 3.6
is satisfied. However, condition (11) fails, and therefore statement (i) is not verified.
Indeed, given any t, s > 0 , we have

max
{ψA(t, s)

t
,
ψA(t, s)

s

}
� max

{K(t, s; e1)
t

,
K(t, s; e1)

s

}

� max
{

inf
λ+μ=1

{|λ | + s
t
|μ|}, inf

λ+μ=1

{ t
s
|λ | + |μ|}}

� 1.

Theorems 3.5 and 3.6 extend [4], Thms. 3.15 and 3.17, to the setting of interpolation
using polygons. Since the mentioned results of [4] are closely related to [10], Thms. 3.7
and 3.8, one might think that if T ∈ L (B, A) with T : B �→ Σ(A) compactly, and A is
an intermediate space with respect to A with

inf
t,s>0

txj syj

ρA(t, s)
= 0 for j = 1, . . . , N, (16)

then T : B �→ A should be compact. Similarly, one might believe that if T ∈ L (A, B)
with T : Δ(A) �→ B compactly and

inf
t,s>0

ψA(t, s)
txj syj

= 0 for j = 1, . . . , N, (17)

then T : A �→ B should be also compact. But this is not the case, as the following
examples show. We work with weighted sequence spaces.

COUNTEREXAMPLE 3.8. Let Π be the unit square {(0, 0), (1, 0), (1, 1), (0, 1)}
and let (α, β) ∈ IntΠ with β � 1 − α . Take A = {�1, �1(n), �1(n), �1(n)} and let
A = A(α,β),1;J . Then ρA(t, s) � Mtαsβ and so we have for j = 1, 2, 3, 4

inf
t,s>0

txj syj

ρA(t, s)
� 1

M
inf
t,s>0

txj−αsyj−β .

The last infimum is equal to 0 as it can be checked with a similar argument as in Lemma
3.3. Whence, condition (16) is satisfied.

Take B = �1(n) and choose T as the identity operator T{ξn} = {ξn} . Since
Σ(A) = �1 , we have that T : B �→ Σ(A) is compact. However, by [8], Thm. 2.5,
A = �1(n) and it is obvious that T : A �→ B is not compact.
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COUNTEREXAMPLE 3.9. Choose Π and (α, β) as in Counterexample 3.8. Take
A = {�∞(n), �∞, �∞, �∞} , A = A(α,β),∞;K , B = �∞ and choose again T as the
identity operator. Condition (17) holds because ψA(t, s) � Mtα sβ . Moreover, since
Δ(A) = �∞(n) , we have that T : Δ(A) �→ B is compact. But, according to [8], Thm.
2.3, A = �∞ and so T : A �→ B fails to be compact.

4. Rank-one interpolation spaces

Recall that an intermediate space A with respect to an N -tuple A is said to be an
interpolation space if, for any T ∈ L (A, A) , the restriction of T to A gives a bounded
operator from A into itself. It is a consequence of the closed graph theorem that then
there exists a constant C = C(A, A) such that

‖T‖A,A � C‖T‖A,A (18)

for all operators T ∈ L (A, A) .
We say that the intermediate space A is a rank-one interpolation space, or a partly

interpolation space, if (18) holds for all operator T of the special form Tx = f (x)a
where f ∈ Σ(A)∗ and a ∈ Δ(A) .

EXAMPLE 4.1. Let G be the symmetric function space constructed in [19] p. 122.
Then, for any 1 < p < ∞ , G is an intermediate space with respect to the triple
(L1, Lp, L∞) , but G is not an interpolation space (see [19] Thm. II.5.11). However,
G is a rank-one interpolation space with respect to (L1, Lp, L∞) because, by results
of Dmitriev [13] and Pustylnik [23], any space lying between the Lorentz and the
Marcinkiewicz space with the same fundamental function is a rank-one interpolation
space with respect to (L1, L∞) and, therefore, with respect to (L1, Lp, L∞) .

Working with Banach couples, inequality ψA(t) � CρA(t) , t > 0 , characterizes
rank-one interpolation spaces (see [13] and [23]). Next we show that working with
N -tuples (N � 3) , the corresponding inequality is a characterization of rank-one
interpolation spaces only if N = 3 .

THEOREM 4.2. Let Π = P1 · · ·PN be a convex polygonwith vertices Pj = (xj, yj) ,
let A = {A1, . . . , AN} be a Banach N -tuple and let A be an intermediate space with
respect to A .

If A is a rank-one interpolation space, then there is a constant C = C(A, A) such
that

ψA(t, s) � CρA(t, s), for all t, s > 0. (19)

Moreover, if N = 3 and (19) holds, then A is a rank-one interpolation space.

Proof. Assume that A is a rank-one interpolation space and let C > 0 be the
constant in (18) for rank-one operators. To establish (19) it suffices to show that for
any a ∈ A and any b ∈ Δ(A) it holds

K(t, s; a) ‖b‖A � C J(t, s; b) ‖a‖A, for all t, s > 0. (20)

This can be done using ideas of [23].
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Given a ∈ A , by the Hahn-Banach theorem, there is f ∈ Σ(A)∗ such that
f (a) = K(t, s; a) and |f (x)| � K(t, s; x) for any x ∈ Σ(A) . We have that ‖f ‖A∗

j
� txj syj

for j = 1, . . . , N . Take any b ∈ Δ(A) and consider the operator Tx = f (x)b . Since

‖T‖Aj,Aj = ‖f ‖A∗
j
‖b‖Aj � txj syj ‖b‖Aj

and A is a rank-one interpolation space, we get that

‖Ta‖A � C J(t, s; b) ‖a‖A.

Then (20) follows by observing that

‖Ta‖A = |f (a)| ‖b‖A = K(t, s; a) ‖b‖A.

Suppose now that (19) holds and that N = 3 . Take any f ∈ Σ(A)∗ and any
b ∈ Δ(A) , and put Tx = f (x)b . Using (19), for any a ∈ A we have

‖Ta‖A = |f (a)| ‖b‖A � |f (a)|J(t, s; b)
ρA(t, s)

� C|f (a)|J(t, s; b)
ψA(t, s)

� C
|f (a)|

K(t, s; a)
J(t, s; b)‖a‖A.

Choose a decomposition a =
3∑

j=1
aj with aj ∈ Aj and

3∑
j=1

txj syj‖aj‖Aj � 2K(t, s; a) .

Then

‖Ta‖A � 2 C

3∑
j=1

|f (aj)|
3∑

j=1
txj syj‖aj‖Aj

J(t, s; b)‖a‖A

� 6 C max
{ |f (a1)|

tx1sy1‖a1‖A1

,
|f (a2)|

tx2sy2‖a2‖A2

,
|f (a3)|

tx3sy3‖a3‖A3

}
J(t, s; b)‖a‖A

� 6 C max{t−x1s−y1‖f ‖A∗
1
, t−x2s−y2‖f ‖A∗

2
, t−x3s−y3‖f ‖A∗

3
}J(t, s; b)‖a‖A.

Here t, s are positive numbers at our disposal. By [8], Lemma 1.7, we can choose them
such that

t−x1s−y1‖f ‖A∗
1

= t−x2s−y2‖f ‖A∗
2

= t−x3s−y3‖f ‖A∗
3
.

Call M this common value. It follows that

‖Ta‖A � 6 C MJ(t, s; b) ‖a‖A

= 6 C max{Mtx1sy1‖b‖A1, Mtx2sy2‖b‖A2, Mtx3sy3‖b‖A3}‖a‖A

= 6 C max{‖f ‖A∗
1
‖b‖A1, ‖f ‖A∗

2
‖b‖A2, ‖f ‖A∗

3
‖b‖A3} ‖a‖A

= 6 C ‖T‖A,A ‖a‖A.

�

We end the paper with an example that shows that if N > 3 then (19) is not
sufficient to guarantee that A is a rank-one interpolation space.
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COUNTEREXAMPLE 4.3. Let Π be the unit square {(0, 0), (1, 0), (1, 1), (0, 1)}
and let A be the diagonally equal 4-tuple (L1[0, 1], L∞[0, 1], L1[0, 1], L∞[0, 1]) . By
[12], Example 1.25,

A( 1
2 , 1

2 ),1;J = L∞[0, 1], A( 1
2 , 1

2 ),∞;K = L1[0, 1].

Hence, any intermediate space A with respect to A satisfies that A( 1
2 , 1

2 ),1;J ↪→ A ↪→
A( 1

2 , 1
2 ),∞;K . This means (see Section 3.) that there are constants M1, M2 > 0 such that

ψA(t, s) � M1 t
1
2 s

1
2 � M2 ρA(t, s), for all t, s > 0.

In other words, any intermediate space A with respect to A satisfies (19).
Take now A as the subspace of L1[0, 1] formed by all those functions f having a

finite norm
‖f ‖A = ‖f χ(0,1/2)‖L∞ + ‖f χ(1/2,1)‖L1 .

It is easy to check that A is an intermediate space with respect to A . We claim that A
is not a rank-one interpolation space. Indeed, for n � 2 , put

hn = nχ(1−1/n2,1), gn = nχ(0,1/n2),

and consider the sequence of rank one operators {Tn} defined by

Tnf =
( ∫ 1

0
f (x)hn(x) dx

)
gn.

We have

‖Tn‖L1,L1 = sup
‖f ‖L1 �1

∣∣∣
∫ 1

0
f (x)hn(x) dx

∣∣∣‖gn‖L1 = ‖hn‖L∞‖gn‖L1 = n/n = 1,

‖Tn‖L∞,L∞ = sup
‖f ‖L∞�1

∣∣∣
∫ 1

0
f (x)hn(x) dx

∣∣∣‖gn‖L∞ = ‖hn‖L1‖gn‖L∞ = n/n = 1.

Whence, ‖Tn‖A,A = 1 for n � 2 . But,

‖Tn‖A,A = sup
‖f ‖A�1

∣∣∣
∫ 1

0
f (x)hn(x) dx

∣∣∣ ‖gn‖A

= sup
‖f χ(1/2,1)‖L1 �1

∣∣∣
∫ 1

1
2

f (x)hn(x) dx
∣∣∣ ‖gn‖L∞ = ‖hn‖L∞‖gn‖L∞ = n2.

Consequently, although A satisfies (19), A is not a rank-one interpolation space.
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