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Abstract. The concept of local growth envelope of a quasi-normed function space is applied to
the spaces of Besov and Triebel-Lizorkin type of generalized smoothness (s,Ψ) in the critical
case s = n/p , where s stands for the main smoothness, Ψ is a perturbation and p stands for
integrability. The expression obtained for the behaviour of the local growth envelope functions
(which, as expected, depends on Ψ ) shows the ability to be generalized to a form unifying both
critical ( s = n/p ) and subcritical ( s < n/p ) cases.

1. Introduction

In [2] we have studied the local growth envelopes of the spaces B(s,Ψ)
pq (Rn) and

F(s,Ψ)
pq (Rn) of generalized smoothness in the sub-critical case n(1/p − 1)+ =: σp <

s < n/p , extending previous results of Haroske [7] and Triebel [17] dealing with the
same type of issues for the more classical Besov and Triebel-Lizorkin spaces.

We have postponed to the present work the extension of the results of [7] and [17]
dealing with the critical case σp < s = n/p . One of the reasons had to do with the
fact that the technique of interpolation used in the study of the sub-critical case was not
powerful enough in order to deal with the critical case (this was already clear in the
more classical setting studied by Haroske and Triebel). A second reason was that the
behaviour observed for the local growth envelope function in the classical critical case
did not give a clue for what it should be in the generalized setting. A third reason was
the difficulty in overcoming some technical details.

However, in the end the results obtained were much rewarding, because we not
only solved the problem of characterizing the local growth envelopes of the spaces
B(s,Ψ)

pq (Rn) and F(s,Ψ)
pq (Rn) in the critical case σp < s = n/p , as we did it in a way that

unifies with the sub-critical case σp < s < n/p and – we hope – which may open the
door to extensions to even more general settings (so, extension to the spaces studied,
for example, in [5] would be worth considering).
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Functions spaces of generalized smoothness have been considered since the middle
of the seventies of the last century, in particular by the Russian school, and have been
again in the center of interest in recent times. In particular because they are relevant
in recent investigations in the theory of stochastic processes, where they appear in a
natural way. For a short description of this and some historical remarks, please check
[5], where other relevant references can also be found.

We give now a more concrete flavour of the results which are proved in this paper.
Denoting by A either B or F , the main objective is to characterize the ability

of local growth for functions of the spaces A(s,Ψ)
pq (Rn) , when these spaces are not

continuously embedded in L∞(Rn) (thus the situation s > n/p has no interest). This
is in part done by studying the behaviour of the local growth envelope function

ELG|A(s,Ψ)
pq (t) := sup{f ∗(t) : ‖f |A(s,Ψ)

pq (Rn)‖ � 1}

near 0, where f ∗ stands for the decreasing rearrangement of f (so we need f to be in
Lloc

1 , which in part explains the restriction s > σp ).
When Ψ ≡ 1 and, consequently, we are dealing with the Besov and Triebel-

Lizorkin spaces As
pq(R

n) , Haroske [7] and Triebel [17] have proved that ELG|As
pq(t)

behaves like ts/n−1/p near 0 in the sub-critical case and like | log t|1/u′ near 0, with
u = q when A = B and u = p when A = F , in the critical case (with u′ standing
for the conjugate exponent of u and where u is here assumed to be greater than 1, as
otherwise the question is of no interest).

In [2] we have shown that ELG|A(s,Ψ)
pq (t) behaves like ts/n−1/pΨ(t)−1 near 0 in the

sub-critical case. In the present work we prove that it behaves like
(∫ 1

t1/n Ψ(y)−u′ dy
y

)1/u′

near 0, with u as above, in the critical case (where here Ψ is assumed to be such that
(Ψ(2−j)−1)j∈N �∈ �u′ , as otherwise the question is of no interest), this giving a clue for
describing the behaviour of the local growth envelope function near 0 of either critical
and sub-critical cases, both for the classical or generalized settings, in the following
unified form (which we actually prove in the course of the paper that reduces to the
previously given expressions in each specific situation considered before):

Φr,u′(t) :=

(∫ 1

t1/n
y−

n
r u′Ψ(y)−u′ dy

y

)1/u′

,

where −n/r = s − n/p .
Following the idea of Haroske [7] and Triebel [17] when introducing the concept

of local growth envelope, we also study the behaviour of an individual f ∗ against Φr,u′
and (assuming we have picked up a continuous Ψ ) the Borel measure μr,u′ associated
with − logΦr,u′ in some interval (0, ε] (for some small positive ε ), thus proving that
the best exponent v such that

(∫ ε

0

(
f ∗(t)
Φr,u′(t)

)v

μr,u′(dt)
)1/v

� c ‖f |A(s,Ψ)
pq (Rn)‖ , (1)
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for some constant c = c(v) and all f ∈ A(s,Ψ)
pq (Rn) , is q when A = B and p when

A = F , just like in the classical setting.
Notice that, when Ψ ≡ 1 , r = ∞ and v = u , (1) can be written as

(∫ ε

0

(
f ∗(t)
| log t|

)u dt
t

)1/u

� c ‖f |As
pq(R

n)‖ ,

which may become apparent that we are pushing forward in a direction already followed
by many others. We refer the reader to [17, 11.8(v), 13.5] for historical references to
the subject and related more recent developments, where the names of Adams, Brézis,
Brudnyi, Cwikel, Edmunds, Gold’man, Hansson, Kaljabin, Kerman, Krbec, Maz’ya,
Moser, Netrusov, Peetre, Pick, Pohozaev, Pustylnik, Schmeisser, Strichartz, Triebel,
Trudinger, Wainger, Yudovich and Ziemer are cited. See also related recent results
of Opic and Trebels [12] dealing with some Bessel potential spaces of generalized
smoothness.

We finish this introduction by collecting some general notation used throughout
the paper.

As usual, Rn denotes the n -dimensional real Euclidean space, N the collection
of all natural numbers and N0 = N ∪ {0} . We use the equivalence “∼ ” in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1 ak � bk � c2 ak or c1 ϕ(x) � ψ(x) � c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x , where
(ak)k , (bk)k are non-negative sequences and ϕ , ψ are non-negative functions. Given
two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural
embedding of X into Y is continuous. All unimportant positive constants will be
denoted by c , occasionally with additional subscripts within the same formula. If not
otherwise indicated, log is always taken with respect to base 2. Since we will not deal
with function spaces defined on domains different from Rn , in most cases we shall omit
the “R

n ” from their notation.

2. Functions of interest

We shall be concerned with function spaces of generalized smoothness of Besov
and Triebel-Lizorkin type, where the usual main smoothness parameter s is replaced
by a couple (s,Ψ) , where Ψ is an admissible function according to the following
definition.

DEFINITION 2.1. A positive monotone function Ψ on the interval (0, 1] is called
admissible if

Ψ(2−j) ∼ Ψ(2−2j), j ∈ N0. (2)
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EXAMPLE 2.2. If b ∈ R then

Ψb(x) = (1 + | log x|)b , x ∈ (0, 1], (3)

is an admissible function; we return to this particular choice in the sequel for illustration.

The proposition below gives some properties of admissible functions that will be
useful in the sequel. We refer to Lemma 2.3 of [2], where a simple proof can be found.
The reader may also want to refer to the beginning of [10], where some other useful
properties of admissible functions are stated and proved.

PROPOSITION 2.3. Let Ψ be an admissible function.
(i) There exist constants b � 0 , c1, c2 > 0 such that

c1 (1 + | log t|)−b � inf
0<s�1

Ψ(ts)
Ψ(s)

� sup
0<s�1

Ψ(ts)
Ψ(s)

� c2 (1 + | log t|)b,

for any t ∈ (0, 1] .
(ii) For any a, d > 0 , there is δ > 0 such that

Ψ(atd) ∼ Ψ(t), t ∈ (0, δ).

The functions we are going to introduce now will be central in the estimates to be
presented later.

DEFINITION 2.4. Let r, u ∈ (0,∞] and Ψ be a continuous admissible function.
Define Φr,u : (0, 2−n] → R by

Φr,u(t) :=

(∫ 1

t1/n
y−

n
r uΨ(y)−u dy

y

)1/u

(modified to supt1/n�y�1 y−
n
r Ψ(y)−1 if u = ∞ ).

PROPOSITION 2.5. Φr,u given as above is a positive, monotonically decreasing
and continuous function. In the case u �= ∞ we can even say that Φr,u is differentiable,
its derivative being given by

Φ′
r,u(t) = − 1

un
t−

u
r −1Ψ(t1/n)−uΦr,u(t)1−u , t ∈ (0, 2−n]. (4)

Proof. That Φr,u is positive and monotonically decreasing is obvious. In the
case u �= ∞ it is also clear that Φr,u is continuous, as it is a positive power of a
(Riemann) indefinite integral. Since the integrand is even continuous, then Φr,u is also
differentiable and elementary calculations lead to the expression (4).

It only remains to show that Φr,∞ is also continuous.
Let t ∈ (0, 2−n] and tk ↑ t , k ∈ N .
If there is k1 ∈ N such that Φr,∞(tk1) is attained in [t1/n, 1] , then for k � k1 it

always holds Φr,∞(tk) = Φr,∞(t) and therefore limk→∞ Φr,∞(tk) = Φr,∞(t) .

If Φr,∞(tk) is always attained in [t1/n
k , t1/n) , say in yk , then Φr,∞(tk) = y

− n
r

k Ψ(yk)−1 ,
so that, by the continuity of Ψ , limk→∞Φr,∞(tk) = t−

1
rΨ(t1/n)−1 . If Φr,∞(t) =
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t−
1
r Ψ(t1/n)−1 , we already got limk→∞Φr,∞(tk) = Φr,∞(t) . Otherwise, it must

be t−
1
r Ψ(t1/n)−1 < Φr,∞(t) < y

− n
r

k Ψ(yk)−1 and, by the continuity of Ψ , there

exists zk ∈ (yk, t1/n) such that Φr,∞(t) = z
− n

r
k Ψ(zk)−1 . Given any ε > 0 it

is thus possible, again using the continuity of Ψ , to choose k0 ∈ N such that
|y− n

r Ψ(y)−1 − t−
1
rΨ(t1/n)−1| < ε whenever y ∈ [t1/n

k0
, t1/n] , from which follows

that

|y− n
r Ψ(y)−1 − z−

n
r Ψ(z)−1| < 2ε (5)

whenever y, z ∈ [t1/n
k0

, t1/n] . In particular (5) is true when y = yk and z = zk , for any
k � k0 , that is,

|Φr,∞(tk) −Φr,∞(t)| < 2ε whenever k � k0 .

Let now t ∈ (0, 2−n) and tk ↓ t , k ∈ N .

If Φr,∞(t) is attained in (t1/n, 1] , say in y0 , then for k ∈ N such that t1/n
k � y0

we have Φr,∞(tk) = Φr,∞(t) , and therefore limk→∞Φr,∞(tk) = Φr,∞(t) . Otherwise,
Φr,∞(t) = t−

1
rΨ(t1/n)−1 and, by the continuity of Ψ ,

Φr,∞(t) � Φr,∞(tk) � t
− 1

r
k Ψ(t1/n

k )−1 −→
k → ∞

t−
1
rΨ(t1/n)−1 = Φr,∞(t) ,

so that we also have limk→∞ Φr,∞(tk) = Φr,∞(t) . �

PROPOSITION 2.6. Let Φr,u be given as in Definition 2.4.

(i) If r �= ∞ , then Φr,u(t) ∼ t−
1
r Ψ(t)−1 in (0, 2−n] . The same happens if r, u = ∞

and Ψ is not bounded away from zero.
(ii) If Ψ is bounded away from 0, then Φ∞,∞(t) ∼ 1 in (0, 2−n] .
(iii) If u �= ∞ and Ψ ≡ 1 , then Φ∞,u(t) ∼ | log t|1/u in (0, 2−n] .

Proof. Note that we are dealing with positive continuous functions in (0, 2−n] , so
that it suffices to show that the equivalences hold near 0.

(i) First consider the case r, u �= ∞ .
Observe that

Φr,u(t) = A(t) t−
1
r Ψ(t1/n)−1 , (6)

with

A(t) =

(∫ 1

t1/n

( y
t1/n

)− n
r u
(

Ψ(y)
Ψ(t1/n)

)−u dy
y

)1/u

=
( r

un

)1/u
(∫ − u

r ln t

0
e−z

(
Ψ(t1/n)

Ψ(ezr/(un)t1/n)

)u

dz

)1/u

, (7)

where we have changed variables according to the rule y = t1/ne
r
un z .
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The fraction inside the integral in (7) is, by Proposition 2.3 (i) , bounded above by
c1(1 + z)b , for some constants c1 > 0 and b � 0 , so that

A(t) � c2

(∫ 1

0
e−z dz +

∫ − u
r ln t

1
e−zzbu dz

)1/u

� c2(1 − e−1 + Γ(bu + 1))1/u � c3 , (8)

where c2, c3 > 0 are constants, Γ stands for the Euler function and the second integral
only shows up when 1 < − u

r ln t .
On the other hand, again by Proposition 2.3 (i) , the fraction inside the integral in (7)

is bounded below by c4(1 + z)−b , for some constant c4 > 0 , so that for t ∈ (0, e−r/u)
we have

A(t) � c5

(∫ 1

0
e−z dz

)1/u

� c6 , (9)

where c5, c6 > 0 are constants.
Since, from Proposition 2.3 (ii) , there exists δ > 0 such that Ψ(t1/n) ∼ Ψ(t) in

(0, δ) , (6), (8) and (9) together prove part (i) when r, u �= ∞ .
Consider now u = ∞ (again with r �= ∞ ).
When Ψ is monotonically increasing, the result is obvious.
When Ψ is monotonically decreasing, on the one hand one has, by definition of

supremum, Φr,∞(t) � t−
1
r Ψ(t1/n)−1 ; on the other hand, Φr,∞(t) � B(t) t−

1
r Ψ(t1/n)−1 ,

with

B(t) = sup
t1/n�y�1

(
t1/n

y

) n
r Ψ(t1/n)

Ψ(y)

� c7 sup
t1/n�y�1

(
t1/n

y

) n
r (

1 + | log
t1/n

y
|)b

= c7 sup
t1/n�z�1

z
n
r (1 − log z)b � c8 ,

where c7, c8 > 0 and b � 0 are constants and we have taken advantage of Proposition
2.3 (i) . The result again follows with the help of Proposition 2.3 (ii) .

Consider, finally, the case when r, u = ∞ and Ψ is not bounded away from 0.
Since Ψ is monotonic, then it must be increasing, so that Φ∞,∞(t) = Ψ(t1/n)−1 ∼

Ψ(t)−1 for small t > 0 .

(ii) If Ψ is increasing, Φ∞,∞(t) = Ψ(t1/n)−1 � Ψ(1)−1 , a positive constant.
On the other hand, under the hypothesis that Ψ is bounded away from 0, there exists
c9 > 0 such that Ψ(t1/n)−1 � c9 .

If Ψ is decreasing, Φ∞,∞(t) = Ψ(1)−1 , a positive constant.

(iii) It follows from straightforward calculations that, in the case u �= ∞ and
Ψ ≡ 1 , Φ∞,u(t) = (− 1

n log e log t)1/u . �
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PROPOSITION 2.7. Let Φr,u be as in Definition 2.4. Then

Φr,u(t) ∼
⎛
⎝[| log t|/n]∑

j=1

2j nr uΨ(2−j)−u

⎞
⎠

1/u

in (0, 2−n]

(with the right-hand side modified to supj=1,...,[| log t|/n] 2
j nr Ψ(2−j)−1 if u = ∞ ).

Proof. Taking advantage of the definition of admissible function, we have, for all
t ∈ (0, 2−n] ,

⎛
⎝[| log t|/n]∑

j=1

2j nr uΨ(2−j)−u

⎞
⎠

1/u

� c1

⎛
⎝[| log t|/n]∑

j=1

∫ 2−(j−1)

2−j
y−

n
r uΨ(y)−u dy

y

⎞
⎠

1/u

� c1

(∫ 1

t1/n
y−

n
r uΨ(y)−u dy

y

)1/u

� c1

⎛
⎝[| log t|/n]+1∑

j=1

∫ 2−(j−1)

2−j
y−

n
r uΨ(y)−u dy

y

⎞
⎠

1/u

� c2

⎛
⎝[| log t|/n]+1∑

j=1

2j n
r uΨ(2−j)−u

⎞
⎠

1/u

� c3

⎛
⎝[| log t|/n]∑

j=1

2j nr uΨ(2−j)−u

⎞
⎠

1/u

and

sup
j=1,...,[| log t|/n]

2j n
r Ψ(2−j)−1 � c1 sup

j=1,...,[| log t|/n]

(
sup

2−j�y�2−(j−1)
y−

n
r Ψ(y)−1

)

� c1 sup
t1/n�y�1

y−
n
r Ψ(y)−1

� c1 sup
j=1,...,[| log t|/n]+1

(
sup

2−j�y�2−(j−1)

y−
n
r Ψ(y)−1

)

� c2 sup
j=1,...,[| log t|/n]+1

2j n
r Ψ(2−j)−1

� c3 sup
j=1,...,[| log t|/n]

2j n
r Ψ(2−j)−1 ,

where, in both cases, c1, c2 and c3 are suitable positive constants. �
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3. Function spaces of generalized smoothness

3.1. Introduction

Before introducing the function spaces under consideration we need to recall
some notation. By S we denote the Schwartz space of all complex-valued, infinitely
differentiable and rapidly decreasing functions on Rn and by S ′ the dual space of
all tempered distributions on Rn . Furthermore, Lloc

1 stands for the collection of all
complex-valued locally Lebesgue-integrable functions on Rn and Lp , with 0 < p �
∞ , is the usual quasi-Banach space with respect to the Lebesguemeasure, quasi-normed
by

‖f | Lp‖ :=
(∫

Rn
|f (x)|p dx

)1/p
,

with the usual modification if p = ∞ . Let ϕ0 ∈ S with

ϕ0(x) = 1 if |x| � 1 and supp ϕ0 ⊂ {x ∈ R
n : |x| � 2}, (10)

and for each j ∈ N let ϕj(x) := ϕ0(2−jx) − ϕ0(2−j+1x) , x ∈ Rn . Then (ϕj)j∈N0 form
a smooth dyadic resolution of unity. Given any f ∈ S ′ , we denote by F f and F−1f
its Fourier transform and its inverse Fourier transform, respectively.

DEFINITION 3.1. Let 0 < p, q � ∞ , s ∈ R and Ψ be an admissible function.
(i) Then B(s,Ψ)

pq is the collection of all f ∈ S ′ such that

‖f | B(s,Ψ)
pq ‖ :=

( ∞∑
j=0

2jsq Ψ(2−j)q ‖F−1[ϕjF f ] | Lp‖q
)1/q

(11)

(with the usual modification if q = ∞ ) is finite.
(ii) Let 0 < p < ∞ . Then F(s,Ψ)

pq is the collection of all f ∈ S ′ such that

‖f | F(s,Ψ)
pq ‖ :=

∥∥∥( ∞∑
j=0

2jsq Ψ(2−j)q |F−1[ϕjF f ](·)|q
)1/q∣∣∣ Lp

∥∥∥ (12)

(with the usual modification if q = ∞ ) is finite.

REMARK 3.2. The above spaces, quasi-normed by (11) and (12), were introduced
by Edmunds and Triebel in [3, 4] and also considered by Moura in [10, 11], where they
have remarked that such spaces are independent of the resolution of unity taken, in the
sense of equivalent quasi-norms. If Ψ ≡ 1 then the spaces B(s,Ψ)

pq and F(s,Ψ)
pq coincide

with the usual Besov and Triebel-Lizorkin spaces, Bs
pq and Fs

pq , respectively, and the
following elementary embeddings hold:

As+ε
pq ↪→ A(s,Ψ)

pq ↪→ As−ε
pq , (13)

for all ε > 0 and A ∈ {B, F} .
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EXAMPLE 3.3. With the particular choice of Ψb given by (3) we obtain spaces
Bs,b

pq consisting of those f ∈ S ′ for which

‖f | Bs,b
pq ‖ :=

( ∞∑
j=0

2jsq (1 + j)bq ‖F−1[ϕjF f ] | Lp‖q
)1/q

is finite (usual modification for q = ∞ ); similarly for Fs,b
pq . These spaces were studied

by Leopold in [9].

An important tool is the characterization of the spaces of generalized smoothness
by means of atomic decompositions. We state this here only for the B -spaces. We refer
to [10] or [11] for a complete description. We need some preparation.

As for Zn , it stands for the lattice of all points in Rn with integer-valued
components, Qνm denotes a cube in Rn with sides parallel to the axes of coordi-
nates, centred at 2−νm = (2−νm1 . . . , 2−νmn) , and with side length 2−ν , where
m = (m1, . . . , mn) ∈ Zn and ν ∈ N0 . If Q is a cube in Rn and r > 0 then rQ is the
cube in Rn concentric with Q and with side length r times the side length of Q .

DEFINITION 3.4. (i) Let K ∈ N0 and c > 1 . A K times differentiable complex-
valued function a in Rn (continuous if K = 0 ) is called an 1K -atom if

supp a ⊂ c Q0m, for some m ∈ Z
n

and
|Dαa(x)| � 1, for |α| � K.

(ii) Let K ∈ N0 , L + 1 ∈ N0 and c > 1 . A K times differentiable complex-valued
function a in Rn (continuous if K = 0 ) is called an (s, p,Ψ)K,L -atom if for some
ν ∈ N0 ,

supp a ⊂ c Qνm, for some m ∈ Z
n,

|Dαa(x)| � 2−ν(s− n
p )+|α|ν Ψ(2−ν)−1, for |α| � K,

and ∫
Rn

xβa(x) dx = 0, if |β | � L.

If the atom a is located at Qνm , that means

supp a ⊂ c Qνm, with ν ∈ N0, m ∈ Z
n,

then we write it as aνm . The sequence spaces bpq are defined as follows:

DEFINITION 3.5. Let λ = (λνm)ν∈N0,m∈Zn ⊂ C . Then

bpq =
{
λ : ‖λ | bpq‖ =

( ∞∑
ν=0

(∑
m∈Zn

|λνm|p
)q/p )1/q

< ∞
}

(with the usual modification if p = ∞ or/and q = ∞ ).

If 0 < p � ∞ then σp := n(1/p − 1)+ = max{0, n(1/p− 1)} .
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THEOREM 3.6. Let c > 1 , K ∈ N0 and L + 1 ∈ N0 with

K � (1 + [s])+ and L � max(−1, [σp − s]) (14)

be fixed. Then f ∈ S ′ belongs to B(s,Ψ)
pq if, and only if, it can be represented as

f =
∞∑
ν=0

∑
m∈Zn

λνm aνm, convergence being in S ′, (15)

where aνm are 1K -atoms (ν = 0 ) or (s, p,Ψ)K,L -atoms (ν ∈ N ) according to
Definition 3.4 and λ ∈ bpq . Furthermore

inf ‖λ | bpq‖, (16)

where the infimum is taken over all admissible representations (15), is an equivalent
quasi-norm in B(s,Ψ)

pq .

3.2. Rearrangement properties

If f is an extended complex-valued measurable function on Rn which is finite
a.e., then the decreasing rearrangement of f is the function defined on [0,∞) by

f ∗(t) := inf{λ � 0 : mf (λ ) � t}, t � 0, (17)

with mf being the distribution function given by

mf (λ ) :=
∣∣{x ∈ R

n : |f (x)| > λ}∣∣, λ � 0.

As usual, the convention inf ∅ = ∞ is assumed and | · | denotes Lebesgue measure
when applied to measurable subsets of Rn . Moreover, the maximal function of f ∗ is
the function

f ∗∗(t) :=
1
t

∫ t

0
f ∗(τ) dτ, t > 0.

We assume that the reader is familiar with basic facts concerning rearrangements: these
may be found in [1]. In particular we shall need the sub-additivity property

(f + g)∗∗(t) � f ∗∗(t) + g∗∗(t), t > 0. (18)

By analogy, in the case of a (multiple) sequence (αm)m∈Zn ⊂ C , its decreasing
rearrangement is defined as the sequence (α∗

l )l∈N , where

α∗
l := inf{λ � 0 : #{m ∈ Z

n : |αm| > λ} < l} , l ∈ N . (19)

We also define

α∗∗
l :=

1
l

l∑
k=1

α∗
k , l ∈ N .

PROPOSITION 3.7. Let p ∈ (1,∞] . Let (αm)m∈Zn , (α∗
l )l∈N and (α∗∗

l )l∈N be as
above. Then

‖(αm)m∈Zn |�p‖ = ‖(α∗
l )l∈N|�p‖ � ‖(α∗∗

l )l∈N|�p‖ � p
p − 1

‖(α∗
l )l∈N|�p‖ ,

where p
p−1 should be interpreted as 1 when p = ∞ .
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Proof. The result is obvious for p = ∞ . As to the case p ∈ (1,∞) , the equality
(which, actually, holds also for 0 < p � 1 ) follows from [1, Prop. 1.8 in Ch. 2, p.
43] applied to the counting measure in Zn and the last inequality is due to Hardy and
Landau [6, pp. 239-240]. �

PROPOSITION 3.8. Let d > 1/2 and (dj)j∈N0 be a sequence of positive numbers.
Let (ajm)j∈N0 ,m∈Zn be a sequence of complex-valued measurable functions on Rn such
that, for each j and m , supp ajm ⊂ 2dQjm and |ajm(x)| � dj , ∀x ∈ Rn , where Qjm

is a dyadic cube as defined previously, in subsection 3.1.. Let (λjm)j∈N0 ,m∈Zn be a
sequence of complex numbers and define, for each j ∈ N0 ,

f j(x) :=
∑
m∈Zn

λjmajm(x) , x ∈ R
n . (20)

(i) There are positive constants C and D , depending only on n and d , such that

f ∗
j (t) � Ddj

∞∑
l=1

λ ∗
jl χjl(t) , t � 0 , j ∈ N0 ,

and

f ∗∗
j (t) � Ddj

∞∑
l=1

λ ∗∗
jl χjl(t) , t > 0 , j ∈ N0 , (21)

where χjl stands for the characteristic function of the set [C2−jn(l−1), C2−jnl), l ∈
N , (λ ∗

jl )l∈N is the decreasing rearrangement of (λjm)m∈Zn , j ∈ N0 , and

λ ∗∗
jl := 1

l

∑l
k=1 λ

∗
jk, l ∈ N .

(ii) If, for some j ∈ N0 and p ∈ (0,∞] , (λjm)m∈Zn ∈ �p(Zn) , then f j ∈ Lp , for the
same j and p .

(iii) Let p ∈ [1,∞] , q ∈ (0,∞] and assume (λjm)j∈N0,m∈Zn ∈ bpq , where bpq was

introduced in Definition 3.5. If, moreover, (dj2
−j n

p )j∈N0 ∈ �q′ , where q′ is
conjugate to q (with q′ = ∞ when 0 < q � 1 ), then the series

∞∑
j=0

f j

converges in Lp to a function f satisfying

f ∗∗(t) �
∞∑
j=0

f ∗∗
j (t) , t > 0 .

Proof. (i) Note that (20) makes sense pointwise, the sum being finite in, say, each
set of the form 2dQjm , and therefore each f j is a complex-valued measurable function.

Let D/2 be an upper bound for the maximum number of different sets 2dQjm (for
the same j ∈ N0 ) with non-empty intersection.

Observe that, for each j ∈ N0 and x ∈ Rn , there is an m ∈ Zn such that x ∈ 2dQjm

and

|f j(x)| � D
2

dj|λjm| .
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Therefore, for each j ∈ N0 and l ∈ N , and if λ ∗
jl is finite,

|{x ∈ R
n : | 2

D
d−1

j f j(x)| > λ ∗
jl }|

� |{x ∈ R
n : ∃m ∈ Z

n s.t. x ∈ 2dQjm and |λjm| > λ ∗
jl }|

� |
⋃

m∈Zn s.t. |λjm|>λ∗jl

2dQjm|

�
∑

m∈Zn s.t. |λjm|>λ∗jl

|2dQjm|

� (2d)n2−jn(l − 1) .

Choose C := (2d)n .
We then have, for t � C2−jn(l − 1) , that ( 2

Dd−1
j f j)∗(t) � λ ∗

jl and, consequently,

f ∗
j (t) � D

2
dj

∞∑
l=1

λ ∗
jl χjl(t) , t � 0 , j ∈ N0 .

Let now t > 0 . Therefore, for each j ∈ N0 , l ∈ N and C2−jn(l−1) � t < C2−jnl ,

f ∗∗
j (t) � Ddjλ ∗∗

jl ,

from which (21) follows easily.
(ii) Assume first that 0 < p < ∞ . Then we have∫ ∞

0
f ∗
j (t)p dt �

∞∑
l=1

Dpdp
j

∫ C2−jnl

C2−jn(l−1)
λ ∗p

jl dt

= Dpdp
j C2−jn

∞∑
l=1

λ ∗p
jl

= Dpdp
j C2−jn

∑
m∈Zn

|λjm|p < ∞ ,

hence f j ∈ Lp .
In the case p = ∞ , observe that f ∗

j (0) � Ddjλ ∗
j1 = Ddj supm∈Zn |λjm| < ∞ ,

hence f j ∈ L∞ .
(iii) Given M, L ∈ N with M > L , in the case 1 � p < ∞ we can write

∥∥∥ M∑
j=L

f j

∣∣∣ Lp

∥∥∥ �
M∑

j=L

(∫ ∞

0
f ∗
j (t)p dt

)1/p

�
M∑

j=L

DC1/pdj2
−j np

(∑
m∈Zn

|λjm|p
)1/p

� DC1/p

⎛
⎝ M∑

j=L

(∑
m∈Zn

|λjm|p
)q/p

⎞
⎠

1/q(
M∑

j=L

dq′
j 2−j n

p q′
)1/q′
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(with the usual modifications if q = ∞ or 0 < q � 1 ).
From the hypothesis it follows that

(∑M
j=0 f j

)
M∈N

is fundamental in the complete

space Lp , hence it converges in this space to, say, f .
When p = ∞ we have ‖∑M

j=L f j|L∞‖ �
∑M

j=L f ∗
j (0) �

∑M
j=L Ddj

supm∈Zn |λjm| , and the proof of the convergence of
∑∞

j=0 f j to some function f in
Lp follows as before.

From f =
∑∞

j=0 f j in Lp it follows that |f | �
∑∞

j=0 |f j| pointwise a.e., where
the last sum might possibly be infinity at some points, and from here we can apply the
subadditivity property (18) as well as other properties of maximal functions (cf. [1,
Prop. 3.2 of Ch. 2, pp. 52-53] for the case when the functions are finite a.e.) to get

f ∗∗(t) �
∞∑
j=0

f ∗∗
j (t) , t > 0 .

�

COROLLARY 3.9. Given p ∈ [1,∞] , q ∈ (0,∞] , s ∈ R and Ψ an admissible

function, B(s,Ψ)
pq ⊂ Lloc

1 either if s > 0 or if s = 0 and (Ψ(2−j)−1)j∈N0 ∈ �q′ .

Proof. We first remark that the result for s > 0 can also be obtained by comparing
with Besov spaces with Ψ ≡ 1 , via (13). But here we have a direct proof, even for the
case when Ψ ≡ 1 .

From Theorem 3.6 we know that any f ∈ B(s,Ψ)
pq is the limit, in S ′ , of f j ’s as in

Proposition 3.8, where (λjm)j∈N0,m∈Zn ∈ bpq , d0 = 1 and dj = 2−j(s− n
p )Ψ(2−j)−1 for

j ∈ N . Since (dj2
−j np )j∈N = (2−jsΨ(2−j)−1)j∈N is in �q′ either when s > 0 or when

s = 0 and (Ψ(2−j)−1)j∈N0 ∈ �q′ , then part (iii) of Proposition 3.8 guarantees that∑∞
j=0 f j also converges in Lp . Since Lp ↪→ S ′ (recall p � 1 ), then, under the given

conditions, f ∈ Lp and, therefore, is locally integrable. �

EXAMPLE 3.10. Recall our example Ψb given by (3) and the correspondingspaces
in Example 3.3. Assume p ∈ [1,∞] , q ∈ (0,∞] and s, b ∈ R . Then Corollary 3.9
yields that Bs,b

pq ⊂ Lloc
1 either if s > 0 or

s = 0 and

{
b > 1/q′, if q > 1;

b � 0, if 0 < q � 1.

3.3. Extremal functions

Let ϕ be the compactly supported C∞ function on Rn defined by

ϕ(x) := e−1/(1−|x|2) if |x| < 1 and ϕ(x) := 0 if |x| � 1. (22)

PROPOSITION 3.11. Let 0 < p < ∞ , 0 < q � ∞ and Ψ be an admissible
function. Let b = (bj)j∈N be a non-negative sequence in �q and put

f (x) :=
∞∑
j=1

bj Ψ(2−j)−1 ϕ(2j−1x), x ∈ R
n, (23)
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where ϕ is the function given by (22). Then f ∈ B(n/p,Ψ)
pq and, moreover,

‖f | B(n/p,Ψ)
pq ‖ � c ‖b | �q‖ (24)

for some c > 0 which does not dependent on b . If, in addition, there exist a strictly
increasing sequence (jk)k∈N of natural numbers and a positive constant d such that

bjk � d bjk+1
, k ∈ N, bj = 0 for j �= jk, k ∈ N, (25)

and

Ψ(2−jk) ∼ Ψ(2−jk+1), k ∈ N, (26)

then, for the decreasing rearrangement f ∗ of f the following inequalities hold:

f ∗(t) � c1

k+1∑
�=1

bj� Ψ(2−j�)−1 for t � |ωn| 2−jkn, and (27)

f ∗(t) � c2

k+1∑
�=1

bj� Ψ(2−j�)−1 for 0 < t < |ωn| (1 − 2−n) 2−jkn, (28)

with k ∈ N , c1, c2 positive constants which depend only on ϕ , Ψ and d , and |ωn|
standing for the Lebesgue measure of the unit ball in Rn .

Proof. Since the functions

aj(x) := Ψ(2−j)−1 ϕ(2j−1x), x ∈ R
n, j ∈ N, (29)

are (up to constants, independently of j ) (n/p, p,Ψ)K,−1 -atoms, for some fixed K ∈ N

with K > n/p , and b ∈ �q , then (24) is an immediate consequence of Theorem 3.6.
Assume now that (25) and (26) hold true. Let 2−(jk+1) � |x| � 2−jk , for some

k ∈ N . We then have

f (x) =
k+1∑
�=1

bj� Ψ(2−j�)−1 ϕ(2j�−1x) � e−1
k+1∑
�=1

bj� Ψ(2−j�)−1 (30)

and, on the other hand,

f (x) � e−
4
3

k∑
�=1

bj� Ψ(2−j�)−1 � e−
4
3

2

( k∑
�=1

bj� Ψ(2−j�)−1 + bjk Ψ(2−jk)−1
)

� e−
4
3

2

( k∑
�=1

bj� Ψ(2−j�)−1 + c bjk+1
Ψ(2−jk+1)−1

)

� c′
k+1∑
�=1

bj� Ψ(2−j�)−1, (31)
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where c′ is a constant depending only on ϕ , Ψ and on the constant d (according to
(25)). Thus, if λ is such that 0 < λ < c′

∑k+1
�=1 bj� Ψ(2−j�)−1 , for some k ∈ N and

with c′ as above, then

mf (λ ) �
∣∣{x ∈ R

n : f (x) � c′
k+1∑
�=1

bj� Ψ(2−j�)−1
}∣∣

�
∣∣{x ∈ R

n : 2−(jk+1) � |x| � 2−jk
}∣∣ = |ωn| (1 − 2−n) 2−jkn,

and, if λ � e−1 ∑k+1
�=1 bj� Ψ(2−j�)−1 then

mf (λ ) �
∣∣{x ∈ R

n : f (x) > e−1
k+1∑
�=1

bj� Ψ(2−j�)−1
}∣∣

�
∣∣{x ∈ R

n : |x| � 2−jk
}∣∣ = |ωn| 2−jkn,

where |ωn| denotes the Lebesgue measure of the unit ball in Rn . The above estimates
yield (27) and (28) with c1 = e−1 and c2 = c′ . �

REMARK 3.12. In the sequel and for technical reasons, we will consider the
function g given by

g(x) := f (R1/nx), x ∈ R
n, (32)

where f is the function in (23) and R := |ωn|(1 − 2−n)2−n (so, a constant depending
only on n ). Analogously to f , it turns out that

g ∈ B(n/p,Ψ)
pq and ‖g | B(n/p,Ψ)

pq ‖ � c ‖b | �q‖, (33)

for some constant c , independent of b . Concerning the decreasing rearrangement of
g , it holds

g∗(t) = f ∗(Rt), t > 0, (34)

and, in particular,

g∗(2−jkn) � c
k+1∑
�=1

bj� Ψ(2−j�)−1, k ∈ N, (35)

for some positive constant c , independent of b .

3.4. Local growth envelopes

As we briefly mentioned in the Introduction – and explained in some detail in [2]
–, regarding the study of local growth envelopes in the context of the spaces A(s,Ψ)

pq , of
interest are the spaces so that

A(s,Ψ)
pq ⊂ Lloc

1 but A(s,Ψ)
pq �↪→ L∞.

As for the inclusion A(s,Ψ)
pq ⊂ Lloc

1 , this is the case if s > σp and impossible if s < σp .
The borderline s = σp deserves a careful attention and we transfer this topic to a later
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occasion, although something in this direction is already contained in Corollary 3.9. A
complete characterization for the usual Besov and Triebel-Lizorkin spaces is known, cf.
[13].
When σp < s < n/p , independently of Ψ and q we never have embeddings in L∞ .
This corresponds to the so-called sub-critical case and in [2] we have achieved final
answers for the correspondent local growth envelopes. When s > n/p we always have
embeddings in L∞ , so that the remaining case is then s = n/p , the so-called critical
case, which we shall consider in this paper.

In the following we present the complete description for the embeddings in L∞ in
the critical case. In the context of 1 < p, q < ∞ the result is due to Kalyabin [8]. We
recall that for 0 < r � ∞ the number r′ is given by 1/r′ = (1 − 1/r)+ .

PROPOSITION 3.13. Let 0 < p, q � ∞ and Ψ be an admissible function.
(i) Then

B(n/p,Ψ)
pq ↪→ L∞ if, and only if,

(
Ψ(2−j)−1

)
j∈N

∈ �q′ .

(ii) Let 0 < p < ∞ . Then

F(n/p,Ψ)
pq ↪→ L∞ if, and only if,

(
Ψ(2−j)−1

)
j∈N

∈ �p′ .

In both cases L∞ can be replaced by C , the space of all complex-valued bounded and
uniformly continuous functions on R

n .

Proof. We will prove here only the sufficiency of the conditions since the necessity
will follow as a by-product of later considerations (see Remark 4.3 below).

Let (ϕj)j∈N0 be the usual resolution of unity and let f ∈ B(n/p,Ψ)
pq . By (1.3.2/5)

and Remark 1.4.1/4 in [15], we have

‖F−1[ϕjF f ] | L∞‖ � c 2jn/p ‖F−1[ϕjF f ] | Lp‖, j ∈ N0. (36)

Let first 0 < q � 1 and suppose that
(
Ψ(2−j)−1

)
j∈N

∈ �∞ . Since then �q ↪→ �1 ,
using (36) we obtain

∞∑
j=0

‖F−1[ϕjF f ] | L∞‖ � c
∞∑
j=0

2jn/p ‖F−1[ϕjF f ] | Lp‖

� c
( ∞∑

j=0

2jnq/p ‖F−1[ϕjF f ] | Lp‖q
)1/q

� c sup
j∈N0

Ψ(2−j)−1
( ∞∑

j=0

2jnq/p Ψ(2−j)q ‖F−1[ϕjF f ] | Lp‖q
)1/q

= c ‖Ψ(2−j)−1 | �∞‖ ‖f | B(n/p,Ψ)
pq ‖.
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Now let 1 < q � ∞ . Assuming that
(
Ψ(2−j)−1

)
j∈N

∈ �q′ , using (36) and applying
Hölder’s inequality we get

∞∑
j=0

‖F−1[ϕjF f ] | L∞‖ � c ‖Ψ(2−j)−1 | �q′‖×

×
( ∞∑

j=0

2jnq/p Ψ(2−j)q‖F−1[ϕjF f ] | Lp‖q
)1/q

= c ‖Ψ(2−j)−1 | �q′‖ ‖f | B(n/p,Ψ)
pq ‖

(with the usual modification if q = ∞ ). Hence, in both cases of q and under the
corresponding assumption on the sequence

(
Ψ(2−j)−1

)
j∈N

, we have shown that

B(n/p,Ψ)
pq ↪→ B0

∞1.

This leads to B(n/p,Ψ)
pq ↪→ C as B0

∞1 ↪→ C , cf. e.g. [14, 2.2.9/(1), p. 68].
Since Fn/p

pq ↪→ B0
∞p – cf. e.g. [16, 11.4 (iii) ] – then Proposition 3.4 of [2] yields

F(n/p,Ψ)
pq ↪→ B(0,Ψ)

∞p .

Therefore, by what has been proved above,
(
Ψ(2−j)−1

)
j∈N0

∈ �p′ implies F(n/p,Ψ)
pq ↪→

C . �

EXAMPLE 3.14. In case of our particular example Ψb given by (3) and the
corresponding spaces in Example 3.3, Proposition 3.13 reads as

Bn/p,b
pq ↪→ L∞ if, and only if,

{
b > 1/q′, if q > 1;
b � 0, if 0 < q � 1,

where p, q ∈ (0,∞] and b ∈ R .

According to what was pointed out before, regarding the local growth envelope of
interest are the spaces A(s,Ψ)

pq so that

σp < s <
n
p

or σp < s =
n
p

and

{ (
Ψ(2−j)−1

)
j∈N

�∈ �q′ if A = B,(
Ψ(2−j)−1

)
j∈N

�∈ �p′ if A = F.
(37)

We can even say, in such a case, that

ELG|A(s,Ψ)
pq (t) := sup{f ∗(t) : ‖f |A(s,Ψ)

pq ‖ � 1}
(which is finite for t > 0 , in view of Proposition 4.1 and Corollary 4.5) defines a
decreasing function which is positive in (0, ε] , for some ε ∈ (0, 1) , and which tends to
∞ as t goes to 0 (cf. Theorem 4.4 of [2] in case of s < n/p and Proposition 4.2 below
in case of s = n/p ). Therefore, it makes sense to ask for the behaviour of ELG|A(s,Ψ)

pq (t)
near zero, which gives an indication of the ability of local growth for functions in A(s,Ψ)

pq .
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Let ELG be the set of all functions f : (0, ε] → R+ , for any ε ∈ (0, 1] , which are
decreasing and consider the following equivalence relation in ELG : given f , g ∈ ELG ,
one says that f and g are equivalent (and write f ∼LG g ) if

∃ c1, c2 > 0 : ∀ t ∈ (0, ε], c1 g(t) � f (t) � c2 g(t),

where (0, ε] is the smallest of the domains of f and g .

DEFINITION 3.15. The local growth envelope function of A(s,Ψ)
pq , for s, p, q and Ψ

satisfying (37), is the equivalence class [ELG|A(s,Ψ)
pq ] . We shall also call local growth

envelope function of A(s,Ψ)
pq any representative in such a class. We even call local

growth envelope function of A(s,Ψ)
pq any function f : (0, ε] → R+ , for some ε ∈ (0, 1] ,

– even if not decreasing – such that f ∼ ELG|A(s,Ψ)
pq in (0, ε] , and use it to represent the

equivalence class [ELG|A(s,Ψ)
pq ] .

REMARK 3.16. Note that different equivalent quasi-norms taken in the same space
A(s,Ψ)

pq give rise to the same equivalence class [ELG|A(s,Ψ)
pq ] .

Let again s, p, q and Ψ be so that (37) holds true.
Assume there exists a continuous representative ELGA(s,Ψ)

pq ∈ [ELG|A(s,Ψ)
pq ] (we shall

later see that this is indeed the case). Let (0, ε] , 0 < ε < 1 , be its domain.
Define H(t) := − logELGA(s,Ψ)

pq (t) and note that H is a (finite) real increasing
function on (0, ε] which tends to −∞ when t goes to 0. There is only a Borel
measure (i.e., a measure defined on the Borel sets) μH in (0, ε] such that μH

(
[a, b]

)
=

H(b) − H(a) , ∀ [a, b] ⊂ (0, ε] . Its restriction to each such [a, b] is the Stieltjes-Borel
measure associated with H|[a,b] .

We recall here Proposition 12.2 of [17], which will be useful in the sequel.

PROPOSITION 3.17. (i) Let 0 < ε < 1 and h : (0, ε] → R+ be a continuous,
decreasing function such that limt→0+ h(t) = ∞ . Let H(t) := − log h(t) , t ∈ (0, ε] ,
and μH be the associated Borel measure in (0, ε] , as above. Let 0 < u1 < u2 < ∞ .
There are c1, c2 > 0 such that

sup
t∈(0,ε]

γ (t)
h(t)

� c2

(∫
(0,ε]

(
γ (t)
h(t)

)u2

μH(dt)
)1/u2

� c1

(∫
(0,ε]

(
γ (t)
h(t)

)u1

μH(dt)
)1/u1

for all non-negative decreasing functions γ on (0, ε] .
(ii) Let 0 < ε < 1 and h1 and h2 be functions as the h above and satisfying h1 ∼ h2

in (0, ε] . Let Hi := − log hi and μHi be the associated Borel measure in (0, ε] ,
i = 1, 2 , as before. Let 0 < u � ∞ . Then(∫

(0,ε]

(
γ (t)
h1(t)

)u

μH1
(dt)

)1/u

∼
(∫

(0,ε]

(
γ (t)
h2(t)

)u

μH2
(dt)

)1/u
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(with the sup-norm if u = ∞ ) for all non-negative decreasing functions γ on (0, ε] ,
where the equivalence constants are independent of γ .

REMARK 3.18. Note that this proposition makes clear that an expression like(∫
(0,ε]

(
γ (t)
h(t)

)u

μH(dt)
)1/u

(38)

must be interpreted as supt∈(0,ε](γ (t)/h(t)) when u = ∞ .

In the important case when H happens to be continuously differentiable in (0, ε] , we
have μH(dt) = H′ dt , and for the functionswe want to integrate in (38) we can calculate
the integral as the improper Riemann integral∫ ε

0

(
γ (t)
h(t)

)u

H′(t) dt.

DEFINITION 3.19. Let s, p, q,Ψ be according to (37) and 0 < u � ∞ . Then

ELGA(s,Ψ)
pq :=

(
[ELG|A(s,Ψ)

pq ], u
)

is called the local growth envelope of A(s,Ψ)
pq if u is the minimum (assuming that it

exists) of all v > 0 such that

∃ c(v) > 0 : ∀ f ∈ A(s,Ψ)
pq ,(∫

(0,ε]

(
f ∗(t)
h(t)

)v

μH(dt)
)1/v

� c(v) ‖f |A(s,Ψ)
pq ‖, (39)

where h(t) is a continuous representative in [ELG|A(s,Ψ)
pq ] with domain (0, ε] , 0 < ε <

1 .

We must remark that this definition makes sense, namely that the infimum of all
such v ’s is independent of the chosen continuous representative h(t) in [ELG|A(s,Ψ)

pq ] ,
as follows by using some standard arguments of measure and integration theory, the
definition of ELG|A(s,Ψ)

pq and Proposition 3.17 (ii) . Recall, on the other hand, that we
are assuming that there exists at least one such representative – and we have already
mentioned that this is indeed the case, as will be apparent later. Recall also that the
definition of ELG|A(s,Ψ)

pq guarantees that (39) holds at least for v = ∞ . Remark also
that the definition does not discard the possibility that there is no such thing called the
local growth envelope of A(s,Ψ)

pq : this would be the case if the infimum of the mentioned
v ’s were not a minimum. We shall, however, see (in Section 4) that the minimum is
really attained, and therefore all mentioned spaces have local growth envelopes.

Instead of
(
[ELG|A(s,Ψ)

pq ], u
)
, we shall usually write

(
h(t), u

)
for the local growth

envelope of A(s,Ψ)
pq with (37), where h(t) is any continuous representative in [ELG|A(s,Ψ)

pq ] .
Instead of h(t) , we can also use in the couple any local growth envelope function as
considered in Definition 3.15, though it must be borne in mind that for the construction
of the measure μH we shall only use continuous representatives in [ELG|A(s,Ψ)

pq ] .
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4. Local growth envelopes for B(s,Ψ)
pq and F(s,Ψ)

pq

We start by getting the upper estimates needed in order to determine the growth
envelopes and, as we shall see, in this part we deal both with the critical and the sub-
critical case, though the latter was already studied in [2]. The reason is that the technique
used here is completely different from the technique of interpolation with a function
parameter used in [2] for the corresponding upper estimates. Here we use a more direct
approach, as Haroske and Triebel did for the critical case in the classical setting, but
we show that the same approach can also be used in the sub-critical case. Though not
explicitly mentioned in the assertion that follows, when convenient we assume in its
proof that the admissible function Ψ satisfies the condition Ψ(1) = 1 . There is no
loss of generality in doing this.

Recall that the notation σp stands for n( 1
p − 1)+ .

PROPOSITION 4.1. Let 0 < p, q � ∞ and s ∈ R be such that σp < s � n/p
and Ψ be a continuous admissible function. Define r ∈ (1,∞] by the equation
s − n/p = −n/r and let Φr,q′ be as in Definition 2.4 (now with q′ in the place of
u ). In the case s = n/p assume further that (Ψ(2−j)−1)j∈N �∈ �q′ . Then there exists
ε ∈ (0, 1) and c > 0 such that

ELG|B(s,Ψ)
pq (t) � cΦr,q′(t) , ∀t ∈ (0, ε], (40)

and, for each v ∈ [q,∞] , there exists c(v) > 0 such that

(∫ ε

0

(
f ∗(t)
Φr,q′(t)

)v

μr,q′(dt)
)1/v

� c(v)‖f |B(s,Ψ)
pq ‖ , ∀f ∈ B(s,Ψ)

pq (41)

(with themodification (49) if v = ∞ ), where μr,q′ denotes the Borel measure associated
with − logΦr,q′ in (0, ε] (in accordance with subsection 3.4.).

Proof. First note that the hypotheses imply that p �= ∞ and B(s,Ψ)
pq ⊂ Lloc

1 .

Fix d > 1/2 as in Proposition 3.8 and consider the corresponding constants C
and D . Define ε := C2−k0n � 2−n , for a suitable chosen k0 ∈ N .

Step 1. First we assume p > 1 and q = ∞ and prove (40) and the modified
version (45) of (41) (which is the correct interpretation of the latter in the case v = ∞ ).

Given f ∈ B(s,Ψ)
p∞ consider a corresponding atomic decomposition

∑∞
j=0 f j (con-

vergence in S ′ ), where f j have the same meaning as in (20), for given atoms

ajm in B(s,Ψ)
p∞ and complex numbers λjm satisfying (λjm)j∈N0,m∈Zn ∈ bp∞ . To-

gether with our hypotheses, this guarantees that Proposition 3.8 can be applied with
dj := 2−j(s− n

p )Ψ(2−j)−1 , j ∈ N0 . In particular, f is also the limit, in Lp , of the series
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∑∞
j=0 f j . This justifies de following inequalities:

sup
0<t�ε

f ∗(t)
Φr,1(t)

= sup
k�k0

sup
C2−(k+1)n<t�C2−kn

f ∗(t)
Φr,1(t)

� sup
k�k0

f ∗∗(C2−(k+1)n)
Φr,1(C2−kn)

� sup
k�k0

(∑k
j=0 f ∗∗

j (C2−(k+1)n)
Φr,1(C2−kn)

+

∑∞
j=k+1 f ∗∗

j (C2−(k+1)n)
Φr,1(C2−kn)

)
.(42)

Since, for 0 � j � k , C2−(k+1)n ∈ (0, C2−jn) , then (21), Proposition 2.7,
Proposition 3.7 and the admissibility of Ψ allow us to write∑k

j=0 f ∗∗
j (C2−(k+1)n)

Φr,1(C2−kn)
� c1

∑k
j=0 2j n

r Ψ(2−j)−1λ ∗
j1∑k

j=0 2j n
r Ψ(2−j)−1

� c1 sup
j=0,...,k

λ ∗
j1

� c1 sup
j∈N0

‖(λ ∗
jl )l∈N|�p‖

= c1‖(λjm)j∈N0,m∈Zn |bp∞‖ , (43)

where c1 > 0 depends only on n, d, s, p and Ψ .
Since, for j � k + 1 , C2−(k+1)n ∈ [C2−jn2(j−k−1)n, C2−jn(2(j−k−1)n + 1)) and

λ ∗∗
j,2(j−k−1)n+1

� 22n/p(2n − 1)−1/p2−(j−k) n
p

(∑∞
l=1 λ

∗∗p
jl

)1/p
, then (21), Proposition 2.7,

Proposition 3.7 and the admissibility of Ψ allow us to write∑∞
j=k+1 f ∗∗

j (C2−(k+1)n)
Φr,1(C2−kn)

� c1

∑∞
j=k+1 2j nr Ψ(2−j)−1λ ∗∗

j,2(j−k−1)n+1∑k
j=0 2j n

r Ψ(2−j)−1

� c2

∑∞
j=k+1 2k n

r Ψ(2−j)−12−(j−k)s‖(λ ∗∗
jl )l∈N|�p‖∑k

j=0 2j nr Ψ(2−j)−1

� c3

⎛
⎝ ∞∑

j=k+1

2−(j−k)s Ψ(2−j)−1

Ψ(2−k)−1

⎞
⎠ sup

j�k+1
‖(λjm)m∈Zn |�p‖

� c4

⎛
⎝ ∞∑

j=1

2−js(1 + j)b

⎞
⎠ ‖(λjm)j∈N0,m∈Zn |bp∞‖ , (44)

where c2, c3, c4 > 0 depend only on n, d, s, p and Ψ and b � 0 is determined by Ψ .
Putting (42), (43) and (44) together, we get

sup
0<t�ε

f ∗(t)
Φr,1(t)

� c5‖(λjm)j∈N0,m∈Zn |bp∞‖ < ∞ ,
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for some c5 > 0 depending only on n, d, s, p and Ψ , and, with the help of Theorem
3.6,

sup
0<t�ε

f ∗(t)
Φr,1(t)

� c5‖f |B(s,Ψ)
p∞ ‖ . (45)

From this it easily follows, in the case p > 1 and q = ∞ , that (40) holds and, in
particular, that ELG|B(s,Ψ)

p∞ (t) is finite for each t ∈ (0, ε] .

Step 2. Now we prove (40) and (41) in the case p > 1 and 1 < q < ∞ .

We start with the proof of (41) when v = q .

Given f ∈ B(s,Ψ)
pq consider a corresponding atomic decomposition

∑∞
j=0 f j (con-

vergence in S ′ ), where f j have the same meaning as in (20), for given atoms

ajm in B(s,Ψ)
pq and complex numbers λjm satisfying (λjm)j∈N0,m∈Zn ∈ bpq . Together

with our hypotheses, this guarantees that Proposition 3.8 can be applied with dj :=
2−j(s− n

p )Ψ(2−j)−1 , j ∈ N0 . In particular, f is also the limit, in Lp , of the series∑∞
j=0 f j . This together with Proposition 2.5, the discussion in subsection 3.4. and the

admissibility of Ψ allow us to write that

(∫ ε

0

(
f ∗(t)
Φr,q′(t)

)q

μr,q′(dt)
)1/q

=
(

1
q′n

)1/q
( ∞∑

k=k0

∫ C2−kn

C2−(k+1)n

(
f ∗(t)

Φr,q′(t)q′

)q

t−
q′
r −1Ψ(t1/n)−q′ dt

)1/q

� c6

( ∞∑
k=k0

(
f ∗∗(C2−(k+1)n)
Φr,q′(C2−kn)q′

)q

2k n
r q′Ψ(2−k)−q′

)1/q

� c6

( ∞∑
k=k0

2k n
r q′Ψ(2−k)−q′

(∑k
j=0 f ∗∗

j (C2−(k+1)n)

Φr,q′(C2−kn)q′

)q)1/q

+ c6

( ∞∑
k=k0

2k n
r q′Ψ(2−k)−q′

(∑∞
j=k+1 f ∗∗

j (C2−(k+1)n)

Φr,q′(C2−kn)q′

)q)1/q

. (46)

Since, for 0 � j � k , C2−(k+1)n ∈ (0, C2−jn) , then (21), Proposition 2.7,
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Proposition 3.7 and the admissibility of Ψ allow us to write( ∞∑
k=k0

2k n
r q′Ψ(2−k)−q′

(∑k
j=0 f ∗∗

j (C2−(k+1)n)

Φr,q′(C2−kn)q′

)q)1/q

� c7

( ∞∑
k=k0

2k n
r q′Ψ(2−k)−q′

(∑k
j=0 2j n

r Ψ(2−j)−1λ ∗
j1∑k

j=0 2j n
r q′Ψ(2−j)−q′

)q)1/q

� c8

( ∞∑
k=0

λ ∗q
k1

)1/q

� c8

( ∞∑
k=0

‖(λ ∗
kl)l∈N|�p‖q

)1/q

= c8‖(λjm)j∈N0,m∈Zn |bpq‖ , (47)

where in the second inequality we have used a generalization of Hardy’s inequality (cf.
[6, p. 247]).

Since, for j � k + 1 , C2−(k+1)n ∈ [C2−jn2(j−k−1)n, C2−jn(2(j−k−1)n + 1)) and

λ ∗∗
j,2(j−k−1)n+1

� 22n/p(2n − 1)−1/p2−(j−k) n
p

(∑∞
l=1 λ

∗∗p
jl

)1/p
, then (21), Proposition 2.7,

Proposition 3.7 and the admissibility of Ψ allow us to write( ∞∑
k=k0

2k n
r q′Ψ(2−k)−q′

(∑∞
j=k+1 f ∗∗

j (C2−(k+1)n)

Φr,q′(C2−kn)q′

)q)1/q

� c7

⎛
⎝ ∞∑

k=k0

2k n
r q′Ψ(2−k)−q′

(∑∞
j=k+1 2j nr Ψ(2−j)−1λ ∗∗

j,2(j−k−1)n+1∑k
j=0 2j n

r q′Ψ(2−j)−q′

)q
⎞
⎠

1/q

� c9

( ∞∑
k=k0

2k n
r q′Ψ(2−k)−q′

(∑∞
j=k+1 2k n

r Ψ(2−j)−12−(j−k)s‖(λ ∗∗
jl )l∈N|�p‖∑k

j=0 2j n
r q′Ψ(2−j)−q′

)q)1/q

� c10

⎛
⎝ ∞∑

k=k0

⎛
⎝ ∞∑

j=k+1

2−(j−k)s Ψ(2−j)−1

Ψ(2−k)−1
‖(λjm)m∈Zn |�p‖

⎞
⎠

q⎞
⎠

1/q

� c11

( ∞∑
k=k0

( ∞∑
l=1

2−ls(1 + l)b‖(λk+l,m)m∈Zn |�p‖
)q)1/q

� c11

( ∞∑
l=1

2−ls(1 + l)b

)
‖(λjm)j∈N0,m∈Zn |bpq‖ , (48)

where in the last part we have used a generalized Minkowski inequality.
As in Step 1, b � 0 is determined by Ψ , and the positive constants c6 to c11

depend only on n, d, s, p, q and Ψ .
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Putting (46), (47) and (48) together, we get

(∫ ε

0

(
f ∗(t)
Φr,q′(t)

)q

μr,q′(dt)
)1/q

� c12‖(λjm)j∈N0,m∈Zn |bpq‖ ,

for some c12 > 0 depending only on n, d, s, p, q and Ψ , and, with the help of Theorem
3.6, the case 1 < v = q < ∞ (and with p > 1 ) of (41) follows easily. To prove (41)
for any v � q (even for v = ∞ , in which case it should be interpreted as

sup
0<t�ε

f ∗(t)
Φr,q′(t)

� c(∞)‖f |B(s,Ψ)
pq ‖ , ∀f ∈ B(s,Ψ)

pq ), (49)

one just has to use Proposition 3.17.

From (49) it also easily follows, still in the case p > 1 and 1 < q < ∞ , that (40)
holds and, in particular, that ELG|B(s,Ψ)

pq (t) is finite for each t ∈ (0, ε] .
Step 3. Still with p > 1 , we deal now with the proof of (40) and (41) for

0 < q � 1 .

Again, we start by proving (41) when v = q .

The sub-critical case s < n/p can be dealt with the same type of discretization of
the integral as in Step 2, taking advantage of the rough estimate μr,q′ [C2−(k+1)n, C2−kn] �
constant. Since the result for this case is already known (cf. [2]) and we would run into
problems if we applied the same type of discretization when dealing with the critical
case s = n/p , we shall omit the details for the case s < n/p and deal now only with
what is our main concern in this paper, namely the case s = n/p .

We recall thatwhen considering s = n/p weare also assuming that (Ψ(2−j)−1)j∈N /∈
�q′ . Since we are now dealing only with 0 < q � 1 , this means that (Ψ(2−j)−1)j∈N

is unbounded, that is, limt→0+ Ψ(t) = 0 . Recall also that in this case Ψ must be
increasing (and that, in any case, Ψ is positive in (0,1]).

As a consequence, we can build a sequence (αk)k∈N0 in the following way: α0 =
C2−t0n , where t0 = k0 ; for every k ∈ N , αk = C2−tkn , where tk � tk−1 + 1 is such
that c′ � Ψ(C2−tkn)Ψ(C2−tk−1n)−1 � 1/2 , for some positive constant c′ depending
only on n and Ψ .

We then start as in Step 2: given f ∈ B(s,Ψ)
pq consider a corresponding atomic de-

composition
∑∞

j=0 f j (convergence in S ′ ), where f j have the same meaning as in (20),

for given atoms ajm in B(s,Ψ)
pq and complex numbers λjm satisfying (λjm)j∈N0,m∈Zn ∈

bpq . Together with our hypotheses, this guarantees that Proposition 3.8 can be applied

with dj := 2−j(s− n
p )Ψ(2−j)−1 , j ∈ N0 . In particular, f is also the limit, in Lp , of the

series
∑∞

j=0 f j .

We can then write, recalling also the definitions of Φr,u and μr,u (now for r, u =
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∞ ), the discussion in subsection 3.4. and the admissibility of Ψ ,

(∫ ε

0

(
f ∗(t)

Φ∞,∞(t)

)q

μ∞,∞(dt)
)1/q

� c13

( ∞∑
k=0

∫ αk

αk+1

(
f ∗(t)
Ψ(t)−1

)q

μ∞,∞(dt)

)1/q

� c13

( ∞∑
k=0

(
f ∗∗(αk+1)
Ψ(αk)−1

)q

μ∞,∞([αk+1,αk])

)1/q

(50)

� c14

⎛
⎝ ∞∑

k=0

Ψ(αk)q
j<tk+1∑
j=0

f ∗∗
j (αk+1)q +

∞∑
k=0

Ψ(αk)q
∞∑

j�tk+1

f ∗∗
j (αk+1)q

⎞
⎠

1/q

,

where, for example,
∑j<tk+1

j=0 means that the sum is made on integers j from 0 to the
nearest integer less than tk+1 .

Since, for 0 � j < tk+1 , αk+1 ∈ (0, C2−jn) , then (21) and the admissibility of Ψ
allow us to write (with the understanding that tl := 0 when the index l is a negative
number)

∞∑
k=0

Ψ(αk)q

j<tk+1∑
j=0

f ∗∗
j (αk+1)q � Dq

∞∑
k=0

Ψ(αk)q
k+1∑
h=0

j<th∑
j�th−1

Ψ(2−j)−qλ ∗q
j1

� c15

∞∑
k=0

k+1∑
h=0

(
Ψ(αk)
Ψ(αh)

)q j<th∑
j�th−1

λ ∗q
j1

� c16

∞∑
k=0

k+1∑
h=0

2−(k−h)q
j<th∑

j�th−1

λ ∗q
j1

� c16

∞∑
k=0

∞∑
l=−1

2−lq

j<tk−l∑
j�tk−l−1

λ ∗q
j1

= c16

∞∑
l=−1

2−lq
∞∑
k=0

j<tk−l∑
j�tk−l−1

λ ∗q
j1

� c16

( ∞∑
l=−1

2−lq

)⎛
⎝ ∞∑

j=0

λ ∗q
j1

⎞
⎠ . (51)

Since, for j � [tk+1] , αk+1 ∈ [C2−jn(lkj − 1), C2−jnlkj) , where lkj is the only
natural number satisfying the inequalities lkj − 1 � 2(j−tk+1)n < lkj , and λ ∗∗

j,lkj
�

c172
−(j−[tk+1])

n
p

(∑∞
l=1 λ

∗∗p
jl

)1/p
, we have, again with the help of (21), Proposition 3.7
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and the admissibility of Ψ ,
∞∑
k=0

Ψ(αk)q
∞∑

j�tk+1

f ∗∗
j (αk+1)q

� Dq
∞∑
k=0

Ψ(αk)q
∞∑

j=[tk+1 ]

Ψ(2−j)−qλ ∗∗q
j,lkj

� c18

∞∑
k=0

∞∑
j=[tk+1 ]

Ψ(αk)qΨ(2−j)−q2−(j−[tk+1])sq‖(λjm)m∈Zn |�p‖q

= c18

∞∑
k=0

∞∑
l=0

Ψ(2−[tk+1]−l)−q

Ψ(C2−tkn)−q
2−lsq‖(λ[tk+1]+l,m)m∈Zn |�p‖q

� c19

∞∑
l=0

2−lsq(1 + l)bq
∞∑
k=0

‖(λ[tk+1]+l,m)m∈Zn |�p‖q

� c19

( ∞∑
l=0

2−lsq(1 + l)bq

)
‖(λjm)j∈N0,m∈Zn |bpq‖q . (52)

As in the previous Steps, b � 0 is determined by Ψ , and the positive constants
c13 to c19 depend only on n, d, s, p, q and Ψ .

Putting (50), (51) and (52) together, we get(∫ ε

0

(
f ∗(t)

Φ∞,∞(t)

)q

μ∞,∞(dt)
)1/q

� c20‖(λjm)j∈N0,m∈Zn |bpq‖ ,

for some c20 > 0 depending only on n, d, s, p, q and Ψ , and, with the help of Theorem
3.6, the case 0 < v = q � 1 , s = n/p (and with p > 1 ) of (41) follows easily. As
mentioned before, the situation when s < n/p can be dealt with in a similar – though
easier – way.

To prove (41) for any v � q (even for v = ∞ , with the interpretation (49)) one
just has to use Proposition 3.17.

From (49) it also easily follows, still in the case p > 1 and 0 < q � 1 , that (40)
holds and, in particular, that ELG|B(s,Ψ)

pq (t) is finite for each t ∈ (0, ε] .
Step 4. We extend now the validity of (40) and (41) to 0 < p � 1 .
Note that, given 0 < p � 1 and σp < s � n/p , we actually have s > n( 1

p − 1) ,
that is, s − n

p > −n , so that there are γ , δ > 0 such that s − n
p = δ − n

1+γ , and

therefore B(s,Ψ)
pq ↪→ B(δ,Ψ)

1+γ ,q (cf. [10, Prop. 1.9 (iv) ]). As we have already proved (41)
for the space on the right-hand side, we can thus write(∫ ε

0

(
f ∗(t)
Φr,q′(t)

)v

μr,q′(dt)
)1/v

� c(v)‖f |B(δ,Ψ)
1+γ ,q‖ � c21‖f |B(s,Ψ)

pq ‖, f ∈ B(s,Ψ)
pq ,

with modification if v = ∞ . Actually, it is from this modification that, as usual, (40)
is also obtained for the extended range of the parameter p , not to mention the finiteness
of ELG|B(s,Ψ)

pq (t) for each t ∈ (0, ε] . �
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In the next result we consider only the critical case, as the technique of proof is
essentially the same as the one used in [2] for the sub-critical case.

PROPOSITION 4.2. Let 0 < p < ∞ , 0 < q � ∞ and Ψ be a continuous
admissible function. Then there exists c > 0 such that

ELG|A(n/p,Ψ)
pq (t) � cΦ∞,u′(t), t ∈ (0, 2−n], (53)

where

u =
{

q if A = B,

p if A = F.

Proof. Step 1. In this step we deal with the case A = B . Suppose first that
1 < q � ∞ . For each J ∈ N we denote by gJ the function g in (32) with b = (bj)j∈N

being the sequence defined by

bj :=

⎧⎪⎨
⎪⎩

Ψ(2−j)1−q′
( J∑

k=1

Ψ(2−k)−q′
)−1/q

for j = 1, · · · , J,

0 otherwise.

Notice that bj � c bj+1 , j ∈ N , for some positive constant c , as Ψ is an admissible
function. Moreover, ‖b | �q‖ = 1 . By (35),

g∗J (2
−Jn) � c

J+1∑
j=1

bj Ψ(2−j)−1 � c
( J∑

j=1

Ψ(2−j)−q′
)1/q′
, J ∈ N.

Therefore, having into consideration (33) and the property (λ f )∗ = |λ | f ∗ , we obtain

ELG|B(n/p,Ψ)
pq (2−Jn) � c1 g∗J (2

−Jn) � c2

( J∑
j=1

Ψ(2−j)−q′
)1/q′
, J ∈ N, (54)

where the constants are independent of J . Now let 2−(J+1)n � t � 2−Jn , for some
J ∈ N . In virtue of (54), using the monotonicity of ELG|B(n/p,Ψ)

pq , the admissibility of
Ψ and Proposition 2.7, we get

ELG|B(n/p,Ψ)
pq (t) � ELG|B(n/p,Ψ)

pq (2−Jn) � c2

( J∑
j=1

Ψ(2−j)−q′
)1/q′

� c3

( J+1∑
j=1

Ψ(2−j)−q′
)1/q′

� c3

([| log t|/n]∑
j=1

Ψ(2−j)−q′
)1/q′

� c4 Φ∞,q′(t),

where the constants involved do not depend on J , and the proof of (53) for A = B and
q > 1 is then complete.

Now let 0 < q � 1 . For each j ∈ N let aj be as in (29) and let δ be a positive
number so that ϕ∗(δ) > 0 . Then the functions

Aj(x) := aj(δ 1/nx), x ∈ R
n, j ∈ N,
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are (up to constants, independently of j ) also (n/p, p,Ψ)K,−1 -atoms for some fixed
K ∈ N with K > n/p . In particular, it holds

‖Aj | B(n/p,Ψ)
pq ‖ ∼ 1, j ∈ N.

For fixed J ∈ N and j ∈ {1, · · · , J + 1} , we have

A∗
j (2

−Jn) = a∗j (δ 2−Jn) = inf{λ � 0 : maj(λ ) � δ 2−Jn}
= inf{λ � 0 : 2−(j−1)nmϕ(λ Ψ(2−j)) � δ 2−Jn}
= Ψ(2−j)−1 inf{λ � 0 : mϕ(λ ) � δ 2(j−J−1)n}
� Ψ(2−j)−1 ϕ∗(δ),

leading to

ELG|B(n/p,Ψ)
pq (2−Jn) � c1 sup{A∗

j (2
−Jn) : j = 1, · · · , J}

� c2 sup
j=1,··· ,J+1

Ψ(2−j)−1, J ∈ N.

Now let 2−(J+1)n � t � 2−Jn , for some J ∈ N . Using the monotonicity of ELG|B(n/p,Ψ)
pq

and Proposition 2.7, we get

ELG|B(n/p,Ψ)
pq (t) � ELG|B(n/p,Ψ)

pq (2−Jn) � c sup
j=1,··· ,J+1

Ψ(2−j)−1

� c sup
j=1,··· ,[| log t|/n]

Ψ(2−j)−1 � c′Φ∞,∞(t),

where the constants involved do not depend on J , concluding the proof for the B -
spaces.
Step 2. Notice that

B(n/r,Ψ)
rp ↪→ F(n/p,Ψ)

pq for 0 < r < p < ∞. (55)

We refer to Example 3.5 of [2]. Then the assertion (53) for the F -spaces follows from
the corresponding assertion for the B -spaces, proved in Step 1. �

REMARK 4.3. The necessity of the conditions in Proposition 3.13 can be inferred
from Proposition 4.2. In view of Proposition 2.7, this is immediately the case if
p < ∞ , since the unboundedness of ELG|A(n/p,Ψ)

pq implies A(n/p,Ψ)
pq �↪→ L∞ . In the case

of p = ∞ (hence for the B -spaces) the conclusion follows from the previous one due
to the embedding

B(n/p0,Ψ)
p0q ↪→ B(0,Ψ)

∞q for 0 < p0 < ∞.

We just point out that in Proposition 3.13 no continuity assumption on Ψ is required,
in contrast with Proposition 4.2; but this is immaterial in the reasoning above. Indeed,
given an arbitrary admissible function there is always a continuousequivalent admissible
function giving rise to an equivalent quasi-norm in A(s,Ψ)

pq .
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THEOREM 4.4. Let 0 < p, q � ∞ and s ∈ R be such that σp < s � n/p
and Ψ be a continuous admissible function. Define r ∈ (1,∞] by the equation
s− n/p = −n/r . In the case s = n/p assume further that (Ψ(2−j)−1)j∈N �∈ �q′ . Then

ELGB(s,Ψ)
pq =

(
Φr,q′ , q

)
,

with Φr,q′ as in Definition 2.4.

Proof. Having into consideration Proposition 2.6, the case σp < s < n/p was
already proved in [2, Thm. 4.4], though, as mentioned previously, we have given in
Proposition 4.1 a different approach for some parts of its proof; so that from now on we
shall deal with the case s = n/p , for what we assume

(Ψ(2−j)−1)j∈N �∈ �q′ . (56)

We remark that, in view of propositions 4.1 and 4.2, we have just to prove the optimality
of the exponent q .

Step 1. Let first 1 < q � ∞ . Assume that for some v ∈ (0, q) it was possible to
find c(v) > 0 such that(∫ ε

0

( f ∗(t)
Φ∞,q′(t)

)v
μ∞,q′(dt)

)1/v

� c(v) ‖f |B(n/p,Ψ)
pq ‖, ∀ f ∈ B(n/p,Ψ)

pq , (57)

where μ∞,q′ denotes the Borel measure associated with − logΦ∞,q′ in (0, ε] and ε
is as in Proposition 4.1. Notice that, by Proposition 2.7, there are positive constants c1 ,
c2 such that

c1

([| log t|/n]∑
j=1

Ψ(2−j)−q′
)1/q′

� Φ∞,q′(t) � c2

([| log t|/n]∑
j=1

Ψ(2−j)−q′
)1/q′
, t ∈ (0, ε]. (58)

Due to (56) we can construct a strictly increasing sequence (tk)k∈N0 of natural numbers
in the following way:

(i) t0 is such that 2−t0n � ε ;
(ii) tk+1 , k ∈ N0 , is the smallest integer satisfying∑tk+1

j=1 Ψ(2−j)−q′∑tk
j=1 Ψ(2−j)−q′ �

(2c2

c1

)q′
, (59)

with c1 , c2 as in (58).
We remark that in such a case∑tk+1−1

j=1 Ψ(2−j)−q′∑tk
j=1 Ψ(2−j)−q′ <

(2c2

c1

)q′
;

so that, using the admissibility of Ψ ,∑tk+1
j=1 Ψ(2−j)−q′∑tk
j=1 Ψ(2−j)−q′ �

∑tk+1−1
j=1 Ψ(2−j)−q′ + cΨ(2−(tk+1−1))−q′∑tk

j=1 Ψ(2−j)−q′ � c′, (60)
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for all k ∈ N .
For each J ∈ N , let b = (bj)j∈N be defined by

bj :=

⎧⎪⎨
⎪⎩

Ψ(2−j)1−q′
( tk∑

�=1

Ψ(2−�)−q′
)−1/q

for
j = tk−1 + 1, · · · , tk,

k = 1, · · · , J

0 otherwise.

We have

‖b | �q‖ =
( J∑

k=1

tk∑
j=tk−1+1

Ψ(2−j)−q′
( tk∑

�=1

Ψ(2−�)−q′
)−1

)1/q

� J1/q

(with the usual modification if q = ∞ ). Let k ∈ {1, · · · , J} . For j ∈ {tk−1 +
1, · · · , tk − 1} we have

bj+1 =Ψ(2−(j+1))1−q′
( tk∑

�=1

Ψ(2−�)−q′
)−1/q

�cΨ(2−j)1−q′
( tk∑

�=1

Ψ(2−�)−q′
)−1/q

= c bj

and, for k �= J ,

btk+1 =Ψ(2−(tk+1))1−q′
( tk+1∑

�=1

Ψ(2−�)−q′
)−1/q

�cΨ(2−tk)1−q′
( tk∑

�=1

Ψ(2−�)−q′
)−1/q

= c btk .

Thus bj � c bj+1 , j ∈ {t0 + 1, · · · tJ} , for some constant c > 0 independent of j
and J . Denote by gJ the function given by (32) with the above-described sequence.
According to Remark 3.12 we have

‖gJ | B(n/p,Ψ)
pq ‖ � c J1/q (61)

and

g∗J (2
−tkn) � c

k∑
�=1

( t�∑
i=1

Ψ(2−i)−q′
)−1/q

t�∑
j=t�−1+1

Ψ(2−j)−q′

� c
( tk∑

i=1

Ψ(2−i)−q′
)−1/q

tk∑
j=tk−1+1

Ψ(2−j)−q′ , k ∈ {1, · · · , J}, (62)
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where c > 0 is independent of J . From (57), using (61), the monotonicity of g∗J and
Φ∞,q′ , (62), (58), (59) and (60), we obtain for any J ∈ N ,

J1/q � c

( J∑
k=1

∫ 2−tkn

2−tk+1n

( g∗J (t)
Φ∞,q′(t)

)v
μ∞,q′(dt)

)1/v

� c

( J∑
k=1

( g∗J (2
−tkn)

Φ∞,q′(2−tk+1n)

)v
μ∞,q′

(
[2−tk+1n, 2−tkn]

))1/v

� c′
{ J∑

k=1

( tk∑
i=1

Ψ(2−i)−q′
)−v/q ( tk∑

j=tk−1+1

Ψ(2−j)−q′
)v( tk+1∑

j=1

Ψ(2−j)−q′
)−v/q′}1/v

� c′′
{ J∑

k=1

( tk∑
j=tk−1+1

Ψ(2−j)−q′
)v( tk∑

j=1

Ψ(2−j)−q′
)−v
}1/v

� c′′′J1/v,

which is impossible for v < q . We have also used above the fact that

( tk∑
j=tk−1+1

Ψ(2−j)−q′
)( tk∑

i=1

Ψ(2−i)−q′
)−1

� c,

for some positive constant c and for all k ∈ N , consequence of (59).
Step 2. Now let 0 < q � 1 . Then q′ = ∞ . We modify appropriately Step 1.

Assume that (57) holds true for some v ∈ (0, q) . The counterpart of (58) reads as
follows:

c1 sup
j=1,··· ,[| log t|/n]

Ψ(2−j)−1 � Φ∞,∞(t) � c2 sup
j=1,··· ,[| log t|/n]

Ψ(2−j)−1, t ∈ (0, ε]. (63)

We remark that (56) implies that the admissible function Ψ has to be monotone
increasing and we construct a strictly increasing sequence (tk)k∈N0 of natural numbers
in the following way:

(i) t0 is such that 2−t0n � ε ;
(ii) tk+1 , k ∈ N0 , is the smallest integer satisfying

Ψ(2−tk+1)−1

Ψ(2−tk)−1
� 2c2

c1
, (64)

with c1 , c2 as in (63).
Notice that then

Ψ(2−tk)−1

Ψ(2−tk+1)−1
∼ Ψ(2−tk)−1

Ψ(2−(tk+1−1))−1
>

c1

2c2
, k ∈ N. (65)

For each J ∈ N , let b = (bj)j∈N be defined by

bj :=
{

1 if j = tk, k ∈ {1, · · · , J}
0 otherwise.
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We have ‖b | �q‖ = J1/q . Then the corresponding function gJ , as in step 1, satisfies

‖gJ | B(n/p,Ψ)
pq ‖ � c3 J1/q and g∗J (2

−tkn) � c4 Ψ(2−tk)−1, k ∈ {1, · · · J}, (66)

where c3, c4 > 0 are independent of J . From (57), using the monotonicity of g∗J and
Φ∞,∞ , (63), (64), (65) and (66), we obtain for any J ∈ N ,

J1/q � c

( J∑
k=1

∫ 2−tkn

2−tk+1n

( g∗J (t)
Φ∞,∞(t)

)v
μ∞,∞(dt)

)1/v

� c

( J∑
k=1

( g∗J (2−tkn)
Φ∞,∞(2−tk+1n)

)v
μ∞,∞

(
[2−tk+1n, 2−tkn]

))1/v

� c′
{ J∑

k=1

( Ψ(2−tk)−1

supj=1,··· ,tk+1
Ψ(2−j)−1

)v
}1/v

� c′′J1/v,

which is impossible for v < q . �

COROLLARY 4.5. Let 0 < p, q � ∞ and s ∈ R be such that σp < s � n/p
and Ψ be a continuous admissible function. Define r ∈ (1,∞] by the equation
s− n/p = −n/r . In the case s = n/p assume further that (Ψ(2−j)−1)j∈N �∈ �p′ . Then

ELGF(s,Ψ)
pq =

(
Φr,p′ , p

)
,

with Φr,p′ according to Definition 2.4.

Proof. The assertion for σp < s < n/p is covered by [2, Thm. 4.4], having into
consideration Proposition 2.6 (i) , though it can now also be easily deduced by the same
technique that follows, mutatis mutandis. The remaining case, i.e. the case s = n/p , it
is a consequence of Theorem 4.4 and the embeddings

B(n/p1,Ψ)
p1p ↪→ F(n/p,Ψ)

pq ↪→ B(n/p2,Ψ)
p2p for 0 < p1 < p < p2 < ∞

(see Example 3.5 of [2]). �

EXAMPLE 4.6. We return to our example Ψb given by (3). Assume p, q ∈ (0,∞]
and b < 1/q′ . Then Theorem 4.4 yields that

ELGBn/p,b
pq =

(| log t|−(b−1/q′), q
)
.

When q ∈ (1,∞] it also makes sense to consider b = 1/q′ (cf. Example 3.14), and in
this case we get that

ELGBn/p,b
pq =

(
(log | log t|)1/q′ , q

)
.

REMARK 4.7. Analogously to what has been observed in Remark 4.3, we point out
that there is no loss of generality in assuming the continuity of the admissible function
Ψ in Theorem 4.4 and Corollary 4.5. Actually we just have to keep in mind that for an
arbitrary admissible function, the function Φr,u′ to appear in the local growth envelope
– and, specially, the corresponding measure μr,u′ – should be built by means of an
equivalent continuous admissible function.
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REMARK 4.8. Theorem 4.4 and Corollary 4.5 describe in a rather condensed way
some sharp inequalities. It is not difficult to see that, together with Proposition 3.17 (i) ,
they even imply, under the hypotheses assumed, that, given a positive monotonically
decreasing function κ on (0, ε] , for some small enough ε ∈ (0, 1) , and 0 < v � ∞ ,

(∫ ε

0

(
κ(t)

f ∗(t)
Φr,q′(t)

)v

μr,q′(dt)
)1/v

� c ‖f |B(s,Ψ)
pq ‖ (67)

(with the appropriate modification if v = ∞ ) holds for some c > 0 and all f ∈ B(s,Ψ)
pq

if, and only if, κ is bounded and v � q ;

(∫ ε

0

(
κ(t)

f ∗(t)
Φr,p′(t)

)v

μr,p′(dt)
)1/v

� c ‖f |F(s,Ψ)
pq ‖

(with the appropriate modification if v = ∞ ) holds for some c > 0 and all f ∈ F(s,Ψ)
pq

if, and only if, κ is bounded and v � p .
Notice also that it is possible to give explicit expressions for μr,q′(dt) and μr,p′(dt)

(even for general Ψ ) in some cases: for example, if u �= ∞ ,

μr,u(dt) ∼ dt

Φr,u(t)uΨ(t)u tu/r+1
(68)

(cf. Proposition 2.5); since Φr,u(t) ∼ t−1/rΨ(t)−1 when r �= ∞ (cf. Proposition
2.6 (i) ), then in the case r, u �= ∞ the measure μr,u(dt) can be further simplified to
dt
t .

And either by using (68) or by calculating directly from the local growth envelope
function given in Example 4.6, in the interesting case of this examplewhen q is assumed
in (1,∞] and b equals 1/q′ , one has

μ∞,q′(dt) ∼ dt
(log | log t|)| log t| t

and the inequality (67) above then reads

(∫ ε

0

(
κ(t)

f ∗(t)

(log | log t|)
1
q′ + 1

v

)v
dt

| log t| t

)1/v

� c ‖f |Bn/p,b
pq ‖.

REMARK 4.9. Our main results stated in Theorem4.4 and Corollary 4.5 recover the
results of Haroske [7] and Triebel [17] for the usual Besov and Triebel-Lizorkin spaces
in the critical case. Indeed, having into account Proposition 2.6 (iii) , when Ψ ≡ 1
what we have obtained is:

ELGB(n/p,Ψ)
pq = (| log t|1/q′ , q), 0 < p < ∞, 1 < q � ∞;

ELGF(n/p,Ψ)
pq = (| log t|1/p′ , p), 1 < p < ∞, 0 < q � ∞.
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