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Abstract. Given a Hermitian operator, a monotone convex function f and a subspace E ,
dim E < ∞ , there exists a unitary operator U on E such that f (AE ) � Uf (A)E U∗ . (Here
XE denotes the compression of X onto E ). A related result is: For a monotone convex function
f , 0 < α,β < 1 , α + β = 1 , and Hermitian operators A , B on a finite dimensional space,
there exists a unitary U such that f (αA + βB) � U{αf (A) + β f (B)}U∗ . More general
convexity results are established. Also, several old and new trace inequalities of Brown-Kosaki
and Hansen-Pedersen type are derived. We study the behaviour of the map p −→ {(Ap)E }1/p ,
A � 0 , 0 < p < ∞ .

Introduction

Given an operator A on a separable Hilbert space H and a subspace E ⊂ H ,
we denote by AE the compression of A onto E , i.e. the restriction of EAE to E ,
E being the projection onto E . If E is a finite dimensional subspace, we show that,
for any Hermitian operator A and any monotone convex function f defined on the
spectrum of A , there exits a unitary operator U on E such that the operator inequality

f (AE ) � Uf (A)E U∗. (∗ )

holds. Here, f (A)E must be read as (f (A))E . This result together with the elementary
method of its proofmotivate the whole paper. In Section 1 we prove the above inequality
and give a version. We also study the map p −→ {(Ap)E }1/p , 0 < p < ∞ for a
positive operator A on a finite dimensional space and d -dimensional subspace E . In
general, this map converges to an operator B on E whose eigenvalues are the d largest
eigenvalues of A .

Section 2 is concernedwith eigenvalues inequalities (equivalently operator inequal-
ities) which improve some trace inequalities of Brown-Kosaki and Hansen-Pedersen:
Given a monotone convex function f defined on the real line with f (0) � 0 , a Her-
mitian operator A and a contractive operator Z acting on a finite dimensional space,
there exists a unitary operator U such that

f (Z∗AZ) � UZ∗f (A)ZU∗.
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In Section 3, we prove that

Tr f (Z∗AZ) � Tr Z∗f (A)Z

for every positive operator A and expansive operator Z on a finite dimensional space,
and every concave function f defined on an interval [0, b] , b � ‖Z∗AZ‖∞ , with
f (0) � 0 (‖ · ‖∞ denotes the usual operator norm). Under the additional assumption
that f is nondecreasing and nonnegative, this trace inequality entails

‖f (Z∗AZ)‖∞ � ‖Z∗f (A)Z‖∞
where stands for the usual operator norm. In a forthcomming project we will extend
this result to the infinite dimensional setting. We will also give a version of (∗) for
infine dimensional subspace E , by adding a rI term in the right hand side, where I
stands for the identity and r > 0 is arbitrarily small.

1. Compressions and convex functions

By a classical result of C. Davis [4] (see also [1, p. 117–9]), a function f on (a, b)
is operator convex if and only if for every subspace E and every Hermitian operator A
whose spectrum lies in (a, b) one has

f (AE ) � f (A)E . (1)

What can be said about convex, not operator convex functions ? Let g be operator
convex on (a, b) and let φ be a nondecreasing, convex function on g((a, b)) . Then,
f = φ ◦ g is convex and we say that f is unitary convex on (a, b) . Since t −→ −t
is trivially operator convex, we note that the class of unitary convex functions contains
the class of monotone convex functions. The following result holds:

THEOREM 1.1. Let f be a monotone convex, or more generally unitary convex,
function on (a, b) and let A be a Hermitian operator whose spectrum lies in (a, b) . If
E is a finite dimensional subspace, then there exists a unitary operator U on E such
that

f (AE ) � Uf (A)E U∗.

Proof. We begin by assuming that f is monotone. Let d = dimE and let
{λk(X)}d

k=1 denote the eigenvalues of the Hermitian operator X on E , arranged in
decreasing order and counted with their multiplicities. Let k be an integer, 1 � k � d .
There exists a spectral subspace F ⊂ E for AE (hence for f (AE ) ), dimF = k , such
that

λk[f (AE )] = min
h∈F ; ‖h‖=1

〈 h, f (AF )h〉
= min{f (λ1(AF )) ; f (λk(AF ))}
= min

h∈F ; ‖h‖=1
f (〈 h, AFh〉 )

= min
h∈F ; ‖h‖=1

f (〈 h, Ah〉 )
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where at the second and third steps we use the monotony of f . The convexity of f
implies

f (〈 h, Ah〉 ) � 〈 h, f (A)h〉
for all normalized vectors h . Therefore, by the minmax principle,

λk[f (AE )] � min
h∈F ; ‖h‖=1

〈 h, f (A)h〉
� λk[f (A)E ].

This statement is equivalent to the existence of a unitary operator U on E satisfying
the conclusion of the theorem.

If f is unitary convex, f = φ ◦ g with g operator convex and φ nondecreasing
convex; inequality (1) applied to g combined with the fact that φ is nondecreasing
yield a unitary operator V on E for which

φ ◦ g(AE ) � Vφ[g(A)E ]V∗.

Applying the first part of the proof to φ gives a unitary operator W on E such that

φ[g(A)E ] � W[φ ◦ g(A)]E W∗.

We then get the result by letting U = VW . �

Later, we will see that Theorem 1.1 can not be extended to all convex functions f
(Example 2.4). Of course Theorem 1.1 holds with a reverse inequality for monotone
concave functions f (or f = φ ◦ g , g operator convex and φ decreasing concave).

Given a positive operator A on a finite dimensional space and a subspace E , it is
natural to study the behaviour of the map

p −→ {(Ap)E }1/p

on (0,∞) . The notation A =
∑

k λk(A) f k⊗f k means that f k is a normone eigenvector
associated to λk(A) and f k ⊗ f k is the corresponding norm one projection.

THEOREM 1.2. Let A =
∑

k λk(A) f k ⊗ f k be a positive operator on a finite
dimensional space and let E be a subspace. Assume E ∩ span{f j : j > d} = 0 . Then,
for every integer k � dimE , the map p −→ λk({(Ap)E }1/p) increases on (0,∞) and

lim
p→∞ λk({(Ap)E }1/p) = λk(A).

Moreover the family {(Ap)E }1/p converges in norm when p → ∞ and the map
p −→ {(Ap)E }1/p is increasing for the Loewner order on [1,∞) .

Proof. Let p > 0 and r > 1 . By Theorem 1.1, there exists a unitary U : E −→ E
such that

{(Ap)E }r � U(Apr)E U∗,

hence, for all k ,
λ r

k ((A
p)E ) � λk((Apr)E ),
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so,
λk({(Ap)E }1/p) � λk({(Apr)E }1/pr),

that is, the map p −→ λk({(Ap)E }1/p) increases on (0,∞) . In order to study its
convergence when p → ∞ , we first show that

lim
p→∞ λ1((EApE)1/p) = λ1(A) (2)

where E denotes the projection onto E . We note that

lim
p→∞ λ1((EApE)1/p) � λ1(A). (3)

Recall that A =
∑

k λk(A) f k ⊗ f k . Since by assumption f 1 �∈ E ⊥ , there exists a
normalized vector g in E such that 〈 g, f 1〉 �= 0 . Setting G = g ⊗ g , we have

λ1((GApG)1/p) = 〈 g, Apg〉 1/p =
( ∑

k

λ p
k (A)|〈 g, f k〉 |2

)1/p
.

The above expression is a weighted lp -norm of the sequence {λk(A)} . When p → ∞ ,
this tends towards the l∞ -norm which is λ1(A) . Since

λ1((GApG)1/p) � λ1((EApE)1/p)

we then deduce with (3) that (2) holds.
In order to prove the general limit assertion, we consider antisymmetric tensor

products. Let F be the projection onto F = span{f j : j � dimE } . By assumption
F maps E onto F . Therefore ∧k(F) maps ∧k(E ) onto ∧k(F ) and we may find a
norm one tensor γ ∈ ∧k(E ) such that 〈 γ , f 1 ∧ · · · ∧ f k〉 �= 0 . Hence, with ∧kE and
∧kA in place of E and A , 1 � k � dimE , we may apply (2) to obtain

lim
p→∞ λ1(∧k(EApE)1/p) = λ1(∧kA)

meaning that
lim

p→∞

∏
1�j�k

λj((EApE)1/p) =
∏

1�j�k

λj(A).

From these relations we infer that, for every k � dimE , we have

lim
p→∞ λk((EApE)1/p) = λk(A)

proving the main assertion of the theorem.
For p, r � 1 we have

(EAprE)1/r � EApE

by Hansen’s inequality [6]. Since t −→ t1/p is operator monotone by the Loewner
theorem [9, p. 2], we have

(EAprE)1/pr � (EApE)1/p.

Thus p −→ (EApE)1/p increases on [1,∞) . Since this map is bounded, it converges
in norm. �

The author is indebted to a referee for having pointed out a misconception in the
initial statement and proof of Theorem 1.2.
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2. Contractions and convex functions

In [6] and [7], the authors show that inequality (1) is equivalent to the following
statement.

THEOREM 2.1. (Hansen-Pedersen) Let A and {Ai}m
i=1 be Hermitian operators

and let f be an operator convex function defined on an interval [a, b] containing the
spectra of A and Ai , i = 1, . . . m.

(1) If Z is a contraction, 0 ∈ [a, b] and f (0) � 0 ,

f (Z∗AZ) � Z∗f (A)Z.

(2) If {Zi}m
i=1 is an isometric column,

f (
∑

i

Z∗
i AiZi) �

∑
i

Z∗
i f (Ai)Zi.

Here, an isometric column {Zi}m
i=1 means that

∑m
i=1 Z∗

i Zi = I .
In a similar way, Theorem 1.1 is equivalent to the next one. We state it in the finite

dimensional setting, but an analogous version exists in the infinite dimensional setting
by adding a rI term in the right hand side of the inequalities.

THEOREM 2.2. Let A and {Ai}m
i=1 be Hermitian operators on a finite dimensional

space and let f be a monotone, or more generally unitary, convex function defined on
an interval [a, b] containing the spectra of A and Ai , i = 1, . . .m.

(1) If Z is a contraction, 0 ∈ [a, b] and f (0) � 0 , then there exists a unitary
operator U such that

f (Z∗AZ) � UZ∗f (A)ZU∗.

(2) If {Zi}m
i=1 is an isometric column, then there exists a unitary operator U

such that
f (

∑
i

Z∗
i AiZi) � U{

∑
i

Z∗
i f (Ai)Zi}U∗.

Here, we give a first proof based on Theorem 1.1. A more direct proof is given at
the end of the section.

Proof. Theorem 2.2 and Theorem 1.1 are equivalent. Indeed, to prove Theorem
1.1 we may first assume, by a limit argument, that f is defined on the whole real line.
Then, we may assume that f (0) = 0 so that Theorem 1.1 follows from Theorem 2.2
by taking Z as the projection onto E .

Theorem 1.1 entails Theorem 2.2(1): to see that, we introduce the partial isometry
V and the operator Ã on H ⊕ H defined by

V =
(

Z 0
(I − |Z|2)1/2 0

)
, Ã =

(
A 0
0 0

)
.

Denoting by H the first summand of the direct sum H ⊕ H , we observe that

f (Z∗AZ) = f (V∗ÃV) : H = V∗f (ÃV(H ))V : H .
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Applying Theorem 1.1 with E = V(H ) , we get a unitary operator W on V(H ) such
that

f (Z∗AZ) � V∗Wf (Ã)V(H )W
∗V : H .

Equivalently, there exists a unitary operator U on H such that

f (Z∗AZ) � UV∗f (Ã)V(H )(V : H )U∗

= UV∗
(

f (A) 0
0 f (0)

)
(V : H )U∗

= U{Z∗f (A)Z + (I − |Z|2)1/2f (0)(I − |Z|2)1/2}U∗.

Using f (0) � 0 we obtain the first claim of Theorem 2.2.
Similarly, Theorem 1.1 implies Theorem 2.2(2) (we may assume f (0) = 0 ) by

considering the partial isometry and the operator on ⊕mH ,
⎛
⎝

Z1 0 · · · 0
...

...
...

Zm 0 · · · 0

⎞
⎠ ,

⎛
⎝

A1
. . .

Am

⎞
⎠ .

�

We note that Theorem 2.2 strengthens some well-known trace inequalities:

COROLLARY 2.3.. Let A and {Ai}m
i=1 be Hermitian operators on a finite dimen-

sional space and let f be a convex function defined on an interval [a, b] containing the
spectra of A and Ai , i = 1, . . . m.

(1) (Brown-Kosaki [2]) If Z is a contraction, 0 ∈ [a, b] and f (0) � 0 , then

Tr f (Z∗AZ) � TrZ∗f (A)Z.

(2) (Hansen-Pedersen [7]) If {Zi}m
i=1 is an isometric column, then

Tr f (
∑

i

Z∗
i AiZi) � Tr {

∑
i

Z∗
i f (Ai)Zi}.

Proof. By a limit argument, we may assume that f is defined on the whole real
line and can be written as f (x) = g(x) − λx for some convex monotone function g
and some scalar λ . We then apply Theorem 2.2 to g . �

A very special case of Theorem 2.2(2) is: Given two Hermitian operators A , B
and a monotone convex or unitary convex function f on a suitable interval, there exists
a unitary operator U such that

f

(
A + B

2

)
� U

f (A) + f (B)
2

U∗.

This shows that Theorem 2.2, and consequently Theorem 1.1, can not be valid for
all convex functions:
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EXAMPLE 2.4. Theorems 1.1 and 2.2 are not valid for a simple convex function
such as t −→ |t| . Indeed, it is well-known that the inequality

|A + B| � U(|A| + |B|)U∗ (5)

is not always true, even for Hermitians A , B . We reproduce the counterexample [8, p.
1]: Take

A =
(

1 1
1 1

)
, B =

(
0 0
0 −2

)
.

Then, as the two eigenvalues of |A+B| equal to
√

2 while |A|+ |B| has an eigenvalue
equal to 2 −√

2 , inequality (5) can not hold.

In connection with Example 2.4, a famous result (e.g., [1, p. 74]) states the exis-
tence, for any operators A , B on a finite dimensional space, of unitary operators U , V
such that

|A + B| � U|A|U∗ + V|B|V∗. (6)

In the case of Hermitians A , B , the above inequality has the following general-
ization:

PROPOSITION 2.5. Let A , B be hermitian operators on a finite dimensional space
and let f be an even convex function on the real line. Then, there exist unitary operators
U , V such that

f

(
A + B

2

)
� Uf (A)U∗ + Vf (B)V∗

2
.

Proof. Since f (X) = f (|X|) , inequality (6) and the fact that f is increasing on
[0,∞) give unitary operators U0 , V0 such that

f

(
A + B

2

)
� f

(
U0|A|U∗

0 + V0|B|V∗
0

2

)
.

Since f is monotone convex on [0,∞) , Theorem 2.2 completes the proof. �

QUESTION 2.6. Does Proposition 2.5 hold for all convex functions defined on the
whole real line?

We close this section by giving a direct and proof of Theorem2.2, which is a simple
adaptation of the proof of Theorem 1.1.

Proof. We restrict ourselves to the case when f is monotone. We will use the
following observation which follows from the standard Jensen’s inequality: for any
vector u of norm less than or equal to one, since f is convex and f (0) � 0 ,

f (〈 u, Au〉 ) � 〈 u, f (A)u〉 .
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We begin by proving assertion (1). We have, for each integer k less than or equal to
the dimension of the space, a subspace F of dimension k such that

λk[f (Z∗AZ)] = min
h∈F ; ‖h‖=1

〈 h, f (Z∗AZ)h〉
= min

h∈F ; ‖h‖=1
f (〈 h, Z∗AZh〉 )

= min
h∈F ; ‖h‖=1

f (〈Zh, AZh〉 ).

where we have used the monotony of f . Then, using the above observation and the
minmax principle,

λk[f (Z∗AZ)] � min
h∈F ; ‖h‖=1

〈Zh, f (A)Zh〉
� λk[Z∗f (A)Z].

We turn to assertion (2). For any integer k less than or equal to the dimension of
the space, we have a subspace F of dimension k such that

λk[f (
∑

Z∗
i AiZi)] = min

h∈F ; ‖h‖=1
〈 h, f (

∑
Z∗

i AiZi)h〉

= min
h∈F ; ‖h‖=1

f (〈 h,
∑

Z∗
i AiZih〉 )

= min
h∈F ; ‖h‖=1

f (
∑

‖Zih‖2(〈Zih, AiZih〉 /‖Zih‖2))

� min
h∈F ; ‖h‖=1

∑
‖Zih‖2f (〈Zih, AiZih〉 /‖Zih‖2) (7)

� min
h∈F ; ‖h‖=1

∑
〈Zih, f (Ai)Zih〉 ) (8)

� min
h∈F ; ‖h‖=1

〈 h,
∑

Z∗
i f (Ai)Zih〉 )

� λk[
∑

Z∗
i f (Ai)Zi]

where we have used in (7) and (8) the convexity of f . �

3. Inequalities involving expansive operators

In this section we are in the finite dimensional setting.
For two reals a , z , with z > 1 , we have f (za) � zf (a) for every convex function

f with f (0) � 0 . In view of Theorem 2.2, one might expect the following result: If Z
is an expansive operator (i.e. Z∗Z � I ), A is a Hermitian operator and f is a convex
function with f (0) � 0 , then there exists a unitary operator U such that

f (Z∗AZ) � UZ∗f (A)ZU∗. (∗ )

But, as we shall see, this is not always true, even for A � 0 and f nonnegative with
f (0) = 0 . Let us first note the following remark:
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REMARK 3.1. Let f : [0,∞) −→ [0,∞) be a continuous function with f (0) = 0 .
If

Tr f (Z∗AZ) � Tr Z∗f (A)Z

for every positive operator A and every contraction Z , then f is convex.

To check this, it suffices to consider:

A =
(

x 0
0 y

)
and Z =

(
1/

√
2 0

1/
√

2 0

)

where x , y are arbitrary nonnegative scalars. Indeed, Tr f (Z∗AZ) = f ((x + y)/2) and
TrZ∗f (A)Z = (f (x) + f (y))/2 .

We may now state

PROPOSITION 3.2. Let f : [0,∞) −→ [0,∞) be a continuous one to one function
with f (0) = 0 and f (∞) = ∞ . Then, the following conditions are equivalent:

(1) The function g(t) = 1/f (1/t) is convex on [0,∞) .
(2) For every positive operator A and every expansive operator Z , there exists

a unitary operator U such that

Z∗f (A)Z � Uf (Z∗AZ)U∗.

Proof. We may assume that A is invertible. If g is convex, (note that g is also
nondecreasing) then Theorem 2.2 entails that

g(Z−1A−1Z−1∗) � U∗Z−1g(A−1)Z−1∗U

for some unitary operator U . Taking the inverses, since t −→ t−1 is operator decreasing
on (0,∞) , this is the same as saying

Z∗f (A)Z � Uf (Z∗AZ)U∗.

The converse direction follows, again by taking the inverses, from the above remark. �

It is not difficult to find convex functions f : [0,∞) −→ [0,∞) , with f (0) = 0
which do not satisfy to the conditions of Proposition 3.2. So, in general, (∗) can not
hold. Let us give an explicit simple example.

EXAMPLE 3.3. Let f (t) = t + (t − 1)+ and

A =
(

3/2 0
0 1/2

)
, Z =

(
2 1
1 2

)
.

Then λ2(f (ZAZ)) = 0.728 . . . < 0.767 . . . = λ2(Zf (A)Z) . So, (∗) does not hold.
In spite of the previous example, we have the following positive result:
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LEMMA 3.4. Let A be a positive operator, let Z be an expansive operator and β
be a nonnegative scalar. Then, there exists a unitary operator U such that

Z∗(A − βI)+Z � U(Z∗AZ − βI)+U∗.

Proof. We will use the following simple fact: If B is a positive operator with
SpB ⊂ {0} ∪ (x,∞) , then we also have SpZ∗BZ ⊂ {0} ∪ (x,∞) . Indeed Z∗BZ and
B1/2ZZ∗B1/2 (which is greater than B ) have the same spectrum.

Let P be the spectral projection of A corresponding to the eigenvalues strictly
greater than β and let Aβ = AP . Since t −→ t+ is nondecreasing, there exists a
unitary operator V such that

(Z∗AZ − βI)+ � V(Z∗AβZ − βI)+V∗.

Since Z∗(A − βI)+Z = Z∗(Aβ − βI)+Z we may then assume that A = Aβ . Now, the
above simple fact implies

(Z∗AβZ − βI)+ = Z∗AβZ − βQ

where Q = suppZ∗AβZ is the support projection of Z∗AβZ . Hence, it suffices to show
the existence of a unitary operator W such that

Z∗AβZ − βQ � WZ∗(Aβ − βP)ZW∗ = WZ∗AβZW∗ − βWZ∗PZW∗.

But, here we can take W = I . Indeed, we have

suppZ∗PZ = Q (∗) and SpZ∗PZ ⊂ {0} ∪ [1,∞) (∗∗)
where (∗∗) follows from the above simple fact and the identity (∗) from the observation
below with X = P and Y = Aβ .

Observation. If X , Y are two positive operators with suppX = suppY , then for
every operator Z we also have suppZ∗XZ = suppZ∗YZ .

To check this, we establish the corresponding equality for the kernels,

kerZ∗XZ = {h : Zh ∈ kerX1/2} = {h : Zh ∈ kerY1/2} = ker Z∗YZ. �

THEOREM 3.5. Let A be a positive operator and Z be an expansive operator.
Assume that f is a continuous function defined on [0, b] , b � ‖Z∗AZ‖∞ . Then,

(1) If f is concave and f (0) � 0 ,

Tr f (Z∗AZ) � TrZ∗f (A)Z.

(2) If f is convex and f (0) � 0 ,

Tr f (Z∗AZ) � TrZ∗f (A)Z.

EXAMPLE 3.6. Here, contrary to the Brown-Kosaki trace inequalities (Corollary
2.3(1)), the assumption A � 0 is essential. For instance, in the convex case, consider
f (t) = t+ ,

A =
(

1 0
0 −1

)
, and Z =

(
2 1
1 2

)
.



CONVEXITY OR CONCAVITY INEQUALITIES FOR HERMITIAN OPERATORS 617

Then, we have Tr f (Z∗AZ) = 3 < 5 = TrZ∗f (A)Z . Of course, the assumption A � 0
is also essential in Lemma 3.4.

We turn to the proof of Theorem 3.5.

Proof. Of course, assertions (1) and (2) are equivalent. Let us prove (2). Since Z
is expansive we may assume that f (0) = 0 . By a limit argument we may then assume
that

f (t) = λ t +
m∑

i=1

αi(t − βi)+

for a real λ and some nonnegative reals {αi}m
i=1 and {βi}m

i=1 . The result then follows
from the linearity of the trace and Lemma 3.4. �

In order to extend Theorem 3.5(2) to all unitarily invariant norms, i.e. those norms
‖ · ‖ such that ‖UXV‖ = ‖X‖ for all operators X and all unitaries U and V , we
need a simple lemma. A family of positive operators {Ai}m

i=1 is said to be monotone if
there exists a positive operator Z and a family of nondecreasing nonnegative functions
{f i}m

i=1 such that f i(Z) = Ai , i = 1, . . .m .

LEMMA 3.7. Let {Ai}m
i=1 be a monotone family of positive operators and let

{Ui}m
i=1 be a family of unitary operators. Then, for every unitarily invariant norm ‖ ·‖ ,

we have
‖

∑
i

UiAiU
∗
i ‖ � ‖

∑
i

Ai‖.

Proof. By the Ky Fan dominance principle, it suffices to consider the Ky Fan
k -norms ‖ · ‖(k) [1, pp. 92–3]. There exists a rank k projection E such that

‖
∑

i

UiAiU
∗
i ‖(k) =

∑
i

TrUiAiU
∗
i E �

∑
i

‖Ai‖(k) = ‖
∑

i

Ai‖(k)

where the inequality comes from the maximal characterization of the Ky Fan norms and
the last equality from the monotony of the family {Ai} . �

PROPOSITION 3.8. Let A be a positive operator and Z be an expansive operator.
Assume that f is a nonnegative convex function defined on [0, b] , b � ‖Z∗AZ‖∞ .
Assume also that f (0) = 0 . Then, for every unitarily invariant norm ‖ · ‖ ,

‖f (Z∗AZ)‖ � ‖Z∗f (A)Z‖.

Proof. It suffices to consider the case when

f (t) = λ t +
m∑

i=1

αi(t − βi)+

for some nonnegative reals λ , {αi}m
i=1 and {βi}m

i=1 . By Lemma 3.4, we have

Z∗f (A)Z = λZ∗AZ +
∑

i

Z∗αi(A − βiI)+Z

� λZ∗AZ +
∑

i

Uiαi(Z∗AZ − βiI)+U∗
i
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for some unitary operators {Ui}m
i=1 . Since λZ∗AZ and {αi(Z∗AZ − βiI)+}m

i=1 form a
monotone family, Lemma 3.7 completes the proof. �

THEOREM 3.9. Let A be a positive operator, let Z be an expansive operator and
let f : [0,∞) −→ [0,∞) be a nondecreasing concave function. Then,

‖f (Z∗AZ)‖∞ � ‖Z∗f (A)Z‖∞.

Proof. Here, we assume that we are in the finite dimensional setting.
Since Z is expansive we may assume f (0) = 0 . By a continuity argument we

may assume that f is onto. Let g be the reciprocal function. Note that g is convex
and g(0) = 0 . By Proposition 3.8,

‖g(Z∗AZ)‖∞ � ‖Z∗g(A)Z‖∞.

Hence
f (‖g(Z∗AZ)‖∞) � f (‖Z∗g(A)Z‖∞).

Equivalently,
‖Z∗AZ‖∞ � ‖f (Z∗g(A)Z)‖∞,

so, letting B = g(A) ,
‖Z∗f (B)Z‖∞ � ‖f (Z∗BZ)‖∞,

proving the result because A −→ g(A) is onto. �
Our next result is a straightforward application of Theorem 2.2.

PROPOSITION 3.10. Let A be a positive operator and Z be an expansive operator.
Assume that f is a nonnegative function defined on [0, b] , b � ‖Z∗AZ‖∞ . Then:

(1) If f is concave nondecreasing,

det f (Z∗AZ) � detZ∗f (A)Z.

(2) If f is convex increasing and f (0) = 0 ,

det f (Z∗AZ) � detZ∗f (A)Z.

Proof. For instance, consider the concave case. By Theorem 2.2, there exists a
unitary operator U such that Z∗−1f (Z∗AZ)Z−1 � Uf (A)U∗ ; hence the result fol-
lows. �

We note the following fact about operator convex functions:

PROPOSITION 3.11. Let f : [0,∞) −→ [0,∞) be a one to one continuous function
with f (0) = 0 and f (∞) = ∞ . The following statements are equivalent:

(i) f (t) is operator convex.
(ii) 1/f (1/t) is operator convex.

Proof. Since the map f (t) −→ Ψ(f )(t) = 1/f (1/t) is an involution on the set
of all one to one continuous functions f on [0,∞) with f (0) = 0 and f (∞) = ∞ ,
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it suffices to check that (i) ⇒ (ii) . But, by the Hansen-Pedersen inequality [6], (i) is
equivalent to

f (Z∗AZ) � Z∗f (A)Z (9)

for all A � 0 and all contractions Z . By a limit argument, it suffices to require (9)
when both A and Z are invertible. Then, as t −→ t−1 is operator decreasing, (9) can
be written

f −1(Z∗AZ) � Z−1f −1(A)Z∗−1,

or
f −1(A) � Zf −1(Z∗AZ)Z∗,

but this is the same as saying that (9) holds for Ψ(f ) , therefore Ψ(f ) is operator
convex. �

We wish to sketch another proof of Proposition 3.10. By a result of Hansen and
Pedersen [6], for a continuous function f on [0,∞) , the following conditions are
equivalent:

(i) f (0) � 0 and f is operator convex.
(ii) t −→ f (t)/t is operator monotone on (0,∞) .
Using the operatormonotony of t −→ 1/t on (0,∞) , we note that if f (t) satisfies

to (ii), then so does 1/f (1/t) . This proves Proposition 3.10.

QUESTION 3.12. Does Theorem 3.9 extend to all nonnegative concave functions
on [0, b] and/or to all unitarily invariant norms?

4. Addendum

There exist several inequalities involving f (A + B) and f (A)+ f (B) where A , B
are Hermitians and f is a function with special properties. We wish to state and prove
one of the most basic results in this direction which can be derived from a more general
result due to Rotfel’d (see [1, p. 97]). The simple proof given here is inspired by that of
Theorem 3.5.

PROPOSITION 4.1. (Rotfel’d) Let A , B be positive operators.
(1) If f is a convex nonnegative function on [0,∞) with f (0) � 0 , then

Tr f (A + B) � Tr f (A) + Tr f (B).

(2) If f is a concave nonnegative function on [0,∞) , then

Tr g(A + B) � Tr g(A) + Tr g(B).

Proof. By limit arguments, we may assume that we are in the finite dimensional
setting. Since, on any compact interval [a, b] , a > 0 , we may write g(x) = λx −
f (x) + μ for some scalar λ ,μ � 0 and some convex function f with f (0) = 0 ,
it suffices to consider the convex case. Clearly we may assume f (0) = 0 . Then, f
can be uniformly approximated, on any compact interval, by a positive combination of
functions fα(x) = max{0, x− α} , α > 0 .
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Therefore, still using the notation S+ for the positive part of the Hermitian operator
S , we need only to show that

Tr (A + B − α)+ � Tr (A − α)+ + Tr (B − α)+.

To this end, consider an orthonormal basis {ei}n
i=1 of eigenvectors for A + B . We note

that:
(a) If 〈 ei, (A + B − α)+ei〉 = 0 , then 〈 ei, (A + B − α)+ei〉 � α so that we

also have 〈 ei, (A − α)+ei〉 = 〈 ei, (B − α)+ei〉 = 0 .
(b) If 〈 ei, (A + B − α)+ei〉 > 0 , then we may write

〈 ei, (A + B − α)+ei〉 = 〈 ei, Aei〉 − θα + 〈 ei, Bei〉 − (1 − θ)α

for some 0 � θ � 1 chosen in such a way that 〈 ei, Aei〉 − θα � 0 and 〈 ei, Bei〉 −
(1 − θ)α � 0 . Hence, we have

〈 ei, Aei〉 − θα = 〈 ei, (A − θα)+ei〉 � 〈 ei, (A − α)+ei〉
and

〈 ei, Bei〉 − (1 − θ)α = 〈 ei, (B − (1 − θ)α)+ei〉 � 〈 ei, (B − α)+ei〉
by using the simple fact that for two commuting Hermitian operators S, T , S � T ⇒
S+ � T+ .

From (a) and (b) we derive the desired trace inequality by summing over i =
1, . . . n . �
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