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CONVEXITY OR CONCAVITY INEQUALITIES
FOR HERMITIAN OPERATORS

JEAN-CHRISTOPHE BOURIN

(communicated by F. Hansen)

Abstract. Given a Hermitian operator, a monotone convex function f and a subspace &,
dim & < oo, there exists a unitary operator U on & such that f(Ag) < Uf(A)oU™ . (Here
X denotes the compression of X onto & ). A related result is: For a monotone convex function
f,0<ap <1, a+p =1, and Hermitian operators A, B on a finite dimensional space,
there exists a unitary U such that f(aA + BB) < U{af(A) + Bf (B)}U*. More general
convexity results are established. Also, several old and new trace inequalities of Brown-Kosaki

and Hansen-Pedersen type are derived. We study the behaviour of the map p — {(AP) g}l/ P,
A>20,0<p<oo.

Introduction

Given an operator A on a separable Hilbert space .7 and a subspace & C 7,
we denote by As the compression of A onto &, i.e. the restriction of EAE to &,
E being the projection onto & . If & is a finite dimensional subspace, we show that,
for any Hermitian operator A and any monotone convex function f defined on the
spectrum of A, there exits a unitary operator U on & such that the operator inequality

f(Ag) < Uf(A)sU". (%)

holds. Here, f (A)s must be read as (f (A))es . This result together with the elementary
method of its proof motivate the whole paper. In Section 1 we prove the above inequality
and give a version. We also study the map p — {(AP)¢}'/?, 0 < p < oo fora
positive operator A on a finite dimensional space and d -dimensional subspace & . In
general, this map converges to an operator B on & whose eigenvalues are the d largest
eigenvalues of A.

Section 2 is concerned with eigenvalues inequalities (equivalently operator inequal-
ities) which improve some trace inequalities of Brown-Kosaki and Hansen-Pedersen:
Given a monotone convex function f defined on the real line with f(0) < 0, a Her-
mitian operator A and a contractive operator Z acting on a finite dimensional space,
there exists a unitary operator U such that

f (Z*AZ) < UZ*f (A)ZU* .
Mathematics subject classification (2000): 47A20, 47A30, 47A63.
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In Section 3, we prove that
Trf (Z*AZ) < TrZ*f (A)Z

for every positive operator A and expansive operator Z on a finite dimensional space,
and every concave function f defined on an interval [0,b], b > ||Z*AZ| s , With
f(0) =0 (| - |loo denotes the usual operator norm). Under the additional assumption
that f is nondecreasing and nonnegative, this trace inequality entails

If (Z°AZ)|| o0 < (127 (A)Z]| o

where stands for the usual operator norm. In a forthcomming project we will extend
this result to the infinite dimensional setting. We will also give a version of () for
infine dimensional subspace &, by adding a r/ term in the right hand side, where
stands for the identity and r > O is arbitrarily small.

1. Compressions and convex functions

By a classical result of C. Davis [4] (see also [1, p. 117-9]), a function f on (a, b)
is operator convex if and only if for every subspace & and every Hermitian operator A
whose spectrum lies in (a, b) one has

fAg) <f(A)s. (1)

What can be said about convex, not operator convex functions ? Let g be operator
convex on (a,b) and let ¢ be a nondecreasing, convex function on g((a,b)). Then,
f = ¢ o g is convex and we say that f is unitary convex on (a,b). Since t — —t
is trivially operator convex, we note that the class of unitary convex functions contains
the class of monotone convex functions. The following result holds:

THEOREM 1.1. Let f be a monotone convex, or more generally unitary convex,
Sfunction on (a,b) andlet A be a Hermitian operator whose spectrum lies in (a,b). If
& is a finite dimensional subspace, then there exists a unitary operator U on & such
that

f(As) < Uf(A)sU".

Proof. We begin by assuming that f is monotone. Let d = dimé& and let
{A(X)}¢_, denote the eigenvalues of the Hermitian operator X on &, arranged in
decreasing order and counted with their multiplicities. Let k be an integer, 1 < k < d.
There exists a spectral subspace .% C & for Ag (hence for f (Ag) ), dim.Z = k, such
that

Mlf(Ag)] = i h,f(Agz)h
df4s)l = min  (h.f(Az)h)
= min{f (A1 (A#)); f (M(Az))}
— min_ f((hAsh))

heZ; |h)|=1

= in  f((h,AR))

= min
heZ; |[h)|=1
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where at the second and third steps we use the monotony of f. The convexity of f
implies

f((hAR)) < (hif(A)R)
for all normalized vectors /. Therefore, by the minmax principle,

Mlf (Ag)] < heg@m:1<h,f (A)h)

< Alf(A)s].

This statement is equivalent to the existence of a unitary operator U on & satisfying
the conclusion of the theorem.

If f is unitary convex, f = ¢ o g with g operator convex and ¢ nondecreasing
convex; inequality (1) applied to g combined with the fact that ¢ is nondecreasing
yield a unitary operator V on & for which

¢og(As) < Volg(A)s]V".
Applying the first part of the proof to ¢ gives a unitary operator W on & such that

¢lg(A)s] < WP og(A)]sW™.
We then get the result by letting U = VW. 0O

Later, we will see that Theorem 1.1 can not be extended to all convex functions f
(Example 2.4). Of course Theorem 1.1 holds with a reverse inequality for monotone
concave functions f (or f = ¢ o g, g operator convex and ¢ decreasing concave).

Given a positive operator A on a finite dimensional space and a subspace &, it is
natural to study the behaviour of the map

p— {(A)s}""

on (0,00). Thenotation A = )", A(A) fx ®f means that f is a norm one eigenvector
associated to Ax(A) and f; ® fy is the corresponding norm one projection.

THEOREM 1.2. Let A = ), &(A)fx ® fx be a positive operator on a finite
dimensional space and let & be a subspace. Assume & Nspan{f;: j > d} = 0. Then,
for every integer k < dim &, the map p — M({(A?)}'/?) increases on (0,00) and

plggoflk({(f\p)g}”p) = M(A).

Moreover the family {(AP)g}'/P converges in norm when p — oo and the map
p — {(AP) e }'/P is increasing for the Loewner order on [1,00).

Proof. Let p > 0 and r > 1. By Theorem 1.1, there exists aunitary U : & — &
such that
{(A") e} < UAM)£U",
hence, for all k%,

A (A7) g) < M((A7)e),
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S0,
M({(AP) 6 }P) < M({(AP) e3P,

that is, the map p — Ac({(A?)s}'/?) increases on (0,00). In order to study its
convergence when p — oo, we first show that

11m M((EAPE)'/P) = A1(A) (2)

where E denotes the projectlon onto & . We note that

Jim Ay (EAE)'Y) < a(4). ©)

Recall that A = Y, 4(A)fx ® fx. Since by assumption f; ¢ &, there exists a
normalized vector g in & such that {g,f;) # 0. Setting G = g ® g, we have

M(GAG)'P) = (g.478) /7 = (S ALA) (g, 1) ).
k

The above expression is a weighted #” -norm of the sequence {A4(A)}. When p — oo,
this tends towards the /°° -norm which is A;(A). Since

M((GA"G)'7) < i ((EAPE)'/P)

we then deduce with (3) that (2) holds.

In order to prove the general limit assertion, we consider antisymmetric tensor
products. Let F be the projection onto . = span{f; : j < dim&’}. By assumption
F maps & onto .% . Therefore A*(F) maps A*(&) onto A*(.F) and we may find a
norm one tensor ¥ € AK(&) such that (y,f1 A--- Afi) # 0. Hence, with AXE and
A¥A in place of E and A, 1 < k < dim &, we may apply (2) to obtain

lim A, (AF(EAPE)'PY = A, (AFA)
p—00

meaning that

1
plggoH/l ((EAPE)'/P) H/l

1<k 1<k
From these relations we infer that, for every k£ < dim &, we have

lim A ((EAPE)'P) = A4(A)
p—00

proving the main assertion of the theorem.
For p,r > 1 we have
(EAP'E)'/" > EAPE
by Hansen’s inequality [6]. Since ¢+ — ¢!/7 is operator monotone by the Loewner
theorem [9, p. 2], we have

(EAP"E)'/P" > (EAPE)'/P.
Thus p — (EAPE)'/? increases on [I,00). Since this map is bounded, it converges
innorm. O

The author is indebted to a referee for having pointed out a misconception in the
initial statement and proof of Theorem 1.2.
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2. Contractions and convex functions

In [6] and [7], the authors show that inequality (1) is equivalent to the following
statement.

THEOREM 2.1. (Hansen-Pedersen) Let A and {A;}", be Hermitian operators
and let f be an operator convex function defined on an interval [a,b] containing the
spectraof A and A;, i=1,...m.

(1) If Z is a contraction, 0 € [a,b] and f(0) <0,

f(Z*AZ) < Z°f (A)Z.

(2) If{z}!, is an isometric column,
f(z ZiAZ) < Zzi*f(Ai)Zi-

Here, an isometric column {Z;}", means that ) ., Z*Z; = 1.

In a similar way, Theorem 1.1 is equivalent to the next one. We state it in the finite
dimensional setting, but an analogous version exists in the infinite dimensional setting
by adding a rI term in the right hand side of the inequalities.

THEOREM 2.2. Let A and {A;}!", be Hermitian operators on a finite dimensional
space and let f be a monotone, or more generally unitary, convex function defined on
an interval |a,b] containing the spectra of A and A;, i=1,...m.

(1) If Z is a contraction, 0 € [a,b] and f(0) < 0, then there exists a unitary
operator U such that

f(Z*AZ) < UZ*f(A)ZU*.

(2) If {Z:}!, is an isometric column, then there exists a unitary operator U
such that
FO -z az) <UD Zif (A)Zi U™
Here, we give a first proof based on Theorem 1.1. A more direct proof is given at

the end of the section.

Proof. Theorem 2.2 and Theorem 1.1 are equivalent. Indeed, to prove Theorem
1.1 we may first assume, by a limit argument, that f is defined on the whole real line.
Then, we may assume that f(0) = 0 so that Theorem 1.1 follows from Theorem 2.2
by taking Z as the projection onto & .

Theorem 1.1 entails Theorem 2.2(1): to see that, we introduce the partial isometry
V and the operator A on J# @ 5 defined by

v=(u-rr= o). 4=(5 o)

Denoting by ¢ the first summand of the direct sum J# @ .7, we observe that

[(ZAZ) = f(VFAV) : H =V (Ryw))V 2 K.
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Applying Theorem 1.1 with & = V() , we get a unitary operator W on V() such
that
F(Z*AZ) S V*WF (A)yoe W'V 2 .

Equivalently, there exists a unitary operator U on .5 such that
F(Z°AZ) S UVf Ay (V 2 AU

_gv (T 0 ) -
=UV ( 0 £(0) (V:s)U

= U{Z"f(A)Z + (1 — 1Z)'PF (0)1 — |1217) 2} U
Using f(0) < 0 we obtain the first claim of Theorem 2.2.

Similarly, Theorem 1.1 implies Theorem 2.2(2) (we may assume f(0) = 0) by
considering the partial isometry and the operator on &5,

Zi 0 - 0 A
Zm o - 0 Am

We note that Theorem 2.2 strengthens some well-known trace inequalities:

COROLLARY 2.3.. Let A and {A;}!", be Hermitian operators on a finite dimen-
sional space and let f be a convex function defined on an interval |a, b] containing the
spectraof A and A;, i=1,...m.

(1) (Brown-Kosaki [2]) If Z is a contraction, 0 € [a,b] and f(0) < 0, then

Trf (Z*AZ) < TrZ*f (A)Z.

(2) (Hansen-Pedersen [7]) If {Z;}?, is an isometric column, then

Tof (Y Z7AZ) < Te{d  Z'f (A)Z}.

Proof. By a limit argument, we may assume that f is defined on the whole real
line and can be written as f (x) = g(x) — Ax for some convex monotone function g
and some scalar A . We then apply Theorem2.2to g. [

A very special case of Theorem 2.2(2) is: Given two Hermitian operators A, B
and a monotone convex or unitary convex function f on a suitable interval, there exists
a unitary operator U such that

A+ B A B
F(AEB) < /1B
2 2
This shows that Theorem 2.2, and consequently Theorem 1.1, can not be valid for
all convex functions:
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EXAMPLE 2.4. Theorems 1.1 and 2.2 are not valid for a simple convex function
such as # — |¢|. Indeed, it is well-known that the inequality

[A+B| < U(|A| + [B) U (5)

is not always true, even for Hermitians A, B. We reproduce the counterexample [8, p.

1]: Take
1 1 0 0
) e %)

Then, as the two eigenvalues of |A 4 B| equal to v/2 while |A| +|B| has an eigenvalue
equal to 2 — v/2, inequality (5) can not hold.

In connection with Example 2.4, a famous result (e.g., [1, p. 74]) states the exis-
tence, for any operators A, B on a finite dimensional space, of unitary operators U, V
such that

A + B| < UJA|U* + V|B|V*. (6)

In the case of Hermitians A, B, the above inequality has the following general-
ization:

PROPOSITION 2.5. Let A, B be hermitian operators on a finite dimensional space
andlet f be an even convex function on the real line. Then, there exist unitary operators
U, V such that

; (AJ;B) - Uf(A)U*JZer(B)V*.

Proof. Since f(X) = f(]X]), inequality (6) and the fact that f is increasing on
[0,00) give unitary operators Uy, V such that

A+ B Uo|A|U; + Vo |B|Vjy

Since f is monotone convex on [0, 00), Theorem 2.2 completes the proof. [
QUESTION 2.6. Does Proposition 2.5 hold for all convex functions defined on the
whole real line?

We close this section by giving a direct and proof of Theorem 2.2, which is a simple
adaptation of the proof of Theorem 1.1.

Proof. We restrict ourselves to the case when f is monotone. We will use the
following observation which follows from the standard Jensen’s inequality: for any
vector u of norm less than or equal to one, since f is convex and f(0) <0,

S (Cu,Au) ) < (u,f (A)u) .
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We begin by proving assertion (1). We have, for each integer k less than or equal to
the dimension of the space, a subspace .# of dimension k such that

)kk[f(Z*AZ)} = heﬁn;li\ﬂl|‘:l<h7f (Z*AZ)h>
= egnin _ f((h,Z°AZR))
- he,;l;li‘ﬁH:lf«ZhAzm ).

where we have used the monotony of f. Then, using the above observation and the
minmax principle,

M (ZAZ) < min (Zhof (A)Z8)

SM(Zf(A)Z].

We turn to assertion (2). For any integer & less than or equal to the dimension of
the space, we have a subspace .% of dimension k such that

Ak[f(ZZfAiZi)}: min <haf(ZZi*AiZi)h>

he F: ||h||=1
= o min _ f({h, Sz Azihy)
= omin £z Zin,Aizih) /1Z0]))
<o min D NZnlPf (i Az /1ZnP) ™)
S > AZhf (A)Zh)) 8)
S heyl{linllllH:lw’ D _Zif (A)Zih))
<MD Zf (A7)

where we have used in (7) and (8) the convexity of f. O

3. Inequalities involving expansive operators

In this section we are in the finite dimensional setting.

For tworeals a, z, with z > 1, we have f (za) > zf (a) for every convex function
f with £(0) < 0. In view of Theorem 2.2, one might expect the following result: If Z
is an expansive operator (i.e. Z*Z > 1), A is a Hermitian operator and f is a convex
function with f (0) < 0, then there exists a unitary operator U such that

f(Z*AZ) > UZ*f (A)ZU*. (%)

But, as we shall see, this is not always true, even for A > 0 and f nonnegative with
f(0) =0. Let us first note the following remark:
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REMARK 3.1. Let f : [0,00) — [0, 00) be a continuous function with f (0) = 0.
If

Trf (Z*AZ) < TrZ*f (A)Z

for every positive operator A and every contraction Z, then f is convex.

To check this, it suffices to consider:

x 0 1/vV2 0
A= d Z=
(53) = 2= (33 o)
where x, y are arbitrary nonnegative scalars. Indeed, Trf (Z*AZ) = f ((x +y)/2) and

TrZ*f(A)Z = (f (x) +f(¥)/2.

We may now state

PROPOSITION 3.2. Let f : [0,00) — [0,00) be a continuous one to one function
with f(0) = 0 and f (00) = co. Then, the following conditions are equivalent:

(1)  The function g(t) = 1/f (1/t) is convex on [0, 00).

(2)  Forevery positive operator A and every expansive operator Z, there exists
a unitary operator U such that

Z*f(A)Z < Uf (Z*AZ)U*.

Proof. We may assume that A is invertible. If g is convex, (note that g is also
nondecreasing) then Theorem 2.2 entails that

g(ZflAflzfl*) < U*Zflg(Afl)Zfl*U

for some unitary operator U . Taking the inverses, since # — ¢! is operator decreasing
on (0,00), this is the same as saying

Z*f(A)Z < Uf(Z*AZ)U*.
The converse direction follows, again by taking the inverses, from the above remark. [

It is not difficult to find convex functions f : [0,00) — [0, 00), with £(0) =0
which do not satisfy to the conditions of Proposition 3.2. So, in general, (x) can not
hold. Let us give an explicit simple example.

EXAMPLE 3.3. Let f (1) =¢+ (¢ — 1)1 and

(R ) ()

Then A»(f (ZAZ)) = 0.728 ... < 0.767 ... = A2(Zf (A)Z) . So, (x) does not hold.
In spite of the previous example, we have the following positive result:
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LEMMA 3.4. Let A be a positive operator, let Z be an expansive operator and 3
be a nonnegative scalar. Then, there exists a unitary operator U such that

Z* (A — BI),Z < U(Z*AZ — BI) U*.

Proof. We will use the following simple fact: If B is a positive operator with
SpB C {0} U (x,00), then we also have SpZ*BZ C {0} U (x,00). Indeed Z*BZ and
B'/277*B'/? (which is greater than B) have the same spectrum.

Let P be the spectral projection of A corresponding to the eigenvalues strictly
greater than 8 and let Ag = AP. Since t — ¢, is nondecreasing, there exists a
unitary operator V such that

(Z*AZ — BI)y = V(Z*AgZ — BI). V"

Since Z*(A — BI)Z = Z*(Ag — BI)+Z we may then assume that A = Ag. Now, the
above simple fact implies

(Z"ApZ — BI)+ = Z"ApZ — BO

where Q = suppZ*AgZ is the support projection of Z*AgZ . Hence, it suffices to show
the existence of a unitary operator W such that

Z*AgZ — BQ > WZ"(Ap — BP)ZW™ = WZ*AgZW* — BWZ*PZW*.
But, here we can take W = [ . Indeed, we have
suppZ*PZ=Q (x) and SpZ*PZ C {0}U][l,00) (xx)

where (xx) follows from the above simple fact and the identity (*) from the observation
below with X = P and Y = Ag.

Observation. If X, Y are two positive operators with suppX = suppY, then for
every operator Z we also have suppZ*XZ = suppZ*YZ.

To check this, we establish the corresponding equality for the kernels,

kerZ*XZ = {h : Zh € kerX'*} = {h : Zh € kerY"/*} = ker Z*YZ. O

THEOREM 3.5. Let A be a positive operator and Z be an expansive operator.
Assume that f is a continuous function defined on [0,b], b > ||Z*AZ||eo . Then,
(1) Iff is concave and f(0) > 0,

Ttf (Z°AZ) < Tr Z*f (A)Z.
(2) Iff isconvexand f (0) <0,
Tef (Z*AZ) > Tr Z*f (A)Z.

EXAMPLE 3.6. Here, contrary to the Brown-Kosaki trace inequalities (Corollary
2.3(1)), the assumption A > O is essential. For instance, in the convex case, consider

f(t):t+v
A:<(1) _01), and Zz(? ;)
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Then, we have Trf (Z*AZ) =3 < 5 =TrZ*f(A)Z. Of course, the assumption A > 0
is also essential in Lemma 3.4.
We turn to the proof of Theorem 3.5.

Proof. Of course, assertions (1) and (2) are equivalent. Let us prove (2). Since Z
is expansive we may assume that f(0) = 0. By a limit argument we may then assume

that
= A+ Z ot — Bi)

forareal A and some nonnegative reals {oc,-} m, and {B;}", . The result then follows
from the linearity of the trace and Lemma 3.4. [

In order to extend Theorem 3.5(2) to all unitarily invariant norms, i.e. those norms
|| - || such that ||[UXV|| = ||X|| for all operators X and all unitaries U and V, we
need a simple lemma. A family of positive operators {A;}”, is said to be monotone if
there exists a positive operator Z and a family of nondecreasing nonnegative functions
{fi}i", suchthat f;(Z) =A;, i=1,...m

LEMMA 3. 7 Let {A ', be a monotone family of positive operators and let

{U }ﬂ'l

we have

[ Z UAU?| < || ZAiH-

Proof. By the Ky Fan dominance principle, it suffices to consider the Ky Fan
k-norms || - [|x) [1, pp. 92-3]. There exists a rank k projection E such that

1D VAUl = D TrUAUE <D lAillw = 1 D Aillay

where the inequality comes from the maximal characterization of the Ky Fan norms and
the last equality from the monotony of the family {A4;}. O

PROPOSITION 3.8. Let A be a positive operator and Z be an expansive operator.
Assume that f is a nonnegative convex function defined on [0,b], b > ||Z*AZ|| .
Assume also that f (0) = 0. Then, for every unitarily invariant norm || - ||,

If (Z°AZ)|| = |27 (A)Z].

Proof. Tt suffices to consider the case when

)Lt+Za, Bi)

for some nonnegative reals A, {o;}7, and {§;}",. By Lemma 3.4, we have

Zf(A)Z =AZ'AZ+ Y Z*04(A - Bil), Z

SAZAZ+ Y Uios(Z°AZ — Bil), U

i



618 JEAN-CHRISTOPHE BOURIN

for some unitary operators {U;}", . Since AZ*AZ and {o4(Z*AZ — Bil)4+ }", forma
monotone family, Lemma 3.7 completes the proof. [

THEOREM 3.9. Let A be a positive operator, let Z be an expansive operator and
let f : [0,00) — [0,00) be a nondecreasing concave function. Then,

If (Z*AZ)|| o < N|Z°f (A)Z] -

Proof. Here, we assume that we are in the finite dimensional setting.

Since Z is expansive we may assume f(0) = 0. By a continuity argument we
may assume that f is onto. Let g be the reciprocal function. Note that g is convex
and g(0) = 0. By Proposition 3.8,

18(Z*AZ) |0 = 1278(A)Z] -

Hence
fIg(Z*AZ)||) = f (1Z78(A)Z]| o0 )-
Equivalently,
1Z*AZ]| o = [If (2" 8(A)Z) | oo
so, letting B = g(A),
1Z"f (B)Z||oc = |If (Z"BZ)]| oo,
proving the result because A — g(A) isonto. O

Our next result is a straightforward application of Theorem 2.2.

PROPOSITION 3.10. Let A be a positive operator and Z be an expansive operator.
Assume that f is a nonnegative function defined on [0,b], b > || Z*AZ||« . Then:
(1) Iff is concave nondecreasing,

detf (Z*AZ) < detZ*f (A)Z.
(2) Iff is convex increasing and f (0) = 0,
detf (Z*AZ) > detZ*f (A)Z.
Proof. For instance, consider the concave case. By Theorem 2.2, there exists a

unitary operator U such that Z*~!f (Z*AZ)Z~! < Uf(A)U*; hence the result fol-
lows. O

We note the following fact about operator convex functions:

PROPOSITION 3.11. Let f : [0,00) — [0, 00) be a one to one continuous function
with f(0) =0 and f (00) = 0o. The following statements are equivalent:

(i) f(z) is operator convex.

(ii) 1/f(1/1) is operator convex.

Proof. Since the map f (1) — W(f)(r) = 1/f(1/¢) is an involution on the set
of all one to one continuous functions f on [0,00) with f(0) = 0 and f (c0) = o0,
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it suffices to check that (i) = (ii). But, by the Hansen-Pedersen inequality [6], (i) is
equivalent to

f(ZAZ) < Z°f(A)Z ©)
for all A > 0 and all contractions Z. By a limit argument, it suffices to require (9)
when both A and Z are invertible. Then, as t — ¢! is operator decreasing, (9) can
be written

[N ZAz) > 7 )z,
or
[N <zl (zraz)zy,

but this is the same as saying that (9) holds for W(f), therefore W(f) is operator
convex. [

We wish to sketch another proof of Proposition 3.10. By a result of Hansen and
Pedersen [6], for a continuous function f on [0,00), the following conditions are
equivalent:

(i) f(0) <0 and f is operator convex.

(ii) t — f(r)/t is operator monotone on (0, o).

Using the operator monotony of t — 1/¢ on (0, 00), we note thatif f (¢) satisfies
to (ii), then so does 1/f (1/t). This proves Proposition 3.10.

QUESTION 3.12. Does Theorem 3.9 extend to all nonnegative concave functions
on [0, b] and/or to all unitarily invariant norms?

4. Addendum

There exist several inequalities involving f (A + B) and f (A) +f (B) where A, B
are Hermitians and f is a function with special properties. We wish to state and prove
one of the most basic results in this direction which can be derived from a more general
result due to Rotfel’d (see [1, p. 97]). The simple proof given here is inspired by that of
Theorem 3.5.

PROPOSITION 4.1. (Rotfel’d) Let A, B be positive operators.
(1) If f is a convex nonnegative function on [0, 00) with f(0) < 0, then

Trf(A+B) > Trf (A) + Trf (B).
(2) If f is a concave nonnegative function on [0,00), then

Trg(A+ B) < Trg(A) + Trg(B).

Proof. By limit arguments, we may assume that we are in the finite dimensional
setting. Since, on any compact interval [a,b], a > 0, we may write g(x) = Ax —
f(x) + u for some scalar A,u > 0 and some convex function f with f(0) = 0,
it suffices to consider the convex case. Clearly we may assume f(0) = 0. Then, f
can be uniformly approximated, on any compact interval, by a positive combination of
functions fy(x) = max{0,x — o}, & > 0.
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Therefore, still using the notation S for the positive part of the Hermitian operator
S, we need only to show that

Tr(A+Bf(X)+ >Tr(A7 OC)+ +Tr(Bf OC)+

To this end, consider an orthonormal basis {e;}"_, of eigenvectors for A+ B. We note
that:

(a) If (e;,(A+B— a)re;) =0,then (e, (A+B— o)re;) < o so that we
also have (e;, (A — ot) e;) = {e;,(B— at)ye;) =0.

(b) If (e;,(A+ B — at)+e;) > 0, then we may write

(ei,(A+B—a)ie;) = (e;,Ae;) —Oa+ (e;,Be;) — (1 —0)a

for some 0 < 0 < 1 chosen in such a way that (e;,Ae;) — 6o > 0 and (e;, Be;) —
(1 —0)a > 0. Hence, we have

(ei,Ae;y — 0o = (e;, (A —Oat)re;) > (e, (A—a)ie)
and
(ei,Be;y —(1—0)or=(e;,(B—(1—0)t)re;) > (ei,(B— a)ie;)

by using the simple fact that for two commuting Hermitian operators S,7, S < T =
S, <T,.

From (a) and (b) we derive the desired trace inequality by summing over i =
..n. Qo
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