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NORM INEQUALITIES INVOLVING MATRIX MONOTONE FUNCTIONS

M. SINGH AND H. L. VASUDEVA

(communicated by G. Styan)

Abstract. Let A,B, X be complex matrices with A, B Hermitian positive definite and let f :
(0,∞) → (0,∞) be matrix monotone increasing. We prove

(2 + t) ||| A
1
2 (f (A)Xf ⊥(B) + f ⊥(A)Xf (B))B

1
2 |||� 2 ||| A2X + tAXB + XB2 |||

and

(2 + t) ||| f (A)X + Xf (B) |||� 2
f (λ)
λ

||| A
3
2 XB− 1

2 + tA
1
2 XB

1
2 + A− 1

2 XB
3
2 |||

where f ⊥(x) = x(f (x))−1, t ∈ [−2, 2] and λ = min{σ(A),σ(B)}; σ(A),σ(B) being the
spectrum of A, B respectively and ||| . ||| any unitarily invariant norm. These inequalities
generalize Zhan’s inequalities.

1. Introduction

Let Mm,n be the space of complex matrices and Mn = Mn,n. The Hadamard
product of two matrices A = (aij)i,j and B = (bij)i,j in Mn is defined to be the matrix
A ◦ B whose i, j− entry is aijbij. By σ(A) and σ(B), we denote the spectrum of A
and B. The symbol ||| . ||| will denote a unitarily invariant norm whereas || . || will
denote the spectral norm throughout this paper. In [4] Bhatia and Kittaneh proved an
arithmetic geometric mean inequality for arbitrary matrices in Mn. This says that for
all A, B ∈ Mn and all unitarily invariant norms ||| · |||

2 ||| A∗B |||�||| AA∗ + BB∗ ||| .

In [3] and later in [8] this was strengthened to

2 ||| A∗XB |||�||| AA∗X + XBB∗ ||| (1)

for all A, B, X ∈ Mn. The insertion of X is no idle generalization. A judicious choice
can lead to powerful perturbation theorems. This has been demonstrated in [7]. In
[11] Zhan observed that the converse of (1) is also true: that is, if (1) holds for all
A, B, X ∈ Mn then ||| · ||| must be unitarily invariant norm. In [11] Zhan generalized
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the inequality (1) by introducing two parameters r and t. He showed that for complex
matrices A, B, X with A, B Hermitian positive semidefinite

(2 + t) ||| ArXB2−r + A2−rXBr |||� 2 ||| A2X + tAXB + XB2 ||| (2)

for r, t real numbers satisfying 1 � 2r � 3, −2 < t � 2. The case r = 1 , t = 0
reduces to (1).

For Hermitian matrices A and B, we write A � B to mean A − B is positive
semidefinite. A real-valued function f is said to be matrix monotone increasing on a
real interval J if for all Hermitian matrices A and B of all orders whose eigenvalues
lie in J

A � B implies f (A) � f (B).

It is matrix monotone decreasing if the inequality is reversed after the application of f .
A matrix monotone increasing function f : (0,∞) → (0,∞) can be represented as
follows

f (x) = α + βx +

∞∫
0

x
x + s

dμ(s), (3)

where α, β � 0 and μ is a positive measure (see [5] p. 226 and [10] p. 133).
The functions xp (0 � p � 1), logx and log(1 + x) are some examples of

monotone matrix functions on (0,∞).
Our aim here is to obtain a stronger version of the above inequality (2) in the same

spirit. We will prove

THEOREM 1.1. Let A ∈ Mm, B ∈ Mn be Hermitian positive definite and X ∈ Mm,n

be arbitrary. Then for matrix monotone increasing f : (0,∞) → (0,∞) and t ∈
[−2, 2], the inequality

(2 + t) ||| A
1
2 (f (A)Xf ⊥(B) + f ⊥(A)Xf (B))B

1
2 |||� 2 ||| A2X + tAXB + XB2 |||

holds, where f ⊥(x) = x(f (x))−1 and A
1
2 is the unique positive definite square root of

A.

Following the techniques employed in the proof of Theorem 1.1, we obtain the
following generalization of a theorem of Zhan (Theorem 9, [11])

(2 + t) ||| A
1
2 [log(I + A)X + Xlog(I + B)]B

1
2 |||� 2 ||| A2X + tAXB + XB2 ||| .

Its proof being no different from that of Theorem 1.1 is only sketched.

THEOREM 1.2. Let A ∈ Mm, B ∈ Mn be Hermitian positive definite and X ∈ Mm,n

be arbitrary. Then for matrix monotone increasing function f : (0,∞) → (0,∞),
t ∈ [−2, 2] and λ = min{σ(A),σ(B)}, the inequality

(2 + t) ||| f (A)X + Xf (B) |||� 2
f (λ )
λ

||| A
3
2 XB− 1

2 + tA
1
2 XB

1
2 + A− 1

2 XB
3
2 |||

holds.
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2. Norm inequalities

Let A ∈ Mn be fixed. Define the linear map TA : Mn → Mn by TA(X) = A ◦ X,
for X ∈ Mn (also called Hadamard multiplier). Let || TA || denote the induced
Hadamard multiplier spectral norm of TA :

|| TA ||= max{|| A ◦ X ||, X ∈ Mn :|| X ||� 1}.
It is not easy to compute || TA || for a general matrix A , but in the special case when
A = (aij)i,j is Hermitian positive semidefinite it is known that (see [1])

|| TA ||= max{aii : i = 1, 2, · · · , n}.
The following lemma, a proof of which can be found in [1] (also see [11]) will be

the main tool in proving our results.

LEMMA 2.1. For A, B ∈ Mn, the inequality

||| A ◦ B |||� || TA || ||| B |||
holds.

The following result due to Kwong [10] will be needed in the sequel, also see [9].

LEMMA 2.2. Let the function g(x) = f (x)+h(x) with f positive matrix monotone
increasing and h positive matrix monotone decreasing. Then for any Hermitian positive
definite A ∈ Mn and Hermitian positive semidefinite P ∈ Mn the solution X of the
matrix equation

A2X + tAXA + XA2 = g(A)P + Pg(A),

is Hermitian positive semidefinite for all t ∈ (−2, 2] .

Our statement of Lemma 2.2 given above is a slight variation on Theorem 10, [10],
which results using continuity arguement.

Now, taking P, the matrix whose all entries are 1, A = diag(λ1, λ2, · · · , λn),
λi > 0, and g(x) = f (x), a matrix monotone increasing or matrix monotone decreasing
function, we obtain

A2X + tAXA + XA2 = ((λ 2
i + tλiλj + λ 2

j )xij)i,j

and
g(A)P + Pg(A) = (f (λi) + f (λj))i,j.

Thus from Lemma 2.2, we obtain

X = (xij)i,j =

(
f (λi) + f (λj)
λ 2

i + tλiλj + λ 2
j

)
i,j

(4)

is Hermitian positive semidefinite.
Bhatia and Parthasarthy [5] also gave the proof of (4) in case f (x) = xr, r ∈ [−1, 1]

and showed that the interval (−2, 2] of t is the largest possible for the conclusion to
hold.
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LEMMA 2.3. Let λ1, λ2, · · · , λn be positive real numbers and t ∈ (−2, 2]. Let
f : (0,∞) → (0,∞) be a matrix monotone increasing function. The following n × n
matrix is Hermitian positive semidefinite:(

f (λi)2λ−1
i + f (λj)2λ−1

j

λ 2
i + tλiλj + λ 2

j

)
i,j

. (5)

Proof. Using (3) and Fubini’s Theorem, we obtain f (x)2 = α2 + 2αβx + β2x2 +

2α
∞∫
0

x
x+sdμ(s) + 2β

∞∫
0

x2

x+sdμ(s) +
∞∫
0

∞∫
0

x2

(x+s1)(x+s2)
d(μ × μ)(s1, s2).

Now, on replacing f (x)2 by 1, x, x2, x
x+s and x2

x+s ; s � 0, in (5) and using (4),

it follows that, the matrix

(
f (λi)2λ−1

i +f (λj)
2λ−1

j
λ 2
i +tλiλj+λ 2

j

)
i,j

is Hermitian positive semidefinite

in each of the above cases. Finally it remains to check the positive semidefinitness of(
f (λi)2λ−1

i +f (λj)
2λ−1

j
λ 2
i +tλiλj+λ 2

j

)
i,j

for f (x)2 = x2

(x+s1)(x+s2)
; s1, s2 � 0. To see this, note that(

f (λi)2λ−1
i +f (λj)

2λ−1
j

λ 2
i +tλiλj+λ 2

j

)
i,j

=
(

λiλj(λi+λj)+2λiλj(s1+s2)+s1s2(λi+λj)
(λi+s1)(λi+s2)[λ 2

i +tλiλj+λ 2
j ](λj+s1)(λj+s2)

)
i,j

=
(

λi
(λi+s1)(λi+s2)

(
(λi+λj)+2(s1+s2)+s1s2(λ−1

i +λ−1
j )

λ 2
i +tλiλj+λ 2

j

)
λj

(λj+s1)(λj+s2)

)
i,j

is Hermitian positive semidefinite if and only if the matrix(
(λi + λj) + 2(s1 + s2) + s1s2(λ−1

i + λ−1
j )

λ 2
i + tλiλj + λ 2

j

)
i,j

(6)

is Hermitian positive semidefinite. Now once again in view of (4), the matrix (6),

being the sum of three Hermitian positive semidefinite matrices

(
λi+λj

λ 2
i +tλiλj+λ 2

j

)
i,j

,(
2(s1+s2)

λ 2
i +tλiλj+λ 2

j

)
i,j

and

(
λ−1
i +λ−1

j
λ 2
i +tλiλj+λ 2

j

)
i,j

, is Hermitian positive semidefinite. This com-

pletes the proof. �

Proof of Theorem 1.1. It is sufficient to prove the result for t ∈ (−2, 2], since the
case t = −2 is trivial. We shall also confine ourself to the case m = n, since the
non square matrices can be augmented to the square matrices with zero blocks and this
change does not effect their unitarily invariant norms.
We first prove the result for B = A, i.e.,

(2 + t) ||| A
1
2 (f (A)Xf ⊥(A) + f ⊥(A)Xf (A))A

1
2 |||� 2 ||| A2X + tAXA + XA2 ||| . (7)

Let A = diag(λ1, λ2, · · · , λn); λi > 0. (For non-diagonal Hermitian positive definite
A, write A = U�diagAU with U a unitary matrix. Since ||| . ||| is unitarily invariant,
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X ∈ Mn in (7) gets replaced by Y ∈ Mn, Y = U�XU. This neither affects the inequality
nor does it effect its proof). Then

A
1
2 (f (A)Xf ⊥(A) + f ⊥(A)Xf (A))A

1
2

=
(
(λ

1
2

i (f (λi)f ⊥(λj) + f ⊥(λi)f (λj))λ
1
2

j )xij

)
i,j

=

⎛
⎝λ

1
2

i (f (λi)f ⊥(λj) + f ⊥(λi)f (λj))λ
1
2

j

λ 2
i + tλiλj + λ 2

j

⎞
⎠

i,j

◦ (A2X + tAXA + XA2)

= Z ◦ (A2X + tAXA + XA2), (8)

where Z = (zij)i,j =

(
λ

1
2

i (f (λi)f ⊥(λj)+f ⊥(λi)f (λj))λ
1
2
j

λ 2
i +tλiλj+λ 2

j

)
i,j

and is Hermitian positive semi-

definite. Indeed f ⊥(x) = x(f (x))−1 and(
λ

1
2

i (f (λi)f ⊥(λj)+f ⊥(λi)f (λj))λ
1
2
j

λ 2
i +tλiλj+λ 2

j

)
i,j

=

(
λ

3
2

i (f (λi))−1

(
f (λi)2λ−1

i + f (λj)2λ−1
j

λ 2
i + tλiλj + λ 2

j

)
λ

3
2

j (f (λj))−1

)
i,j

is Hermitian positive semidefinite if and only if the matrix(
f (λi)2λ−1

i + f (λj)2λ−1
j

λ 2
i + tλiλj + λ 2

j

)
i,j

(9)

is Hermitian positive semidefinite, which is so, by Lemma 2.3. Moreover, each diagonal
entry of Z is 2

2+t . Hence we obtain the desired result from (8) on using Lemma 2.1 for
the case B = A .

General case follows on replacing A by

(
A 0
0 B

)
and X by

(
0 X
0 0

)
in

(7). �

Proof of Theorem 1.2. As in Theorem 1.1, we need only to prove the result for the
case m = n , t ∈ (−2, 2] and B = A i.e.,

(2 + t) ||| f (A)X + Xf (A) |||� 2
f (λ )
λ

||| A
3
2 XA− 1

2 + tA
1
2 XA

1
2 + A− 1

2 XA
3
2 |||,

Once again for the same reason as in Theorem1.1 we assume here that A = diag (λ1, λ2,
· · · , λn) , λi > 0. Then

f (A)X + Xf (A) = ((f (λi) + f (λj))xij)i,j

=

⎛
⎝ f (λi) + f (λj)

λ
3
2

i λ
− 1

2
j + tλ

1
2

i λ
1
2

j + λ− 1
2

i λ
3
2

j

⎞
⎠

i,j

◦ (A
3
2 XA− 1

2 + tA
1
2 XA

1
2 + A− 1

2 XA
3
2 )

= Z ◦ (A
3
2 XA− 1

2 + tA
1
2 XA

1
2 + A− 1

2 XA
3
2 ), (10)
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where,

Z = (zij)i,j =

⎛
⎝ f (λi) + f (λj)

λ
3
2

i λ
− 1

2
j + tλ

1
2

i λ
1
2

j + λ− 1
2

i λ
3
2

j

⎞
⎠

i,j

=

(
λ

1
2

i

(
f (λi) + f (λj)
λ 2

i + tλiλj + λ 2
j

)
λ

1
2

j

)
i,j

,

is Hermitian positive semidefinite if and only if the matrix

(
f (λi)+f (λj)
λ 2
i +tλiλj+λ 2

j

)
i,j

is pos-

itive semidefinite, which is so by (4). Moreover the diagonal entries of Z are(
2

2+t

)
λ−1

i f (λi). Since x−1f (x) is matrix monotone decreasing (see Theorem 2, [10])
and so λ−1

i f (λi) � λ−1f (λ ) for λ = min σ(A).
Hence the desired result follows from (10) on using Lemma 2.1. �

COROLLARY 2.4. If 0 � r � 1, A, B ∈ Mn Hermitian positive definite and
λ = min{σ(A),σ(B)}, then

(2 + t) ||| ArX + XBr |||� 2 λ r−1 ||| A
3
2 XB− 1

2 + tA
1
2 XB

1
2 + A− 1

2 XB
3
2 ||| .

Proof. Replace f (x) by xr in Theorem 1.2, the desired result follows. �

COROLLARY 2.5. If A, B ∈ Mn Hermitian positive definite and λ = min{σ(A),
σ(B)}, then

(2+t) ||| A
1
2 [log(I+A)X+Xlog(I+B)]B

1
2 |||� 2

log(1 + λ )
λ

||| A2X+tAXB+XB2 ||| .

(11)

Proof. Replace X by A
1
2 XB

1
2 and f (x) by log(1+ x) in Theorem 1.2, we get the

desired result.

Since log(1+λ )
λ < 1, so (11) is more precise estimate than Theorem 9 [11]. This

was indicated by one of the referees.
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